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Supplementary Figure 1: Separating fully random from “random + directed” reaches by RT bin for 

Experiment 2. There are several methods for determining when a circular distribution of angles deviates 

from being a uniform distribution (random) to a non-uniform distribution (having one or more significant 

clusters of values). Here we show converging results from multiple methods, pointing to the same RT bin 

(7th) as the critical point where reaches began to be directed rather than random. (A) Circular variance in 

reach angles.  For each subject,  the variance of movement angles at  each RT bin was computed and 

normalized  by  the  number  of  trials  rendered  in  that  bin.  Serial  t-tests  were  conducted  and  the  first 

significant test (α = 0.05) denoted a “change” in variance. The 7th bin (150-175 ms) was found to be the 

initial point of significant change (p = 0.03). (B) Vector length at each RT bin. Similar to (A), the vector 

length at each bin was computed and normalized by number of trials. Serial t-tests revealed the first two 

significant changes after the 1st bin (p = 0.03) and 7th bin (p = 0.006), however, due to low numbers of 

trials in the early bins and known limits of human RT, the 1st bin result was considered spurious. Finally, 

we also performed a Rayleigh test  for uniformity.  The Rayleigh test  uses vector length to indicate a 

unimodal deviation from uniformity in a distribution. The first significant deviation was found to be after 

the 7th bin (p = 0.02). Error bars represent 1 s.e.m.  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Supplementary Figure 2: Correlated mental rotation paces between the FREE and FORCED tasks in 

Experiment 2. (A) Rotation paces for the FREE task were extracted using linear regression (Fig. 4B, main 

text). For the FORCED task, we used two methods. Here we performed linear regression on a subject’s 

full RT and movement angle data set  at all values where RT > 150 ms (left panel). Mental rotation paces 

were correlated between tasks (right panel; R = 0.46; p = 0.008). (B) Given the subtle asymptote in the 

movement  angle data  in  the FORCED task,  we used a  second method to derive the mental  rotation 

parameter in the FORCED task. We fit a sigmoid to each subject’s full data set (RT > 150 ms; left panel), 

with free parameters for the offset and rate, fixing the asymptote of the sigmoid function as the subject’s 

mean reach angle in the long RT window trials (1200 ms of target appearance). The mean sigmoid fit 

(blue) is plotted over the arithmetic mean reach angles. A correlation between z-scored mental rotation 

paces from the FREE task and FORCED task was weaker though also statistically reliable when using 

this fitting method (right panel; R = 0.37, p = 0.036). Error bars represent 1 s.e.m.  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Supplementary  Figure 3:  Mode Analysis  for  Experiments  2 and 3 (FORCED tasks).  An alternative 

explanation for the linear rise in means in the forced task (Fig. 4C, main text) is that it’s driven by an 

averaging  artifact.  To  confirm the  presence  of  “true”  non-random intermediate  movements,  subjects’ 

movements at each RT bin were pooled, binned by 15˚, and a mode was computed. As shown above, the 

mode of the FORCED task at 12 targets in Experiment 2 (red dots) matched the trend in their mean data 

(regression on values above 150 ms bin: p = 0.002). In the 2-target condition, however (Experiment 3; 

blue dots), no significant trend was observed (p = 0.20).
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Supplementary Figure 4: Model comparisons. ∆AIC values over each RT bin between the Free-µ and 
Fixed-µ models for the 2-target (grey) and 12-target (black) FORCED-RT experiments. Negative values 
constitute better fits for the Free-µ model, and positive values constitute better fits for the Fixed-µ model. 
Recall we found that the 12-target condition (Experiment 2) was better fit by the Free-µ model, consistent 
with using a parametric MR strategy, and the 2-target condition (Experiment 3) was better fit by the 
Fixed-µ  model, consistent with a discrete RC strategy. However, for those analyses we summed AIC 
values across all model fits after and including the critical (7th) RT bin. Here, we compute ∆AIC between 
models at each RT bin separately. The Free-µ model fit the 12-target group better at every RT bin (∆AIC 
range: 6.92 - 276.13). In contrast, the Fixed-µ model fit the 2-target group better at every RT bin (∆AIC 
range: 15.69 - 345.46). Thus, consistent with our predictions, subjects in the 12-target condition were 
likely using a parametric MR strategy whereas subjects in the 2-target condition were likely using a 
discrete RC strategy.
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Supplementary Figure 5: Movement Times (MT) in the two FORCED tasks. MT in the two conditions 
across RT bins.  MT was numerically lower in the 2-Target  condition,  though the difference between 
groups (across all RT bins) was not significant (independent t-test, p = 0.18). 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Supplementary Figure 6: Neural population vector model for movements in Experiment 2 (FORCED 
Task).  (A) Models of both response substitution and mental rotation predict a shift  of the population 
vector direction from the target (0˚) to the solution (90˚) during the RT. Response substitution predicts a 
subtle sigmoidal shape relative to the strict linear shape of mental rotation. Neither model appears to 
capture the logarithmic shape of the data (the mode reach directions). Multiple green and purple lines 
show  the  results  of  30  different  simulations  for  each  model.  (B)  The  two  models  make  different 
predictions concerning movement speed. The mental rotation model, because of its fixed input magnitude, 
predicts stable movements speeds over the course of mental rotation. However, the response substitution 
model predicts a clear “sink” in velocity during the substitution of responses, as the vector succumbs to 
“vote-splitting” between the target and solution (i.e. the population vector’s variance increases / its length 
decreases). Subjects’ reach speeds (black dots) were relatively stable across mental rotation RT bins, as 
predicted by mental rotation. Indeed, mean movement speed continuously rose across RT bins (t-test on 
regression slopes: t(31) = 4.28, p < 0.001), arguing against a “ceiling” effect. The response substitution 
model provides a weaker picture of the movement speed data. Error bars represent s.e.m. Multiple lines 
show the results of 30 different simulations.  See below for modeling details.

We adapted the response substitution model of tuned motor cortical neurons described by Cisek 
and Scott [1], which they used to argue that response substitution is a more parsimonious interpretation of 
the neural results of Georgopoulos et al. [2] than mental rotation. We also developed our own mental 
rotation variant of this model, and compared the behavioral predictions of the two models.

The model of cortical directionally-tuned neurons is formalized as follows [1]: 

(1)

(2)

where yi is the simulated activity of M1 neuron i, and xi reflects the input to that neuron. The parameter k 
represents a time constant, gi is a gain parameter, Γi is an activity threshold, and bi is baseline activity 
(which is set to 0 in this model, see [1] for details). During the simulations, if activity ever goes negative 

dxi
dt =κ(−xi + giEi )

yi = [xi −Γ i ]+bi
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at any time point, it is reset to a value of 0. The rate of activity growth (Supplementary Equation 1) is 
driven by the amount of excitatory input, Ei. In the simulations, cosine-tuned cells are given input at the 
start of the trial, with direction ϕj and magnitude aj, where j indexes the details of the trial (target and goal 
directions):

(3)

where θj is the cell’s “preferred” direction and si is the offset of the tuning function. Preferred directions 
of the cells were uniformly distributed from 0 to 360˚. All model parameters (see table below) were set to 
the values reported in [1]. Moreover, the same number of neurons were simulated (300), though here the 
simulations were iterated 30 times (due to high noise in the parameter settings) to derive a range of 
responses.

Finally,  rotation  trials  are  simulated  for  each  neuron,  and  the  resulting  population  vector  is 
computed as follows:

(4)

where pi is the unit vector in each cell's preferred direction, which is summed to yield the population 
vector P. Much research has shown that movement speed is correlated with the motor cortical population 
vector length [3]; essentially, the more “confident” the population is of the planned movement direction, 
the faster the resulting movement tends to be. We converted the population vector lengths of both models 
to movement speeds (in cm/s) by scaling them by an arbitrary scaling parameter with a value of 0.76.

We  modeled  neural  population  activity  as  a  result  of  either  response  substitution  or  mental 
rotation as follows: For response substitution, two distinct, independent inputs drive neural activity (as in 
[1]), one reflecting the target direction (e.g. 0˚) and one reflecting the solution direction (e.g. 90˚). For the 
first 150 ms, input represents solely the target direction, at a maximum magnitude of a = 1, and the 
magnitude of the solution direction (e.g. 90˚) at the minimum a = 0. During the next 200 ms, these two 
magnitudes linearly switch values,  with the target  direction signal  decaying to  zero and the solution 
direction signal increasing to 1. The two signals then remain at constant values for the final 150 ms of the 
simulation.

Ei = aj[cos(θi −φ j )+ si
j
∑ ]

P
!"
= pi
!"
( yi −bi )

i
∑

Parameter Values

k 1.3

g N(1.2,0.5)

Γ N(0.4,0.2)

s N(0,0.3)
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For mental rotation, only a single input is considered, and its direction is smoothly “rotated” 
during the RT. Like RS, for the first 150 ms the target direction drives the input at a magnitude of 1 
(reflecting the subject processing the target location and anchoring where they need to rotate from). Then, 
the input angle (ϕ) linearly shifts from 0˚ to 90˚ for the following 200 ms, with no change in magnitude. 
The signal then remains at the solution direction for the remainder of time (150 ms). Finally, for both 
models, cell recruitment delays were drawn from a uniform distribution from 50 ms to 150 ms. 

These  two  input  schedules  reflect  the  logic  of  response  substitution  and  mental  rotation, 
respectively: In response substitution, a prepotent response to reach toward the target drives activity at 
first,  and  is  slowly  replaced  by  a  new motor  plan  directed  toward  the  solution.  In  mental  rotation, 
however, a single plan is directed toward the target and then smoothly rotated toward the solution.
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Supplementary Figure 7: Gaussian fits in Experiment 4.  For Experiment 4,  we also assessed group 
differences in generalization by doing a more traditional Gaussian-fitting approach. We fit a composite 
function that was composed of two half-normals with means at the two respective extreme training targets 
(rotated in all subjects to 20˚ and 160˚, respectively), with free parameters for the width, height, and offset 
of the functions (i.e., all three parameters are shared between the two half-normals). Data in the area 
between the two extreme targets  (8T condition)  was not  modeled.  Free parameters  were constrained 
between [0˚ 360˚] for the width, [0˚ 45˚] for the height, and [-5˚ 45˚] for the offset. Fits were performed 
over  100  iterations  per  subject  with  randomized  starting  parameter  values  drawn  from  a  uniform 
distribution on each iteration, minimizing the root-mean-squared error between the modeled function and 
the reaching data in the generalization block. A) Results of the mean fits are displayed as dashed lines. B) 
Critically, because the generalization patterns could be captured by different combinations of the three 
free parameters, parameter correlations emerged that made interpretation of the results difficult; namely, 
the offset and height parameters were strongly negatively correlated (r = -0.80, p < 0.0001). This likely 
occurred because “flat” generalization patterns can be captured by either a function with a high offset but 
minimal height and width, or, alternatively, a high width and different combinations of height and offset. 
We note that while this method did indeed produce the predicted difference in width parameters between 
the groups, with the 8T group showing a significantly larger width (t(30) = 2.13, p = 0.04), the fitting 
procedure  was  sensitive  to  different  constraints  and  starting  values.  Thus,  we  opted  for  a  more 
interpretable linear model of the difference in movement angle based on the generalization probe target’s 
distance from the nearest training target (Figure 10C, main text).
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