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Supplementary Note 1: Electron microscope images of the h-BN hole 

arrays 

 

Supplementary Figure 1: Environmental scanning electron microscope (eSEM) images of a 

hole array with period L = 1050 nm. The images show (a) the regularity of the fabricated array 

and (b) the precise lithography of a single hole. 
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Supplementary Note 2: Full-wave calculations of the band structure 

with the excitation sources inside and outside the h-BN flake 

 

 
Supplementary Figure 2: Calculated polaritonic band structure of the hole array with L = 

900 nm. Sketch of a unit cell of the hole array illuminated with the dipole sources placed in: (a) 

outside of the hole array, and (b) inside the holes. The electric field “probes” (See Methods) 

are similarly distributed in (a) and (b). (c) and (d) shows the band structure obtained by 

measuring the intensity of the electric field (colorplot) when the sources are placed according to 

(a) and (b), respectively. The dashed lines in (c) and (d) correspond to the dispersion of the M0 

polaritonic mode in the h-BN layer. The rhomb symbols in (c) and (d) represent the position of 

maxima in the field intensity averaged over the probes.  
 

 

The band structure (Fig. 3a) was calculated using full-wave Finite-Difference Time-

Domain (FDTD) simulations (See Methods). The point dipole sources were randomly 

placed either outside the hole array or inside it, in the regions of the holes (but not in the 
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regions of the h-BN), as shown in Supplementary Figure 2a,b. In both cases the electric 

field was probed in randomly selected points (“probes”) within the unit cell. The 

maxima in the electric field intensity are plotted in Supplementary Figure 2c,d 

(symbols), revealing the polaritonic dispersion branches. Both dipole distributions 

reveal the same band structure, although due to a slightly different coupling efficiency, 

some dispersion branches are better seen for one or another location of the dipoles. In 

fact, the sources inside the holes in h-BN (Supplementary Figure 2b,d) couple more 

efficiently with the high-energy bands, while, in contrast, the sources outside the h-BN 

layer (Supplementary Figure 2a,c) couple more efficiently with the low energy bands. 

Supplementary Note 3: Comparison of transmission, absorption and 

reflection coefficients simulated by FEM and FDTD 

 

 
 
Supplementary Figure 3: Comparison of the calculated reflection, absorption and 

transmission through FEM and FDTD methods (a) Reflection, R, (b) absorption, A and (c) 

transmission, T, through the hole array with L = 900 nm. The dashed blue and red lines 

correspond to a FEM (COMSOL) and FDTD method, respectively. Both calculations show an 

excellent agreement between them. 

 

In Supplementary Figure 3 we compare the transmission, absorption and reflection for a 

hole array with a period L = 900 nm (the results for a hole array with this period are 

presented in Figures 2, 3 and 4 of the main manuscript) simulated by means of both 

FDTD and finite elements method (FEM). The diameter of the holes is 300 nm and the 

thickness of the h-BN flake (placed on semi-infinite CaF2 substrate) is 38 nm. The hole 

array is illuminated by a plane wave linearly polarized along one of the translation 

vectors of the hole array at normal incidence. 
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Supplementary Note 4: Comparison between experimentally measured 

and simulated transmission, absorption and reflection coefficients 

 

The calculated transmission, absorption and reflection coefficients of the hole arrays are 

presented in Supplementary Figure 4. The reflection coefficient is about 10 % at 

frequencies close to the first Bragg resonance for all the measured hole arrays. On the 

other hand, the absorption at the first Bragg resonance frequency is comparable to that 

of the TO phonon (at 1366 cm
-1

), and increases with decreasing the period, 𝐿, of the 

hole array. The simulated transmission spectra show an excellent agreement with the 

experiment in terms of spectral position, while the depth of the experimental peaks is 

slightly smaller than in the calculated ones. The latter discrepancy can be explained by 

the small aperture used in the spectrometer and the finite size of the hole array in the 

experiment.  

 
Supplementary Figure 4: Transmission, absorption and reflection coefficients. (a) Reflection, 

(b) absorption and (c) transmission coefficients for the fabricated hole arrays shown in the 

main manuscript. The dashed (solid) lines correspond the experiment, (simulations). 
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Supplementary Note 5: Analytical approximation  

 

Analytical Approximation of a h-BN thin slab as a 2D conductivity 

layer 

 

 
 

Supplementary Figure 5: Dispersion and field distribution of the M0 mode in an h-BN slab 

and the polaritonic mode in an equivalent conductivity layer. (a) The h-BN flake is 

approximated as a conductivity layer. (b) Wave-vector, 𝑘, of the M0 mode in a slab of 𝑡 =
38 nm surrounded by air as a function of frequency. Solid blue line renders the real part, while 

the dashed blue line the imaginary part, respectively. Both real and imaginary parts of 𝑘 are 

normalized to that of the free space light 𝑘0 =
𝜔

𝑐
. (c) Simulated vertical component of the 

electric field, 𝐸𝑧 (at =1428 cm
-1

) of the M0 mode propagating along the 𝑥 -axis (from left to 

right). (d) The same as in (c), but for the polaritonic mode propagating along the conductivity 

sheet. 

 

In order to get an insight into the fundamental properties of the polaritons in the hole 

array (e.g. lifetime or the symmetry of the modes), we model the h-BN flake as a 2D 

conductivity layer of zero thickness (see Supplementary Figure 5a). This approximation 

avoids the calculation of the fields inside the slab, and has been proven valid for in-

plane isotropic 2D materials (e.g., graphene
1
 and transition layer polaritons

2
) with a 

layer thickness, t, that is much smaller than the polariton wavelength (t ≪ λ𝑀0). In the 

model, the effective conductivity is given by σeff = (ct 2iλ0)ε⁄ , where ε is the 

dielectric permittivity of the slab. Analogously, we model the h-BN layer by an 

isotropic in-plane conducting layer with zero thickness and an effective two-

dimensional conductivity σeff = (ct 2iλ0)ε⊥⁄  , neglecting the contribution of the in-
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plane part of the dielectric permittivity of h-BN, ε||. It is important to note that σeff  

scales linearly with t, thus taking into account the effect of the slab thickness. 

We justify the validity of our model by Supplementary Figure 5, showing an excellent 

agreement between the dispersions (Supplementary Figure 5b) and the spatial electric 

field distributions (Figs. S5c, d) of the M0 mode in the h-BN slab and a polaritonic 

mode in the equivalent 2D conductivity layer. 

 

Diffraction of an electromagnetic wave by the hole array in the 

approximation of the modulated effective conductivity layer 

  
Supplementary Figure 6: Sketch of the system. A conductivity layer is modulated in the x-

direction. The linearly-polarized incident plane wave impinges at normal incidence onto the 

layer, exciting the first-order Bragg resonance. 

 

In order to analytically treat the diffraction of the electromagnetic wave by our hole 

array, we approximate the thin h-BN slab by a conductivity layer, following Section 

S5.1. In the derivations we will assume that the conductivity layer is placed between 

two dielectric half-spaces with the dielectric permittivities 𝜀1 (for 𝑧 > 0) and 𝜀2 (for 

𝑧 < 0), respectively (Supplementary Figure 6). The hole array can be seen as spatially 

(and periodically) modulated
1
 effective conductivity, and thus we will consider a 

general periodic structure with an arbitrary spatial Fourier spectrum. 

For simplicity, we restrict ourselves to considering the incident plane wave with the in-

plane electric field component parallel to one of the translation vectors of the hole array 

(aligned along x- and y-axes, according to the chosen system of coordinates). In this 

case the excited Bloch modes will be predominantly the standing waves along x- or y-

directions. Neglecting the weak interaction between the standing waves excited in the 

perpendicular directions
3
, we can approximate the hole array by two perpendicular one-

dimensional (1D) periodic gratings and consider each grating independently. Without 
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loss of generality, let us study the 1D periodic modulation of the conductivity along the 

𝑥-direction (as in Supplementary Figure 6). 

The periodically modulated effective conductivity can be written as (for convenience of 

the equations writing, we introduce the normalized conductivity
1
, 𝛼, as 𝛼 = 2𝜋𝜎eff 𝑐⁄ ) 

𝛼(𝑥) = 𝛼(𝑥 + 𝐿) = ∑ 𝛼𝑛𝑒𝑖𝑛𝐺𝑥
𝑛 , (S5.1) 

with 𝐺 =
2𝜋

𝐿
 being the reciprocal grating vector, 𝑛 an integer and �̅�𝑛 the n-th Fourier 

harmonic of the normalized effective conductivity. The in-plane component of the 

electric fields in the superstrate (labelled as “1”) and substrate (labelled as “2”) can be 

taken in the form of the Fourier-Floquet expansion: 

E1x = eikxx−ikzz + ∑ rneiknxx+ik1nzz
n , (S5.2) 

E2x = ∑ tneiknxx−ik2nzz
n ,    (S5.3) 

where 𝑘𝑛𝑥 = 𝑘𝑥 + 𝑛𝐺 and 𝑘1,2𝑛𝑧 = √𝜀1,2𝑘0
2 − 𝑘𝑛𝑥

2  are the x- and z-components of the 

wave-vectors for the diffracted (scattered) plane waves and k0 = ω c⁄  is the k-vector in 

the free space. The coefficients rn and tn present the amplitudes of the spatial Fourier 

harmonics (waves diffracted in the nth order) in the upper and lower half-spaces, 

respectively. 

Using Maxwell’s equations, 𝑯 = (1 𝑖𝑘0⁄ )∇ × 𝑬, we can find the y-component of the 

magnetic fields in the substrate and superstrate. Then, we match the fields at the 

conductivity layer (z = 0) according to the boundary conditions 

𝐞z × [𝐇1 − 𝐇2] =  2α ∙ 𝐞z × [𝐞z × 𝐄1],   

𝐞z × [𝐄1 − 𝐄2] = 0.      (S5.4) 

Using the Fourier series for α(x) in Eq. (S5.1), we obtain the linear system of equations 

for the amplitudes rn and tn. 

eikxx + ∑ (rn − tn)eiknxx
n = 0,  

−Yie
ikxx + ∑ (rnY1|n − tnY2|n)eiknxx

n = −2 ∑ α̅mtneiknxx
n,m , (S5.5) 

where Yi = ε1k0 kz⁄  is the admittance (the inverse of the wave impedance) of the 

incident wave and Y1,2|n = ε1,2k0 k1,2nz⁄  are the admittances of the diffracted waves. 

Taking into account that Eq. (S5.5) must hold for any value of x, we have to equal the 

coefficients at different exponentials. Then we obtain a compact system of equations for 

the amplitudes tn:  

∑ Dnmtmm = Vn,   

Dnm = δnm(Y1|n + Y2|n + 2𝛼0) + 2α̅n−m, Vn = 2Yiδn0, (S5.6) 
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where with δnm we mean the Kronecker symbol, and α̅n represents the Fourier 

harmonic of 𝛼(𝑥), given by Eq. (S5.1), but with the excluded zero harmonic (α̅0 = 0) 

The amplitudes, rn, are related to the amplitudes, tn, as follows: 

rn = −δn0 + tn.  (S5.7) 

The infinite linear system of equations (S5.6) can be solved numerically for any type of 

a periodic function α(x). For each type of the modulation, an appropriate finite number 

N of the diffraction orders, n, must be taken into account in order to achieve the 

convergence of the solution (truncation of the infinite system). In some cases, however 

(particularly, for periodic modulations with abrupt changes of α(𝑥) as, for example, for 

a layer structured into ribbons), the convergence with 𝑁 can be very slow and the 

system of equations (S5.6) becomes unpractical. On the other hand, smooth profiles of 

α(𝑥), provide a good convergence and the number of required diffraction order is not 

large, so that even an analytical treatment of the system of equations is possible. 

The solution of the system of equations (S5.6) can be also found analytically. Assuming 

small modulation amplitude, we can use the resonance perturbation theory. The main 

idea of the resonance perturbation theory consists in the retention in the system of 

equation (S5.6) all the resonant field harmonics (harmonics with high amplitudes 

compared to that of the incident wave), and then the minimal number of non-resonant 

field harmonics (originating from the lowest-order scattering of the resonant field 

harmonics by the diffraction grating). The number of the non-resonant field harmonics 

(and the contributing scattering processes) are selected with respect to the desired 

precision of the final solution (for more detailed description of the resonance 

perturbation theory in diffraction problems see Refs. 3-5). In the lowest-order 

approximation, the reduced system for the resonant field harmonics (whose diffraction 

orders we label by “r”) has the following form: 

∑ D̃rr′tr′r′ = Ṽr,   

D̃rr′ = δrr′br + 2α̅r−r′ − 4 ∑
α̅r−Nα̅N−r′

bN
N , 

Ṽr = −4α̅r
Yi

b0
,   (S5.8) 

where, for brevity, we have used the following notation: bn = Y1|n + Y2|n + 2𝛼0. In the 

sums of Eq. (S5.8) only non-resonant diffraction order harmonics are included (that is 

the resonant field harmonics with the indices r are excluded). 
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Normal incidence and the first-order Bragg resonance 

 

Under normal incidence (the incident plane wave has no in-plane momentum 

component, i.e. kx = 0), and in case of a symmetric grating profile, α̅m = α̅−m the 

unknown amplitudes in the system of equations (S5.6) are symmetric with respect to the 

diffraction order m, i.e. rm = r−m and tm = t−m. According to the field representation 

(S5.2), (S5.3), the above symmetry results in the excitation of only cos-like spatial field 

distributions (for the in-plane electric field) of the Bloch modes: rmeikmx𝑥 +

r−me−ikmx𝑥 = 2rm cos kmx𝑥. This property of the inhomogeneous system of equations 

does not however mean that the corresponding homogeneous system of equations (with 

zero right-hand side) does not have solutions (eigenmodes) with other field 

distributions. 

Let us consider the Bloch wave excited in the first-Order Bragg resonance, 

experimentally studied in the main manuscript. To study the Bloch (eigen-) modes, we 

should consider the system (S5.8), but with the right hand side. set to 0 (no incident 

wave). In the latter system we have only two spatial field harmonics with the amplitudes 

t1, t−1. It reads as 

𝐷t1 + 𝑑t−1 = 0, 

𝑑t1 + 𝐷t−1 = 0.      (S5.9) 

where, for compactness, we have defined 𝐷 = D̃11 = D̃−1−1 and 𝑑 = D̃1−1 = D̃−11. The 

eigenfrequencies can be defined by the dispersion relation (when the determinant is set 

to 0) 

𝐷2 − 𝑑2 = 0.      (S5.10). 

The roots of Eq. (S5.10) (which we label as S and A) can be symbolically written as 

𝐷𝐴 = 𝑑, and 𝐷𝑆 = −𝑑, from which the eigenfrequencies 𝜔𝐴,𝑆 can be found. Substituting 

the roots back into the system (S5.9), we find two solutions for the eigenvectors: 

𝑡1
𝑆 = 1,  𝑡−1

𝑆 = 1  

𝑡1
𝐴 = 1, 𝑡−1

𝐴 = −1  (S5.11) 

These two solutions S and A yield the following in-plane electric field distributions on 

top of the grating: 

𝐸𝑥,1
𝑆 ~cos (𝐺𝑥) , 𝐸𝑥,1

𝐴 ~sin (𝐺𝑥). (S5.12) 

For the out-of-plane electric field component (𝑧-component), we have (consistently with 

the Maxwell´s equation ∇𝑬 = 0): 

𝐸𝑧,1
𝑆 ~sin (𝐺𝑥),  𝐸𝑧,1

𝐴 ~cos (𝐺𝑥). (S5.13) 
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Therefore, according to the correspondence between (S5.12) and (S5.13), the 𝑧-

component of the mode excited under the normal incidence (the so-called bright mode) 

is distributed according to sin (𝐺𝑥). The other mode, with the vertical electric field 

distributed according to cos (𝐺𝑥) is the so-called dark mode. 

Interestingly, depending upon the geometrical parameter of the grating (its spatial 

Fourier spectrum) 𝜔𝐴 can be either larger or smaller than 𝜔𝑆, so that A is either higher- 

or lower-frequency mode (with respect to S). We will consider the eigenfrequencies in 

more details in the next section. 

Dependence of the Bloch modes upon the grating (hole array) 

parameters 

 

In an explicit form, the Eq. (S.5.10) can be rewritten as: 

(b − 4Γ1)2 − (2α̅2 − 4Γ2)2 = 0, (S5.14) 

where we have introduced the following notations: 

𝑏 = 𝑏1 = 𝑏−1, 

Γ1 = ∑
α̅1−Nα̅N−1

bN
N ,  Γ2 = ∑

α̅1−Nα̅N+1

bN
N , (S5.15) 

where the summation is realized in all the diffraction orders, except 1 and -1. Let us 

write the solutions of Eq. (S5.14), as 𝜔 = 𝜔0 + 𝛿𝜔 by introducing a small deviation 

from the frequency of the polaritons in the unmodulated conductivity layer (with the 

normalized conductivity α0), 𝜔0, with the dispersion relation 𝑏(𝜔0) = 0. The latter 

equation (in the large momentum/short lattice period approximation, 𝐺 ≫ ε1,2k0, 

providing under the normal incidence Y1,2|1 ≃ ε1,2k0 iG⁄ ) yields 𝜔0 = −𝑖α0 ∙
2𝐺𝑐

ε1+ε2
. To 

explicitly find 𝛿𝜔 from Eq. (S5.14), we will assume that all the quantities in Eq. (S5.14) 

are taken at 𝜔 = 𝜔0, except 𝑏(𝜔) = 𝑏(𝜔0 + 𝛿𝜔). By expanding 𝑏(𝜔), we have: 

𝑏(𝜔) ≃ b(𝜔0) +
ε1+ε2

𝑖𝐺𝑐
𝛿𝜔. (S5.16) 

From Eq. (S5.14) we find the two values for 𝛿𝜔: 

𝛿𝜔𝐴,𝐵 =
𝑖𝐺𝑐

ε1+ε2
[4Γ1 ± (2α̅2 − 4Γ2)]. (S5.17) 

Then the expressions for the eigenfrequencies of the modes A and S become 

𝜔𝐴 = 𝜔0 +
4𝑖𝐺𝑐

ε1+ε2
Γ1 + Δ𝜔, 

𝜔𝑆 = 𝜔0 +
4𝑖𝐺𝑐

ε1+ε2
Γ1 − Δ𝜔. (S5.18) 
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with 

Δ𝜔 =
2𝑖𝐺𝑐

ε1+ε2
(α̅2 − 2Γ2). (S5.19) 

We see that both eigenfrequencies are shifted with respect to 𝜔0 by the term 

proportional to Γ1 (the shift of the center of the bandgap). This term is contributed from 

the second-order scattering processes (via non-resonant diffraction orders) between the 

bare polaritons given by the resonant diffraction orders 1 and -1. The splitting, defined 

by Δ𝜔, is contributed from both second-order processes (term proportional to Γ2) and 

the linear interaction between the bare polaritons (term proportional to α̅2). 

To analyze Δ𝜔, for simplicity, we neglect the ohmic losses, assuming that the effective 

conductivity (and all its Fourier harmonics) is purely imaginary. We also assume that 

for a weak modulation, the second-order lattice harmonic, α̅2, exceeds the term 2Γ2 so 

that the linear interaction dominates over the second-order scattering. Then according to 

Eq. (S5.19) the sign of Δ𝜔 is mainly determined by the sign of the second Fourier 

harmonic of the grating, �̅�2, multiplied by the imaginary unit. Namely, when 

sign(𝑖�̅�2) < 0, the S mode (bright mode) has a higher frequency, “𝜔+”, while the A 

mode (dark mode) has a lower frequency, “𝜔−”. In contrast, when sign(𝑖�̅�2) > 0, the S 

mode (bright mode) has a lower frequency, “𝜔−”, while the A mode (dark mode) has a 

higher frequency, “𝜔+”. Taking into account that the imaginary part of the normalized 

effective conductivity of the unmodulated layer, 𝛼𝑏, is positive, the condition of 

sign(𝑖�̅�2) > 0 (sign(𝑖�̅�2) < 0) is equivalent to sign(�̅�2 𝛼𝑏⁄ ) < 0 (sign(�̅�2 𝛼𝑏⁄ ) > 0), 

respectively (neglecting the losses). 

In order to apply the results of our approximate analysis directly to the case of the hole 

array, let us write the modulation of the normalized effective conductivity of the hole 

array as 𝛼(𝑥, 𝑦) = [1 − 𝑓(𝑥, 𝑦)] ∙ 𝛼𝑏, where 𝑓 takes 1 (0) value inside (outside) of the 

holes, respectively. The Fourier transform of 𝑓(𝑥, 𝑦) in case of a rectangular array (with 

period 𝐿) of circular holes (with radius 𝑎) is  𝑓𝑛,𝑚 =
𝑎

𝐿

1

√𝑛2+𝑚2
𝐽1(2𝜋

𝑎

𝐿
√𝑛2 + 𝑚2), with 

𝐽1 being the Bessel Function of the first kind. The spectrum of the 1D grating, 

equivalent to the hole array can be obtained from the 2D Fourier harmonics of the 

normalized effective conductivity,  �̅�𝑛,𝑚, by setting  �̅�𝑛 =  �̅�𝑛,0. It reads: 

 �̅�𝑛

𝛼𝑏
= −

𝑎

𝐿

1

𝑛
𝐽1(2𝜋

𝑎

𝐿
𝑛).    (S5.20)  

When the diameter of the hole changes, the weight of the second harmonic of the 

Fourier decomposition of the hole array varies (see Supplementary Figure 7). According 

to our approximation, in the range of 𝑎 𝐿⁄ < 0.3 (where sign(�̅�2 𝛼𝑏⁄ ) < 0), the modes S 

and A are expected to have low (𝜔−) and high (𝜔+) frequencies, respectively (blue 

region in Supplementary Figure 7). In contrast, for 𝑎 𝐿⁄ > 0.3 (sign(�̅�2 𝛼𝑏⁄ ) > 0), the 

modes S and A should have high (𝜔+) and low (𝜔−) frequencies, respectively (green 

region in Supplementary Figure 7). 
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Supplementary Figure 7: Amplitude of the first four Fourier harmonics of the rectangular 

hole arrays as a function of the ratio between radius and array period, 𝒂 𝑳⁄ . The sign of the 

second harmonic approximately dictates the position of the eigenfrequencies relative to each 

other. 

We verify the results of our analytical analysis by performing the full-wave simulations 

(COMSOL) for the two hole arrays (placed on CaF2 substrate) with radii of holes 

𝑎 = 300, and 150 nm (Figs. S8a,b), and period 𝐿 = 900 nm. The parameters of the 

arrays have been chosen in such a way that the arrays with the smallest and largest 𝑎 

correspond to the blue and green areas in Supplementary Figure 7. The simulated 

absorption, as a function of frequency, 𝜔, and angle of incidence, 𝜃, is shown in 

Supplementary Figure 8b,c (in Section 5.5 we also show the comparison between the 

full-wave simulations and the numeric solution of the approximate system (S5.6)). For 

the hole array with 𝑎 = 300 nm (𝑎 𝐿⁄ = 0.33) we have sign(�̅�2 𝛼𝑏⁄ ) > 0 (blue region 

in Supplementary Figure 7) and as predicted above, the bright mode S has a higher 

frequency than the dark mode A. In contrast, for the hole array with 𝑎 = 150 nm 

(𝑎 𝐿⁄ = 0.167) we have sign(�̅�2 𝛼𝑏⁄ ) < 0 (blue region in Supplementary Figure 7) and 

the bright mode S has a lower frequency than the dark mode A. As seen in the 

colorplots of Fig S8b and c, for the oblique incidence the incident wave breaks the 

symmetry and both A and S modes are excited (this is particularly seen for angles 

𝜃 > 20𝑜). Thus, the numeric simulations corroborate our analytical results, revealing 

the key role of the second harmonic of the hole array in the relative frequency position 

of the Bloch modes in the first-order Bragg resonance. 

The results of our analysis are consistent with previous studies for one- and two-

dimensional metallic diffraction gratings and hole arrays in metal films (although these 

studies were limited to the periods comparable to the free-space wavelength in both 

cases)
6-8

. 
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Supplementary Figure 8: Calculated normalized absorption as a function of angle for two 

different radii of the holes. (a) Sketch of the hole array (L = 900 nm) on a CaF2 substrate. A p-

polarized wave impinges the hole arrays with an angle 𝜃 with respect to the normal. (b,c) 

Calculated absorption in the hole arrays (colorplot) as a function of 𝜃 and 𝜔.The sketches show 

the relative size of the hole with respect to the period. The solid and dashed lines are guides to 

the eye, highlighting the position of the bright (S) and dark (A) modes, respectively. 
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Analytical approximation versus full-wave simulations. 

 

 
Supplementary Figure 9: Absorption of a p-polarized incident wave by the BN hole array, as 

a function of the angle of incidence and frequency. (a) Schematics of the 1D modulated 

conductivity layer over a CaF2 substrate. The incident wave excites the Bloch mode formed by 

the field harmonics with the k-vectors 𝑘−1 and 𝑘1  (first-order diffracted waves), giving rise to 

the first-order Bragg resonance. (b) Schematics of the hole array. The excited Bloch mode is 

formed by the field harmonics with the k-vectors 𝑘0−1 and 𝑘01 . The period of both the hole 

array and the 1D periodic lattice is L = 900 nm. The plane of incidence (marked by white solid 

line) is parallel to the lattice vector in (a) and the rows of holes in (b), respectively. (c) and (d) 

show the absorption as the function of 𝜃 and 𝜔 (the colorplots), with the help of the system of 

equations (S5.6) and full-wave simulations, respectively. The blue and green curves represent 

the dispersion of the modes S and A, respectively. 
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To further corroborate the validity of our analytical approximation developed in Section 

S5.2, we compare the absorption in the hole array calculated with the help of full-wave 

simulations (COMSOL) and the linear system of equations (S5.6). For the solution of 

the system of equations S5.6 we use the expression for the amplitudes of the Fourier 

harmonics of the periodically-modulated normalized effective conductivity, 𝛼(𝑥), given 

by Eq.(S5.19). As before, we assume that the hole array is placed on the CaF2 substrate. 

The results of the full-wave simulations and calculations according to Eq.(S5.6) are 

shown in Supplementary Figure 9, demonstrating an excellent agreement between the 

two approaches (compare the colorplots in Supplementary Figure 9c and and 9d). Apart 

from the absorption, in Fig.S9c,d we also show the dispersion branches of both modes 

A and S (green and blue curves, respectively), analyzed in details in Sections S5.3-5.5. 

The mode S (lower frequency branch) perfectly matches with the bright maximum in 

the colorplots. The dispersion curves were obtaining by analyzing the zeros of the 

determinant of the system of equations (S5.6). 

 

Lifetime of the Bloch modes excited in the first-order Bragg resonance 

 

In this Section we find and analyze the radiative lifetime of the Bragg mode S, excited 

in the first-order Bragg resonance under normal incidence. In our analysis, we will take 

into account only the first-order Fourier harmonic of the modulated conductivity. We 

assume that this harmonic plays the dominating role in both the excitation of the first-

order polaritonic Bloch modes and their radiative coupling. Thus, we assume that the 

conductivity profile is given by the following relation: 

𝛼(𝑥) = 𝛼𝐵 + Δ𝛼 cos(𝐺𝑥), (S5.21) 

so that only the first-order Fourier harmonic 𝛼1 = Δ𝛼/2 is different from zero. In Eq. 

(S5.21) Δ𝛼 is the modulation amplitude. For the conductivity profile given by Eq. 

(S5.21), the dispersion relation of the S mode (given by Eq.(S5.14)) simplifies to: 

b1 − Δα2 (
2

b0
+

1

b2
) = 0. (S5.22) 

The imaginary part of the complex root of Eq. (S5.21), Im(ωS), represents the inverse 

lifetime, in which both the radiative and ohmic contributions can be extracted. 

Aiming on the qualitative description of the results, we will assume that the dielectric 

permittivity of the substrate is 1 (so that the conductivity layer stays in the symmetric 

vacuum surrounding). This assumption simplifies the writing of equations, but does not 

affect the generality of the lifetime dependence upon the lattice parameters. The 

admittances 𝑌𝑛 appearing in Eq. (S5.21) can be explicitly written as Y1,2|0 = 1;  Y1,2|1 ≃
−𝑖𝜔

𝐺𝑐
; Y1,2|2 ≃

−𝑖𝜔

2𝐺𝑐
, where we assume that the reciprocal lattice vector, 𝐺, is much higher 

than the wavevector of light in free space. 
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The dispersion relation of polaritons in the unmodulated conductivity layer reads as 

𝑏1 = 0  . This equation, simplifies to 𝜔0 = −𝑖αB(𝜔0) ⋅ 𝐺𝑐 (see Section S5.4) and 

determines the frequency of the bare polaritons in the unmodulated layer, 𝜔0. 

Let us find the explicit expression for the effective normalized conductivity. We take 

the perpendicular dielectric permittivity of h-BN according to Ref 
9
: 

𝜀⊥ = 𝜀∞ + 𝜀∞ (
𝜔𝐿𝑂

2 −𝜔𝑇𝑂
2

𝜔𝑇𝑂
2 −𝜔2−𝑖𝛾𝜔

).  (S5.23) 

Then, following the procedure developed in Section S5.1, the effective normalized 

conductivity of the layer can be written as 

𝛼𝐵(𝜔) = 𝐴
𝑖𝜔

𝜔2−𝜔𝑇𝑂
2 +𝑖𝛾𝜔

,  (S5.24) 

where 𝐴 =
𝑡

2𝑐
(𝜔𝐿𝑂

2 − 𝜔𝑇𝑂
2 )𝜀∞, with d being the h-BN thickness. In Eq. (S5.23) we 

neglect the frequency-independent term, since the Lorentzian contribution presents a 

large negative value in the region of interest. Assuming that 𝛾 ≪ 𝜔, the real part of the 

conductivity (responsible for the ohmic losses) is small compared to the imaginary part, 

Re(𝛼) ≪ |Im(𝛼)|. Additionally, we assume the modulation amplitude is small, 

|Δ𝛼| < 𝛼𝐵. Therefore, we can consider the imaginary part of the frequency as a 

perturbation to 𝜔 = 𝜔0. Let us take into account both the perturbation due to the ohmic 

losses and lattice as δ𝜔, so that the frequency of the mode S can be written as 𝜔𝑆 =

𝜔0 − 𝑖δ𝜔. Then we can expand Eq. (S5.22) into the Taylor series (considering both δ𝜔, 

𝛾 and Δ𝛼 to be the small parameters): 

−2
𝑖(𝜔0−𝑖δ𝜔)

𝐺𝑐
+ 2𝛼|𝜔=𝜔0

𝛾=0
− 2

𝜕𝛼

𝜕𝜔
|𝜔=𝜔0

𝛾=0

iδ𝜔 + 2
𝜕𝛼

𝜕𝛾
|𝜔=𝜔0

𝛾=0

𝛾 − Δ𝛼2 (1 +
𝑖𝐺𝑐

2𝜔0
) = 0,

 (S5.25) 

where due to small value of 𝛼, we have replaced 𝑏0 and 𝑏2 by 2Y1|0 and 2Y1|2, 

respectively. Taking into account the dispersion relation for the bare polaritons in the 

unmodulated slab, the correction to the frequency can be explicitly found from Eq. 

(S5.25):  

δ𝜔 = −

Δ𝛼2(1+
𝑖𝐺𝑐

2𝜔0
)−2

𝜕𝛼

𝜕𝛾
|𝜔=𝜔0

𝛾=0

𝛾

2

𝐺𝑐
+2𝑖

𝜕𝛼

𝜕𝜔
|𝜔=𝜔0

𝛾=0

. (S5.26) 

This equation can be written in the form of the sum of the two terms: δ𝜔0 (independent 

upon Δ𝛼) and δ𝜔𝑟𝑎𝑑 (independent upon Δ𝛼), presenting the inverse ohmic and radiative 

lifetimes, 𝜏0 and 𝜏𝑟𝑎𝑑, respectively: 

δ𝜔 = δ𝜔0 + δ𝜔𝑟𝑎𝑑 = 𝜏0
−1 + 𝜏𝑟𝑎𝑑

−1 . (S5.27) 
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Taking the derivatives 
𝜕𝛼

𝜕𝜔
 and 

𝜕𝛼

𝜕𝛾
, the correction related to the ohmic losses becomes 

δ𝜔0 = 𝜏0
−1 =

𝛾

2
. (S5.28) 

The polariton lifetime due to the intrinsic losses in a thin h-BN slab is thus independent 

upon the film thickness. 

The radiative correction to the resonant frequency is given by (we use the explicit 

expression for 𝛼𝐵 from Eq. (S5.23) at 𝛾 = 0 and 𝜔 = 𝜔0) 

δ𝜔𝑟𝑎𝑑 = −
1

4𝐴
⋅ Δ𝛼2 ⋅

(𝜔0
2−𝜔𝑇

2)
2

𝜔0
2 .  (S5.29) 

In this expression we do not include the term proportional to 
𝑖𝐺𝑐

2𝜔0
 (coming from the 

denominator of Eq. (S5.26)), since the latter contributes to the frequency shift 

(contributes to the real part of frequency). As we see, the radiative correction is 

proportional to the squared modulation amplitude and originate from the forward and 

back-scattering of the 1
st
 diffraction orders (mainly composing the Bloch polariton) via 

the 0
th

 order field harmonic. 

According to Eqs. (S5.1), (S5.20) and (S5.21), the amplitude of the first Fourier 

harmonic of the hole array is 𝛼1 =
𝛥𝛼

2
= −𝛼𝐵

𝑎

𝐿
𝐽1(2𝜋

𝑎

𝐿
). Substituting 𝛥𝛼 into Eq. 

(S5.29) (we use 𝛼𝐵 given by Eq.(S5.24) at 𝛾 = 0 and 𝜔 = 𝜔0), we have the following 

explicit expression for the radiative lifetime, as a function of the parameters of the hole 

array: 

δ𝜔𝑟𝑎𝑑 = 𝜏𝑟𝑎𝑑
−1 = 𝐴 ⋅ (

𝑎

𝐿
)

2

⋅ 𝐽1
2 (2𝜋

𝑎

𝐿
).  (S5.30) 

Notice that in contrast to the ohmic lifetime, the radiation lifetime is thickness-

dependent (via the factor 𝐴 ∝ 𝑡, introduced in Eq. (S5.24)). 

To corroborate our analytical analysis, we analyze the total lifetime of the polaritons, 

𝜏𝑡𝑜𝑡, in the hole array with the help of the full-wave simulations and experimental data. 

We extract the lifetime from both the simulated and experimental transmission spectra 

of several hole arrays (with different periods 𝐿) by fitting them to Lorentzian profiles. 

The extracted experimental values for 𝜏𝑡𝑜𝑡 (triangles) are plotted in Supplementary 

Figure 10a as a function of period, 𝐿, finding a very good agreement with the 

simulations (red curve). Both red curve and the triangular symbols show a clear 

dependence upon 𝐿, deviating from the constant value of the ohmic lifetime, 𝜏0, 

(calculated according to Eq. S5.28), traced by the black solid curve. This deviation is 

due to the finite radiative lifetime, which can be extracted from the total lifetime as 

𝜏𝑟𝑎𝑑
−1 = 𝜏𝑡𝑜𝑡

−1 − 𝜏0
−1. In the shown interval of 𝐿, the radiative lifetime, 𝜏𝑟𝑎𝑑, 

(Supplementary Figure 10a, green curve) is larger than 𝜏0 up to one order of magnitude 
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(10 ps vs 1 ps for 𝐿 = 1200 nm), indicating that the polaritons require significantly more 

time to couple to the free-space radiation than to be dissipated into the heat. 

 

Supplementary Figure 10: Radiative and ohmic lifetimes of the Bloch mode as a function of 

the period of the hole array. (a) Total, radiative and ohmic lifetime of the polaritonic Bloch 

mode excited in the hole array as a function of its period. (b) Absorption as a function of period. 

The result of Eq. (S5.30) (corrected by a constant factor) is shown in Supplementary 

Figure 10a by the blue continuous curve. The tendency provided by Eq. (S5.30) finds a 

good agreement with 𝜏𝑟𝑎𝑑 extracted from the full-wave simulations (Supplementary 

Figure 10a, green curve). This agreement indicates that the mechanism of the radiative 

losses of the polaritonic Bloch mode (excited in the first-order Bragg resonance) is 

consistent with the scattering of the Bloch mode via the first-order harmonic of the hole 

array into the diffracted wave of 0
th

 order. 

As 𝜏𝑟𝑎𝑑 approaches 𝜏0 (with 𝐿 decrease), the polariton-induced absorption of light by 

the hole array increases (Supplementary Figure 10b). In fact, the optimal absorption is 

expected under the general condition of the equality between the radiative and ohmic 

losses, 𝜏𝑟𝑎𝑑 = 𝜏0, which can be achieved by optimizing the aspect ratio 𝑎/𝐿, thickness 

of the h-BN slab and the symmetry of the array (e.g. considering the hole arrays of 

triangular or hexagonal symmetries). 

Supplementary Note 6: Experimental study of the transmission 

resonances upon the incident angle and polarization of light 

 

The FTIR setup (Bruker Hyperion 2000, see ‘Methods’), that we use for angle-

dependent spectroscopy experiments, consists in two identical Swartzschild lenses. In 

transmission mode, the first lens focalizes the polarized light onto the sample (upper 

part of Supplementary Figure 11a, lens 1), while the second lens collects the transmitted 

light (lower part of Supplementary Figure 11a, lens 2). In this configuration, the 
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incident beam spans a range of plane waves with the angles of incidence, 𝜃, ranging 

from 𝜃1 = 9.8∘ to 𝜃1 = 23.8∘. The sample with the hole array with period  𝐿 = 900 nm 

is rotated in the 𝑥𝑦 -plane (see Supplementary Figure 11a) by an angle 𝜙 ranging from 

−40∘ to 40∘. Although 𝜙 does not directly represents the angle of incidence, its change 

is equivalent to the change of the incident angle, 𝜃, in the ample range between 

𝜃 = −63.8∘ and 𝜃 = 63.8∘. Therefore, by showing the independence of the Bragg 

resonance upon 𝜙, we prove that this resonance is independent upon 𝜃. 

 
Supplementary Figure 11: Experimental infrared spectra for the hole array as a function of 

the stage rotation and polarization of the incident light. (a) Schematics of the setup. The 

polarized beam from the interferometer is focused through a Swartzchild lens 1 providing the 

waves with the incident angles ranging from º to º. The beam is focused onto 

the h-BN hole array. The transmitted light is then refocused by the Swartzchild lens 2 that sends 

the beam to the detector. (b-j) Experimental infrared spectra of the hole array (with L = 900 

nm) for different polarization directions and tilting of the sample. 

 

To prove the independence of the transmission Bragg resonance upon 𝜙, we have 

performed the spectral measurements at many rotation angles, 𝜙, in the interval 

(mentioned above) allowed by the setup. For each rotation angle, 𝜙, the measurements 

have been done for several polarization angles (the polarization angle is defined as the 

rotation of the in-plane electric field in the incident beam with respect to one of the 

translation vectors of the hole array). The results of the measurements (summarized in 

Fig. 4 of the main manuscript) for several selected values of 𝜙 are shown in 

Supplementary Figure 11b-j. The transmission spectra are normalized to that of CaF2 

substrate at the same rotation angle and polarization. The transmission resonant dip 

remains at the constant spectral position (𝜔 = 1432 cm−1, marked by the vertical red 

line), maintaining a similar depth for all values of 𝜙. The polarization angle (its zero 

value corresponds to p-polarized light) changes, the transmitted spectra remain the 

same, thus confirming that the measured resonance is both angle- and polarization- 

independent. Note that the noise in the spectrum increases with increasing 𝜙. The noise 

increase can be explained by both the partial blocking of the beam by the stage and the 

smaller effective area of the aperture at the higher angles. The origin of the noise comes 
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from the imperfect cancellation of the atmospheric water lines due to small changes in 

the chamber between the recording of the reference and hole array interferograms. 

Supplementary Note 7: Propagation length of the M0 mode in the 

unpatterned h-BN slab 

Comparison of the analytical propagation length with the array period 

 

To corroborate the identification of the resonant transmission peaks as Bragg 

resonances in the hole array, we plot the propagation length of the M0 mode (solid blue 

line), obtained from the quasistatic solution of the M0 mode dispersion relation in the 

unpatterned h-BN slab. The propagation length is calculated as 𝑙𝑀0 =
1

𝑘𝑀0
′′ . In 

Supplementary Figure 12 We compare 𝑙𝑀0 with the period of each hole array, 𝐿, at the 

frequencies of the first-order Bragg resonance (grey bars). We find that 𝑙𝑀0 is much 

higher than 𝐿, thus confirming that the M0 mode can indeed build up the Bragg 

resonance. 

 

Supplementary Figure 12: Propagation length of the M0 mode as a function of frequency 

compared with the distance between holes at the resonances. The solid blue line represents the 

propagation length of the M0 mode. The gray bars placed at the frequencies of the first-order 

Bragg resonance indicate the period of the hole arrays. 

 

 

 

 



22 
 

 

Real-space imaging of the M0 mode in the unpatterned slab 

 

Supplementary Figure 13: Real-space s-SNOM polariton interferometry imaging of the M0 

mode in the unpatterned h-BN slab. In the polariton interferometry experiment
10-12

 a metallized 

tip concentrates the incident light of the laser at its apex, thus acting as a launcher of the M0 

mode. This mode emanates radially from the tip towards the edge of the unpatterned h-BN flake. 

Upon reflection, the M0 mode propagates backward and interferes with the emanating mode. 

The tip scatters the interfering field, providing a detectable signal in the far field. The tip raster-

scans the sample and the scattered signal is recorded as a function of the tip position, providing 

the near-field images. (a) The real-space image of the unpatterned region (near the edge) of the 

h-BN flakes with the hole-arrays. The h-BN edge is shown by the vertical black dashed line. The 

frequency of the illuminating laser is 1428 cm
-1

 and the scale bar is 1.2 m, corresponding to 

the longest period of the hole arrays. (b) Near-field line profile in the direction perpendicular to 

the h-BN flake edge (the direction is shown by the green dashed horizontal line in (a)) for three 

different frequencies: 1418 cm
-1

, 1428 cm
-1

 and 1445 cm
-1

 from top to bottom, respectively. The 

profiles have been vertically shifted to improve the representation. To reduce the noise, the 

profiles have been averaged over several pixels. The horizontal scale bars are 1200 nm, 1050, 

nm and 750 nm, (from top to bottom, respectively). They represent the periods of the arrays with 

frequencies of the Bragg resonances close to the frequency of the illuminating laser. 
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