SUPPLEMENTAL INFORMATION

SUPPLEMENTAL FIGURES

Figure S1. Postnatal mammary gland branching proceeds independently of MMP2, MMP3 and MMP13 as well as epithelial cell-derived MT1-MMP and MT2-MMP *in vivo*, Related to Figure 1.

- (A) Carmine staining of mammary gland whole mounts from 4 week-old *Mmp2^{+/+}* (n=7) and *Mmp2^{-/-}* (n=9) mice with quantification of ductal penetration (DP) (mm) and branch points per mm duct (BP/mm). Data are presented as mean ± SEM.
- (B) Carmine staining of whole mounts from 4 week-old *Mmp3^{+/-}* (n=9) and *Mmp3^{-/-}* (n=3) mice with quantification of DP (mm) and BP per mm duct. Data are presented as mean ± SEM.
- (C) Carmine staining of whole mounts from 4 week-old *Mmp13^{+/+}* (n=4) and *Mmp13^{+/-}* (n=3) mice with quantifications of DP (mm) and BP per mm duct. Data are presented as mean ± SEM.
- (A-C) Scale bar, 5.0 mm.
- (D) QPCRs for *Mmp14* and *Mmp15* in mammary epithelial cells harvested from 4 week-old *Mmp14^{t/f}* and *MMTV-Cre^{+/-}/Mmp14^{t/f}* mice, and from 4 week-old *Mmp15^{t/f}* and *MMTV-Cre^{+/-}* /*Mmp15^{t/f}*, as normalized to *Gapdh* (n=4, **p<0.001; mean ± SEM).</p>
- (E) Carmine-staining of mammary gland whole mounts isolated from 8 week-old $Mmp14^{I/I}$ and $MMTV-Cre^{+/-}/Mmp14^{I/I}$ mice (scale bar, 5.0 mm) with quantification of DP (mm) and BP per mm duct from n=5 mice per genotype. Data are presented as mean ± SEM.
- (F) Chart of Functional Annotation Clusters and Gene ontology (GO) categories downregulated in mammary epithelial cells harvested from 4 week-old *Mmp14^{t/f}* and *MMTV-Cre^{+/-}/Mmp14^{t/f}* mice (n=3 per genotype) with associated enrichment scores.
- (G) LacZ staining of *MMTV-Cre^{+/-}/Mmp14^{fl/fl}/Rosa26R^{+/loxP}* mammary gland whole mount from 7 week-old mice (scale bar, 2.0 mm). A box circumscribes the region at higher magnification (scale bar, 500 μm). Arrows indicate the wild-type (Cre-negative) ducts.
- (H) GFP fluorescence with DAPI staining in mammary tissue cross-sections at 8 weeks posttransplantation of $Gfp^{+/-}/Mmp14^{+/-}$ and $Gfp^{+/-}/Mmp14^{-/-}$ ducts (scale bar, 50.0 µm).

- (I-K) Immunofluorescence for CK18 and CK5 (I), E-cadherin (J) and Zonula occludens (ZO)-1 with DAPI staining (K) in mammary tissue cross-sections at 8 weeks post-transplantation of *Gfp^{+/-}Mmp14^{+/-}* and *Gfp^{+/-}Mmp14^{-/-}* ducts (scale bar, 20.0 μm).
- (L) Carmine-staining of mammary gland whole mounts isolated from 4 week-old $Mmp15^{+/+}$ (n=5) and $Mmp15^{-/-}$ (n=6) mice (scale bar, 5.0 mm) with quantification of DP (mm) and BP per mm duct. Data are presented as mean ± SEM. (**p=0.0012)
- (M) Carmine-staining of mammary gland whole mounts isolated from 8 week-old *Mmp15^{t/f}* (n=4) and *MMTV-Cre^{+/-}/Mmp15^{t/f}* mice (n=3) (scale bar, 5.0 mm) with quantification of DP (mm) and BP per mm duct. Data are presented as mean ± SEM.

Figure S2. Carcinoma cell-derived MT1-MMP controls local invasion and metastasis independently of MT2-MMP or stromal cell-derived MT1-MMP, Related to Figure 2.

- (A) CK8 and CK14 immunofluorescence in mammary tumors harvested from 3-4 month-old MMTV-PyMT^{+/-}/Mmp14^{t/f} and MMTV-PyMT^{+/-}/MMTV-Cre^{+/-}/Mmp14^{t/f} mice (scale bar, 50.0 μm).
- (B) CK8 and CK14 immunofluorescence with DAPI staining in mammary tumor cross-sections from 3-4 month-old *MMTV-PyMT*^{+/-}/*Mmp15*^{t/f} and *MMTV-PyMT*^{+/-}/*MMTV-Cre*^{+/-}/*Mmp15*^{t/f} mice (scale bar, 50.0 μm). Dotted lines mark the tumor-stromal interface. "S" indicates the stroma and "C" indicates the carcinoma in each section.
- (C) Western blots for PyMT, MT1-MMP, pAkt, Akt, pErk1/2 and Erk1/2 in mammary tumors harvested from 3-4 month-old *MMTV-PyMT*^{+/-}/*Mmp14*^{t/f} and *MMTV-PyMT*^{+/-}/*MMTV-Cre*^{+/-} /*Mmp14*^{t/f} mice, as normalized to β-actin.
- (D) Immunofluorescence of E-cadherin with CK8 and DAPI staining at the invasive edge of mammary tumor cross-sections from 3-4 month-old *MMTV-PyMT*^{+/-}/*Mmp14^{t/f}* and *MMTV-PyMT*^{+/-}/*MMTV-Cre*^{+/-}/*Mmp14^{t/f}* mice (scale bar, 50 μm).
- (E) MT1-MMP immunofluorescence in 3-4 month-old MMTV-PyMT^{+/-}/Mmp14^{t/f} and MMTV-PyMT^{+/-}/MMTV-Cre^{+/-}/Mmp14^{t/f} mammary tumors (scale bar, 10 μm).
- (F) Stromal cell YAP immunofluorescence in 3-4 month-old MMTV-PyMT^{+/-}/Mmp14^{t/f} and MMTV-PyMT^{+/-}/MMTV-Cre^{+/-}/Mmp14^{t/f} mammary tumors. Dotted line marks the tumorstromal interface (scale bar, 20 μm). Quantification of the total pixels of YAP immunofluorescence per stromal cell nuclear surface area (μm²) in n=4 tumors and n>20 fields per genotype. Data are presented as mean ± SEM.
- (G) Cartoon of mammary tumor fragment transplantation.
- (H) Whole mounts of RFP⁺ tumors derived from MMTV-PyMT^{+/-}/MMTV-Cre^{+/-}/Rosa^{RFP} and MMTV-PyMT^{+/-}/MMTV-Cre^{+/-}/Rosa^{RFP}/Mmp14^{t/t} mammary tumor fragments at 7 weeks post-transplantation (scale bar, 5.0 mm). Inset shows tumor fragment before transplant

(scale bar, 5.0 mm). Circle drawn on tumor at 7 weeks indicates initial fragment size for comparison. Note the corrugated boundaries of the wild-type tumor mass relative to the conditional knockout.

- (I) 3-D reconstructions of RFP fluorescence and CK14 immunofluorescence with DAPI staining in tumors derived from *MMTV-PyMT*^{+/-}/*MMTV-Cre*^{+/-}/*Rosa*^{RFP} and *MMTV-PyMT*^{+/-}/*MMTV-Cre*^{+/-}/*Rosa*^{RFP}/*Mmp14*^{t/f} mammary tumor fragments at 7 weeks post-transplantation (scale bar, 50 μm).
- (J) 3-D reconstructions of CF-CHP immunofluorescence in mammary tumors harvested from
 3-4 month-old *MMTV-PyMT*^{+/-}/*Mmp15*^{f/f} and *MMTV-PyMT*^{+/-}/*MMTV-Cre*^{+/-}/*Mmp15*^{f/f} mice.
 Dotted lines mark the tumor-stromal interface (scale bar, 30 μm).
- (K) Kaplan-Meier plots depicting age of tumor onset (days) for MMTV-PyMT^{+/-}/Mmp14^{f/f}
 (n=12) versus MMTV-PyMT^{+/-}/Fsp1-Cre^{+/-}/Mmp14^{f/f} (n=13) mice.
- (L) CK8 and CK14 immunofluorescence with DAPI staining in mammary tumor cross-sections from 3-4 month-old MMTV-PyMT^{+/-}/Mmp14^{t/f} and MMTV-PyMT^{+/-}/Fsp1-Cre^{+/-}/Mmp14^{t/f} mice (scale bar, 50 μm). Dotted lines mark the tumor-stromal interface.
- (M) Changes in ECM transcriptomes in 3-4 month-old MMTV-PyMT^{+/-}/Mmp14^{t/f} and MMTV-PyMT^{+/-}/MMTV-Cre^{+/-}/Mmp14^{t/f} mammary tumors (n=4 per genotype).
- (N) Quantification of lung nodules per cross-section in lungs harvested from MMTV-PyMT^{+/-} /Mmp15^{f/f} (n=13) and MMTV-PyMT^{+/-}/MMTV-Cre^{+/-}/Mmp15^{f/f} (n=14) mice. Data are presented as mean ± SEM.
- (O) Quantification of lung nodules per cross-section in lungs harvested from MMTV-PyMT^{+/-} /Mmp14^{t/f} (n=8) and MMTV-PyMT^{+/-}/Fsp1-Cre^{+/-}/Mmp14^{t/f} (n=10) mice. Data are presented as mean ± SEM.

Figure S3. MT1-MMP directs both mouse and human breast carcinoma invasion programs *ex vivo*, Related to Figure 3.

- (A) Quantification of the percentage of Ki67-positive nuclei per organoid (n≥12 per genotype) (top panel), the number of phospho-histone H3 (pHH3)-positive nuclei per organoid (n≥20 per genotype) (middle panel), and the number of TUNEL-positive nuclei per organoid (n=14 per genotype) (lower panel) in *MMTV-PyMT*^{+/-}/*Mmp14*^{t/f} and *MMTV-PyMT*^{+/-}/*MMTV-Cre*^{+/-}/*Mmp14*^{t/f} mammary carcinoma-derived organoids after 3 days of culture within 3-D type I collagen with FGF-2. Data are presented as mean ± SEM.
- (B) Bright-field micrographs of MMTV-PyMT^{+/-}/Mmp14^{t/f} and MMTV-PyMT^{+/-}/MMTV-Cre^{+/-}/Mmp14^{t/f} mammary carcinoma-derived organoids cultured atop a 3-D type I collagen hydrogel with FGF-2 at 4 hours.
- (C) CK8 immunofluorescence with DAPI counter-staining in MMTV-PyMT^{+/-}/Mmp14^{t/f} and MMTV-PyMT^{+/-}/MMTV-Cre^{+/-}/Mmp14^{t/f} mammary carcinoma-derived organoids after 24 hours of culture atop a 3-D type I collagen hydrogel with FGF-2.
- (D) Quantification of MMTV-PyMT^{+/-}/Mmp14^{t/f} and MMTV-PyMT^{+/-}/MMTV-Cre^{+/-}/Mmp14^{t/f} mammary carcinoma-derived organoid surface area at 4 hours and following outgrowth at 24 hours (n≥30 at 4 hours and n≥20 at 24 hours from representative experiment). (*p=0.0141 with MMTV-PyMT^{+/-}/Mmp14^{t/f} at 5813 ± 433.5 µm² and MMTV-PyMT^{+/-}/MMTV-Cre^{+/-}/Mmp14^{t/f} at 7622 ± 570.9 µm²).
- (E) Bright-field micrographs of mammary carcinoma-derived organoids harvested from 3 month-old *MMTV-PyMT*^{+/-}/*Mmp14*^{f/f} mice and transduced with either Adenoviral-GFP or Adenoviral-Cre prior to embedding in 3-D type I collagen for 3 days with FGF-2 in the presence or absence of *MMTV-PyMT*^{+/-}/*Mmp14*^{f/f} tumor-derived CAFs (scale bar, 50 μm).
- (F) Quantifications of tumor organoid invasion, as represented by the average branch length (µm) of the three longest branches (****p<0.0001; n≥19 for organoid alone conditions and n ≥ 25 for co-culture conditions). Data are presented as mean ± SEM.

- (G) MT1-MMP immunofluorescence with DAPI staining in cross-sections from intact human patient-derived xenograft (PDX) tumors MC-1 and Gum30 (scale bar, 50 μm).
- (H) Bright-field micrographs of organoids harvested from PDX Gum30 tumors and embedded within 3-D type I collagen for 4 days with FGF-2 in the presence of the anti-MT1-MMP antibody (DX-2400) or a control IgG antibody (scale bar, 50 µm). Inset shows bright-field micrograph of Gum30 organoid at time 0. Arrows mark terminal ends of branching structures. Organoid branch length is reduced from 150.5±7.7 µm with 8.8±0.9 branches/organoid in the presence of control IgG (n=18) to 65.0±6.1 µm with 4.9±0.6 branches/organoid in the presence of DX-2400 (n=15) (p≤0.001, mean ± SEM).
- (I) CK8 and CK14 immunofluorescence with DAPI staining in organoids harvested from PDX Gum30 tumors and embedded within 3-D type I collagen for 4 days with FGF-2 in the presence of DX-2400 antibody or control IgG antibody (scale bar, 50 µm).

Figure S4. Stromal cell-derived MT1-MMP controls mammary gland branching in an organ autonomous fashion independent of stromal cell-derived growth factors, macrophages or endothelial cells, Related to Figure 5.

- (A) Schematic of whole mammary gland transplant procedure.
- (B) Carmine-stained whole mounts of transplanted donor mammary glands from *Mmp14^{t/f}* or *Dermo1-Cre^{+/-}/Mmp14^{t/f}* mice at 10 days and 5 weeks post-transplantation (scale bar, 2.0 mm). "LN" indicates donor inguinal lymph node.
- (C) Bright-field micrographs of mammary epithelial organoids harvested from 6 week-old *Mmp14^{t/t}* and *Dermo1-Cre^{+/-}/Mmp14^{t/t}* mice and cultured within Matrigel with FGF-2 with quantification of branch number per organoid from n=12 fields per genotype (scale bar, 50 μm). Data are presented as mean ± SEM. Inset shows bright-field micrograph of organoid at time 0.
- (D) Gene ontology (GO) categories differentially expressed in 4 week-old *Dermo1-Cre^{+/-}* /*Mmp14^{t/f}* and wild-type mammary tissue (n=3 per genotype).
- (E) Bright-field micrographs of mammary epithelial organoids harvested from 6 week-old *Mmp14^{t/f}* mice and cultured within Matrigel alone under basal conditions (without FGF-2) (left panel), in the presence of 100 *Mmp14^{t/f}* fibroblasts per organoid (middle panel), or in the presence of 100 *Dermo1-Cre^{+/-}/Mmp14^{t/f}* fibroblasts per organoid (right panel) (scale bar, 50 µm) with quantification of branch number per organoid (***p=0.0002, ****p<0.0001).</p>
- (F) Senescence-associated β-galactosidase (SA-βgal) staining (pH 6.0) of mammary gland cross-sections from 4 week-old *Mmp14^{t/f}* and *Dermo1-Cre^{+/-}/Mmp14^{t/f}* mice with Eosin counter-staining (scale bar, 200 µm).
- (G) F4/80 with α-smooth muscle actin (αSMA) immunofluorescence to delineate the myoepithelial cell compartment and DAPI staining (scale bar, 50 µm) in *Mmp14^{t/f}* and *Dermo1-Cre^{+/-}/Mmp14^{t/f}* mammary gland cross-sections.

(H) CD31 (vascular endothelial cells) and Lyve1 (lymphatic endothelial cells) immunofluorescence with DAPI staining in *Mmp14^{t/f}* and *Dermo1-Cre^{+/-}/Mmp14^{t/f}* mammary gland cross-sections (scale bar, 100µm).

Figure S5. Postnatal mammary gland branching requires type I collagen remodeling by periductal fibroblasts while invading carcinoma cells directly remodel type I collagen, Related to Figure 6.

- (A) Quantification of ductal penetration (mm) and branch points per mm duct in 9 week-old mammary glands harvested from *Mmp14^{t/f}* (n=4) and *Col1a2-CreERT^{+/-}/Mmp14^{t/f}* (n=3) (**p=0.006).
- (B) Polarized light images of Sirius Red staining of 9 week-old *Mmp14^{t/f}* and *Col1a2-CreERT**/ /*Mmp14^{t/f}* glands (scale bar, 200 μm). Insets show corresponding bright-field images.
- (C) 3-D reconstructions of MMTV-PyMT^{+/-}/Mmp14^{t/f} mammary tumor organoids within 3-D type I collagen extracted from Col1a1^{+/+} or Col1a1^{r/r} mouse tails and labeled with CellMask dye and DAPI after 4 days of culture with FGF-2. Carcinoma cells invade 3-D hydrogels of native, but not mutant, type I collagen (scale bar, 50 μm).
- (D) Quantifications of XY surface area (um²), branch number and branch length (um) of organoids cultured within *Col1a1^{+/+}* or *Col1a1^{r/r}* type I collagen for 4 days with FGF-2 (****p<0.0001, ***p≤0.0005).</p>

SUPPLEMENTAL TABLES

Table S1. Differential expression of epithelium-associated genes in array of <i>Mmp14-</i>
targeted mammary epithelial cells, Related to Figure 1.

Gene	Fold change
Glycam1	-40.9
Csn1s1	-6.99
Csn2	-5.31
Sprr2a3	-4.77
Sprr2a1	-2.99
Csn1s2a	-2.39
Epgn	-2.07
Wfdc21	-2.06
Krt1	-2.03
Krt10	-1.95
Sprr2e	-1.80
Sprr1b	-1.78
Lalba	-1.77
Muc13	-1.56
Krt6b	-1.53
Areg	-1.52
Sprr1a	-1.52

Table S1. Differential expression of epithelium-associated genes in Affymetrix microarray of mammary epithelial organoids isolated from $MMTV-Cre^{+/-}/Mmp14^{t/f}$ female mice (n=2), as compared to $Mmp14^{t/f}$ female littermates (n=3).

Table S2. Genotyping PCR Primers, Related to the STAR Methods Section.

Allele	Forward (5' to 3')	Reverse (5' to 3')
Mmp14 ^{KO}	<i>Mmp14^{wT}</i> : CTAGGCCTGGAACAT	Mmp14 ^R :
	TCTAACGATC	CTTTGTGGGTGACCCTGACTTGC
	<i>Mmp14^{k0}:</i> GTGCGAGGCCAGAGGC	
	CACTTGTGT	
Mmp14 ^{lacZ}	Mmp14 ^{lacZ} (+):	Mmp14 ^{lacZ} :
	ACCTGCGTGCAATCCATCTTG	ATGATGGCGGAGGGATCGTTAG
	Mmp14 ^{lacZ} (-):	
	TGAGGTGGAAAACACGACCAG	

Мтр15 ^{ко}	<i>Mmp15^{WT}</i> : CCGCCACCAAGCCTC	<i>Mmp15^{WT}</i> : AAAGCCACCCACGCC
	ACTGTCT	ATCAAAC
	<i>Mmp15^{KO}</i> : CGCCACCAAGCCTCA	<i>Mmp15^{K0}</i> : AATTGCTGGGGATGG
	СТӨТСТ	AGGAAGGTA
Mmp15 ^{lacZ}	GAGATGGCGCAACGCAATTAATG	TGCACGTCCCATTCTCATGC
Мтр2 ^{ко}	<i>Mmp2^{WT}</i> : GTGCTACTGCAGGATA	<i>Mmp2^{WT}</i> : CCGGGACAGGAACGTA
	AACTGATG	CTGGGTTC
	<i>Mmp2^{KO}</i> : GCGCCTACCGGTGGA	<i>Mmp2^{KO}</i> : CCGGGACAGGAACGTA
	TGTGGAATGTGTGCG	CTGGGTTC
Мтр3 ^{ко}	<i>Mmp3^{WT}</i> : ACCGGATTTGCCAAG	<i>Mmp3^{WT}</i> : GCATCTCCATTAATCCC
	ACAGAGTG	TGGTCC
Mmp13 ^{KO}	Mmp13 ^{wT} :	Mmp13 ^{wT} :
	TTGGCCACTCCCTAGGTCT	CTACCCAGACAAGCAGTTTGC
Neo	AGGATCTCCTGTCATCTCAC	AAGAACTCGTCAAGAAGG
	CTTGCTCCTG	CGATAGAAGGCG
Mmp14 ^{flox}	GTTGAGGCAGGAGGATTGTGAGTT	CCTGGAAAAGTGGGCGAGAAG
iCre	CCGTTTGCCGGTCGTGGG	CGAATATCCTGGCAGCGATC
MMTV-Cre	GGTTCT GATCTGAGCTCTGAGTG	CATCACTCGTTGCATCGACCGG
PyMT	Internal Control (oIMR8744):	Internal Control (oIMR8745):
	CAAATGTTGCTTGTCTGGTG	GTCAGTCGAGTGCACAGTTT
	Trangene (oIMR0384):	Transgene (oIMR0385):
	GGAAGCAAGTACTTCACAAGGG	GGAAAGTCACTAGGAGCAGGG
Fsp1-Cre	ATGCTTCTGTCCGTTTGCCG	CAATGCGATGCAATTTCCTC
Col1a1 ^r	TGGTTCTGGAATGAGGATGG	TGCCTCTGCTTCCTTAGTGC

 Table S3. Quantitative real-time PCR primers, Related to the STAR Methods Section.

	-	-
Gene	Forward (5' to 3')	Reverse (5' to 3')
Gapdh	TGAAGCAGGCATCTGAGGG	CGAAGGTGGAAGAGTGGGAG
Arbp	CACTGGTCTAGGACCCGAGAA	AGGGGGAGATGTTCAGCATGT
Mmp14	CTGCCATTGCCGCCATGCAAAA	TGGCGTGGCACTCTCCCATACT
Mmp15	ACATGTCCACCATGCGCTCT	TACCATGATGTCAGCCTCC
Mmp2	TCTGGAGCGAGGATACCCCAA	TTCCAGGAGTCTGCGATGAGC
Мтр3	GTTCCTGATGTTGGTGGCTT	AGCCTCTCCTTCAGAGATCC
Mmp13	CTTTTCCTCCTGGACCAAACT	TCATGGGCAGCAACAATAAA