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Supplemental Description of Modeling and Inference

1 Model Description
Consider that we are interested in estimating the abundance of K homologous proteins or proteo-
forms based on the levels of M peptides quantified across N conditions. To this end, the abundance
of the ith peptide quantified in the jth condition (xij) is modeled as a linear superposition of the
abundances of all proteins containing the peptide, scaled by an unknown peptide-specific nuisance
constant (zi) that characterizes how well the peptide was cleaved, chromatographically separated
and ionized in the experiment (Figure 1). Applying this generative model to all peptides mapping
to a set of homologous proteoforms or proteins results in an algebraic system of equations 1:

 x11 . . . x1N
... . . . ...

xM1 . . . xMN


︸ ︷︷ ︸
Peptide levels (data)

=

z1 . . . 0
... . . . ...
0 . . . zM


︸ ︷︷ ︸

Nuisance

 s11 . . . s1K
... . . . ...

sM1 . . . sMK


︸ ︷︷ ︸

Design matrix

p11 . . . p1N
... . . . ...

pK1 . . . pKN


︸ ︷︷ ︸

Protein levels

(1)

In system 1 above, X = ZSP, X > 0 are the MS measured intensities of M peptide in
N physiological conditions, Z = diag(z) is an unknown diagonal matrix with peptide-specific
nuisances z > 0, S is a known {0, 1, 2, 3, . . .} design/signature matrix of integers reflecting the
number of times the amino acid sequence of the ith peptide occurs in the correspondingK proteins,
and P ≥ 0 is an unknown matrix of positive protein concentrations.1 HIquant has to recover the

1Nomenclature note: all vectors are denoted in bold and small letters; all matrices are bold and CAPITAL letters.
All matrices inferred from the measured peptide levels are denoted with ̂ , all matrices inferred from simulated data
are denoted with ˜ ;
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decomposition of the measured data X in terms of the known S and the unknown protein levels P
and nuisances Z.

Note that at best we can hope to recover Z and P up-to one scalar scaling, since αZ and 1
α
P

give equivalent solutions for X and S for any α 6= 0. In practice this is not a problem since peptide
intensities quantified by MS are scaled arbitrarily and thus we generally need a scaling factor for
converting the arbitrary intensity scale into number of molecules per cell. Also note that in the
absence of shared peptides, S is an identity matrix and the equations are uncoupled. Then we can
not even recover Z up-to a scalar multiple since then we have X = ZP and any diagonal rescaling
of Z results in a feasible solution. This case corresponds to having no shared peptides (only unique
ones) and emphasizes the value of shared peptides for HIquant.

Below we derive a framework for establishing when a HIquant problem has a unique solution
and a set of solvers that formulate and solve such problems within convex optimization framework.
Before the rigorous treatment of the general case, we work out the analytic solution of the simplest
problem as means of developing intuition.

1.1 Simple example with an exact analytic solution
In this example, we have measured M = 3 peptides across N = 2 conditions. These M peptides
have sequences found in K = 2 proteins/proteoforms. Thus the example can be described by the
system 2: z1 0 0

0 z2 0
0 0 z3

1 0
0 1
1 1

(p11 p12
p21 p22

)
=

x11 x12
x21 x22
x31 x32

 (2)

System 2 can be written in terms of MN = 6 linear equations that have M +KN = 7 unknown
variables. Since the number of unknowns exceeds the number of equations by 1, system 2 can be
solved at best up to 1 constant scaling (degree of freedom). Since, we only look for solutions up
to scaling by a constant, we set p11 = 1. Fixing p11 effectively removes one unknown and thus
there are just enough equations to determine the solution uniquely. This is the smallest example for
which there is a unique solution. The exact solution is (substituting in order from top to bottom):

p11 = 1

p12 =
x12
x11

p11

p21 =
p11 − x31

x32
p12

x31x22
x32x21

− 1

p22 =
x22
x21

p21

z1 =
x11
p11

z2 =
x21
p21

z3 =
x31

p11 + p21
.

In the special case when x22x31 ≡ x21x32, the above exact solution is unique up two scalings
and in all other cases, it is unique to a single constant scaling. As a way of choosing this constant,
one might set p11 = 1, or can introduce additional equations, such as normalization equations for
total protein abundances (e.g.,

∑
i pi1 = 1). When the system satisfies the normalization equations,

the relative proteoform abundances can be interpreted as probabilities.
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2 Existence and uniqueness of solutions
Beyond the best simple example considered in the previous section, we explore the existence
and uniqueness of solutions of system (1) for K proteoforms (and homologous proteins) with
M peptides quantified across N conditions. Depending on the problem (i.e., S and X), (1) may
have an ensemble of solutions within a high-dimensional feasibility space or it may have a unique
solution up to a single scaling (one dimensional feasibility space) as was the case for system (2). In
this section, we first focus on determining the dimensionality of the feasibility space (uniqueness
of the solution constrained by the data) and then on algorithms guaranteed to find the optimal
solution in the least squares (`2) sense.

At first sight, the general problem defined by system 1 appears to be a complex matrix-
factorization problem, possibly requiring nonlinear optimization to solve without guarantees for
having a solution or finding an optimal solution if one exists. This first impression, fortunately, is
incorrect. The key to solving the problem defined in section 1 is rearranging the matrices to ob-
tain a standard linear form that then can be analyzed by linear algebra tools. We start by defining
auxiliary vector λ = [ 1

z1
, ..., 1

zM
], and matrix Λ = diag(λ). We multiply system 1 by Λ = Z−1 on

both sides and rearrange to system 3 in which we want to find Λ and P:

ΛX = SP (3)

If the nuisances of some peptides are very low, this inversion of Z may introduce numerical insta-
bilities. If low nuisances reflect poor digestion and ionization of peptides, the problem might be
addressed by using a different protiase or even compiling the peptides with the highest intensities
from several digestions, each of which using a different protease. If the peptides with low nui-
sances and thus intensities are not essential for constraining the model or correspond to very lowly
abundant proteoforms, they can be removed from the model.

Since both unknowns (Λ and P) enter equation 3 linearly, we can can rearrange the equation
to a standard linear system. To obtain a standard linear form, we transpose both sides and move
everything to one side to get:

PTST −XTΛ = 0 (4)

Now let us stack columns of PT , i.e. rows of P into a vector p = vec(PT ). Then vec(PTST ) =
(S⊗ I)vec(p), where ⊗ stands for the kronecker product. Similarly define a matrix blkdiag(XT ),
which is a block-diagonal matrix with columns of XT , i.e. rows of X in diagonal blocks. This way
we have XTΛ = blkdiag(XT )λ. Combining these rearrangements together results in:[

(S⊗ I)

∣∣∣∣ − blkdiag(XT )

]
︸ ︷︷ ︸

A

[
vec(p)
vec(λ)

]
= 0 (5)

Now we can use the power of linear algebraic methods to analyze the solution space of our
problem and identify the optimal unique solution of our problem if it exists. In particular, any
vector in the nullspace of A =

[
(S⊗ I)| − blkdiag(XT )

]
is a solution to system 3 and thus to

the original problem defined by system 1. To give a more intuitive description of the key matrix
A ∈ RMN×KN+M , below we display A explicitly for the simplest example, N = 2, M = 2 and
K = 2:
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(
z1 0
0 z2

)(
s11 s12
s21 s22

)(
p11 p12
p21 p22

)
=

(
x11 x12
x21 x22

)
The corresponding matrix A whose null space we need to find is:

A =
[
S⊗ IN | − blkdiag(XT

1:N,1, ..,X
T
1:N,M)

]
=

( s11 0 s12 0 −X11 0
0 s11 0 s12 −X12 0
s21 0 s22 0 0 −X21
0 s21 0 s22 0 −X22

)
A unique solution corresponds to a one dimensional (1D) null space of A. The null space

can be 1D only when the number of columns (KN +M ) is equal or smaller than the number of
rows (MN ), i.e., KN +M ≤ MN . If the number of peptides (M) is larger than the number of
proteoforms (K), as the number of quantified conditions (N) increases, the number of rows grows
faster than the number of columns of A; thus, for large enough N, A will be a tall matrix. This
condition is easily calculated for any one problem and required for A to have a 1D space:

KN +M ≥MN + 1 =⇒ M − 1 ≥ N(M −K)

Proof 1: Solutions are under-defined at N = 1
In the special case of a single quantified condition, i.e., N = 1, the number of unknowns (K +M )
is always larger than the number of equations (M ). Thus, the the protein levels in system (1)
cannot be estimated independently from the nuisances. This mathematical result corresponds well
with the physical intuition: HIquant estimates protein levels only from isotopologue ratios, and a
single condition without heavy standards does not provide any isotopologue ratios.

In general, the dimension of the null space indicates the number of degrees of freedom in
the solution since any linear combination of the vectors in the null space is a solution. Before
attempting to solve a practical problem, therefore, we evaluate the numbers of degrees of freedom
constrained by the design matrix S and the data X. If the matrix A has a single vector in its
nullspace, then the problem has a unique solution up to a single scaling. This case is of greatest
practical interest since it means that the matrix of protein levels (P) is identifiable up to a single
scaling. Many problems constrained by MS data generate A matrices with 1 dimensional null
space and are thus identifiable.

3 Inference of proteoform stoichiometries

3.1 Identifying protein clusters
First, HIquant aims to find how many homologous protein clusters are defined by the measured
protein levels in the input file. To this end, HIquant builds a network in which each node represents
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a protein, and each link between nodes represents an existing shared peptide between two proteins.
Then, each connected component of this network corresponds to a homologous protein cluster.
HIquant identifies all connected components and compiles their associated peptide level matrices
X and design matrices S.

The peptide levels (X) and their mappings to proteins (S) constrain a solution, the protein
levels (P). We want to infer this solution by convex optimization since convexity guarantees
optimal solutions without local minima. Below is a list of convex solvers that we have developed
to infer P.

3.2 SVD solver
In the noiseless case, the solution is simply the null space of A in equation (5). This null space
can be found by singular value decomposition (SVD) of A as the space defined by the singular
vectors with zero singular values. However, noise in the data may corrupt the null space to the
point that the null space of A is lost (all singular values are larger than zero). Thus, while SVD
is optimal in the noiseless case, it may perform poorly in the presence of noise. To mitigate
such complications, we devised algorithms that are more robust to noise. The subsections below
summarize our approaches to solving equations (1) and (5) that can handle noisy data and provide
estimates for the accuracy of the inferred protein levels.

3.3 Quadratic programming based solver
The robustness to noise can be improved by incorporating the knowledge that protein concentra-
tions and nuisances are non negative numbers. HIquant incorporates this fact as a constraint by
solving the convex optimization problem defined by equation (6) using quadratic programming
(QP) via interior point methods. The solution û corresponds to a vector in the positive quadrant
that approximates the null space of A in the absence of noise.

û = argmin
u

uT (ATA)u subject to u > 0 and 〈u,1〉 = 1 (6)

The first K × N elements of û correspond to the elements of P (the protein levels). The last
M elements of û correspond to the nuisances.

3.4 Coordinate descent based solvers
An alternative method to solving system 1 is by defining the optimization problem,

(P̂, ẑ) = min
z,P
‖X− diag(z)SP‖2F , (7)

and solving it by coordinate descent, first holding z constant and optimizing over P, and then
holding P constant and optimizing over z. Note that both sub-problems have simple closed form-
solutions and furthermore, optimization over z is separable – so we can find a solution for each zi
independently, and combine them.
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This approach is known as coordinate descent and may have disadvantages, including that it
may require many iterations to converge. It is, however, robust to measurement noise in the data
(X) and practically performs very well both on simulated and real experimental data. While the
formulation (7) is not convex (and thus not theoretically guaranteed to find the optimal solution
), it can be made convex by the simple rearrangement in equation (3). This results in the convex
coordinate descent problem:

(P̂, λ̂) = min
λ,P
‖diag(λ)X− SP‖2F , (8)

As with the quadratic solver, we require that nuisances and protein levels are non negative
z > 0, P > 0. This requirement can be implemented by a projected coordinate descent, where
after each iteration we also project on the positive orthant, and update the current estimates, e.g.,
P is updated by taking P = max(P, εt), with εt being a small positive constant.

3.5 Structured total least squares solver
The above methods do not take into account the noise structure of the matrix A. Some of its
elements are not contaminated by noise, i.e., S⊗ I, while the others are contaminated by noise that
can be estimated, i.e., blkdiag(XT ) . To incorporate this type of information into the solution, we
developed a convex algorithm to solving total least square (TLS) problems (Malioutov and Slavov,
2014). This convex TLS solver is based on relaxing/approximating the rank of A with its nuclear
norm (Malioutov and Slavov, 2014).

4 Confidence intervals and reliability
In the absence of noise, HIquant is guaranteed to infer the correct proteoform stoichiometries.
However, MS data are noisy to varying degrees, and in general the reliability of the inference is
fundamentally dependent on the reliability of the MS data. Thus, the utility of HIquant inferences
depends critically on the ability to derive reliability estimates for the inferred protein levels, P̂.
To derive such reliability estimates, we built a random forest classifier based on features that are
informative for the accuracy and reliability of the inferred P̂. These features include:

1. The goodness of fit for the model as quantified by the fraction of variance in the data (X) that
is explained by the model, i.e., the R2 for the solution of the quadratic programming (QP)
solver.

2. The fraction of negative elements in the smallest singular vector of A, vl. In the absence
of noise, all elements of vl should be non negative as they reflect non negative physical
quantities; as noise contamination increases, the elements of vl can begin to turn negative.
Thus, the fractions of negative elements of vl reflects noise contamination of the null space.
Since singular vectors are determined up to a scalar multiple, which can be negative, HIquant
flips the signs of vl if necessary, i.e., vl = median(sign(vl))vl.
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3. The norm of the relative peptide levels, X, which quantifies the magnitude of peptide changes
across conditions and should reflects signal to noise ratios.

4. The mean, minimum and maximum coefficient of variation (CV) of the inferred protein
levels, P̂ .

5. The mean correlation between the columns of X as a measure of linear independence /
independence in the data.

6. The size of the last eigen spacing of A, denoted here by sp. Consider the l rank ordered
(largest to smallest) singular values of A. We compute the last eigen spacing as sp = σl−1−σl

σl−1+σl
.

In the absence of noise, σl=0, and thus sp=1. In the other extreme, when the null space of
A is heavily contaminated by noise and σl−1 ≈ σl, sp ≈ 0. Thus the magnitude of the last
eigen spacing sp is informative of the degree to which noise has distorted the null space of
A.

7. The cosine of the angle between the protein levels inferred by the quadratic programming
solver (QP) and the singular value decomposition solver (SVD).

8. The cosine of the angle between the protein levels inferred by the quadratic programming
solver and coordinate descent solver (CD).

To assess the reliability of the protein levels (denoted by P̂ ) inferred from measured pepetide
levels, HIquant builds a random forest classifier, which estimated the relative error in the inferred
protein levels. To build the classifier, HIquant simulates data that resemble the measured data
as much as possible. To this end, HIquant uses P̂ to simulate data so that the simulated data
reflect the best estimates of the variability found in the real data. Furthermore, HIquant adds noise
to the simulated peptide levels that covers the noise range expected for relative quantification by
MS, ranging from 5 % to 30 %. In particular, each P̂ is used to simulate multiple peptide level
matrices and each peptide matrix is contaminated by different noise level. HIquant constructs at
least 5 additional simulated peptide levels with different noise. Each simulated peptide level X̃ is
calculated in the following way:

X̃ = ẐSP̂ + nẐSP̂N (0, 1), n ∈ {0.05, 0.1, 0.15, 0.2, 0.25, 0.3} (9)

From each simulated noisy peptide level matrix X̃ , HIquant infers protein levels P̃ (by CD,
QP, SVD solvers) and the associated feature vector f̃ which contains all features described above.
P̃ is scaled the same way P̂ (to a median of 1) so that P̃ has the same median as the P̂ , because as
explained above the protein levels can be inferred up to a scaler scaling. If the number of protein
clusters in the data is small, HIquant adds more than 5 noise additions to

Then, HIquant computes the relative error between the protein levels (P̃ ) inferred from the
simulated noisy data and the protein levels used to simulate the data, P̂ . The relative error is
defined as the fractional (percent) differences between the inferred protein / proteoform levels and
the correct ones. To calculate this error metric for each protein cluster at each noise level, HIquant
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performs a element-wised operation to obtain the fractional differences. Thus, HIquant calculates
the absolute value of the relative error for each protein cluster to be:

E :=
abs(P̃ − P̂ )

P̂
(10)

The relative error for each simulated protein cluster is estimated as the median relative error
for all protein levels across all conditions in the protein cluster:

e = median(E) (11)

These scalar errors e (response variable) and the associated predictors (f̂ ) at each noise level
and for all protein homologous cluster are grouped into the final relative error metric (response
variable) e and predictors matrix F̃ . Finally, HIquant trains the random forest classifier using
log (e) and F̃ with 300 regression trees.

To estimate the reliability of each P̂ , we apply the trained random forest classifier to its features
f̂ and estimate the associated relative error. These estimated relative error for each cluster is
reported in its header in the output datafile. The estimated relative errors across all clusters are
displayed as a distribution on the output web page.

5 Evaluating the random forest classifier
We evaluated the reliability and performance of the random forest classifier by applying it to sim-
ulated data with known relative errors. HIquant uses P̂ inferred from measured peptide level and
generates the simulated data with noise set N as described above. To validate the random forest
classifier, HIquant trains the classifier using 70% of the simulated data and tests its performance
on the remaining 30% of the data. The relative errors correlate strongly (spearman ρ > 0.7) to the
corresponding errors predicted by the random forest classifier, suggesting that the features and the
classification model support reliable estimates of inference reliability.

Supplemental Discussion
Inference and quantification of complex proteoforms can be very challenging, and in some cases
the data cannot support full inference, either because relative quantification is not accurate enough
or because not all proteoforms were included in the inference or because not enough peptides were
quantified; the latter limitation can be alleviated by compiling peptides quantified from several
digestions, each of which using a different protease. In such problematic cases, HIquant inference
will either result in multiple solutions consistent with the data, i.e., feasibility space of solutions,
or in poor fits to the data that will be assigned low reliability by the validation module described
above.

Currently, HIquant builds a model comprised of all proteoforms having at least one quantified
unique peptide. In some cases, e.g., a ribosomal protein with a few paralogs, the proteoforms with
quantified peptides include all possible proteoforms. If major proteoforms do not have quantified
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unique peptides in the data, HIquant cannot fit the data, which is manifested either with an under-
determined system (i.e., A has high dimensional null space) or with poor fit of the model, i.e.,
low R2 and high relative error determined by the reliability analysis. Such cases involving large
number of combinatorially occurring PTMs can be simplified by computing the fractional site
occupancy of each PTM separately rather than inferring the full length proteoform. Alternatively
the abundance of all missing proteoforms can be lumped into one proteoform whose abundances
equal the sum of abundances of proteoforms that could not be inferred individually.
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