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Supplementary Discussion

In this study, many TEs appear to lack any chromatin mark. Whilst many TEs may lack any
chromatin modifications, many may be marked by histone modifications that have not yet been
experimentally surveyed. We analyzed 32 chromatin modifications in our study, but mass
spectrometry experiments revealed at least 100 distinct histone modifications'?, not including
many understudied modifications, such as crotonylation or propionylation, and larger moieties
such as ubiquitination and sumoylation'®. Several of these epigenetic marks have already
been associated with gene expression®, and it seems likely they will also be involved in

regulating TEs.
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Supplementary Figure 1. TEs are marked by specific chromatin marks. (a) Quality control
for ChlP-seqg/epigenetic-seq data. Data was downloaded from GEO/SRA® and the FASTQ files
were reanalyzed. Pearson correlation was measured between biological replicates of the same
type, by taking the RPKM (reads per kilobase per million reads) for all TE types.
ChlIP/epigenetic-seq samples with a correlation less than 0.6 to any two other biological
replicates were deleted from the analysis. See Supplementary Data 1 for details of the
samples used in this study. (b) Heatmap of all TE types (rows), against all chromatin marks
(columns), hierarchically clustered, showing the fold-enrichment of the chromatin mark. The
estimated age of the TE type is indicated on the right, in millions of years (Myrs). The full table
is in Supplementary Data 2. (c) Pair-wise R? correlation plot for the patterns of chromatin mark
for all TE types. (d) Heatmap showing the fold-enrichment over a random background of the
chromatin patterns for long (>5 kb) and short (<5 kb) LINE elements. (e) Pileup tag density plots
for a selection of chromatin marks over long (>5 kb) and short (<5 kb) L1Md_A and L1Md_T
elements. The LINEs are aligned by their 5’ ends, and the flanking 5 kb regions are shown. (f)
Selected pileup heatmaps for the indicated TEs, and the indicated chromatin marks. The
number of TEs in each heatmap is indicated (n=). Average sequence read mappability is
indicated below the right most heatmap for each TE. These TE types are shown as they have
overall good mappability (>0.6) across the TE. The TEs were scaled to the same size, and the
flanking 5kb regions are shown. (g) Example genome views of chromatin marks for the TEs:
LINE1 (L1Md_T) ERVKs (BGLII_Mus, IAPLTR4_I, RLTR13G, RLTRETN_Mm, RLTR10D2)
and ERVL (MERVL). The range of the plots goes from 0, up to the values indicated on the right
side of each histogram. Genomic locations are from the mm10 mouse assembly. Care should
be taken in interpreting genomic views due to uncertainty in mapping reads to specific TE
copies, this applies to all genome views in the manuscript.
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Supplementary Figure 2. TEs recruit a wide-range of chromatin modifiers. (a) Sequence
tag pileups for CMs (left) and chromatin marks (right) on RLTR46. RLTR46 was scaled to the
same size, and the flanking 5kb regions are shown. (b) Motif enrichment within the TEs that
have enriched CMs. Motifs were detected with MEME’. (c) Sequence tag pileups for YY1 (left)



and REST (right) at the indicated TE types. The number of copies of the TE are indicated (n=).
(d) Alignment of all of the genomic copies of the RLTR13B2, showing the location of the NR5A2
motif in red. The consensus NR5A2 sequence logo is indicated at the top of the TE. The number
of copies of the TE are indicated (n=). (e) Sequence density pileups for NR5A2 ChlP-seq data,
and its matching Input control. NR5A2 ChlIP-seq data was from GSE19019°. (f, g) ChIP-seq
pileup for the indicated chromatin marks (panel f) and CMs (panel g), displayed as in panel e.
(h) Expression from RNA-seq data for ESCs and EpiSCs for Nr5a2 (left) and RLTR13B2 TE
(right). RNA-seq data was taken from GSE99491°. The red line indicates the mean and the
error bars the standard error of the mean of the three biological replicates. Source data are
provided as a Source Data file. (i) Chromatin accessibility (ATAC-seq data) for RLTR13B2 TE
in ESCs and EpiSCs. ATAC-seq data was taken from GSE101074°.
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Supplementary Figure 3. Pair-wise correlation matrix for all chromatin modifiers and
chromatin modifications. Pair-wise R? correlation plot for the patterns of chromatin mark for
all TEs and CMs analyzed in this study. Selected groups are labelled, including the two super-
groups we designate Active/Open and Heterochromatin. Within the supergroups are several
subgroups that are annotated based on the major regulators within each sub cluster. The
Active/Open supergroup contains a P300/Mediator subgroup (P300, MED1/12), CHAF1A,
Mediator-like (NIPBL, SMC1), Pol ll-bound (Pol Il, NELFA), and Enhancer-like (EP400,
H3K4me1). The Heterochromatin supergroup contains a SETDB1 cluster (SETDB1, TRIM28),
a H4K20me3 cluster (H4K20me3, H3K2me1, CBX5), an MBD cluster (MBD1A/1B/2A/2T/4), a
H3.3 cluster, and finally a H3K9me3 cluster (H3K9me3, SUV39H1/2). In addition, there are
several smaller subgroups. These include DNA methylation (5mC, H1D, DZIP3), Polycomb-
repressor complex (H3K27me3, EZH2, JARID2), NCOA, ZIC2/3, promoter-like (H3K4me3,
H3(K9/K14)ac), REST/YY1, and CTCF. Another major group was a cluster containing
DAXX/ATRX.
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Supplementary Figure 4. Knockdown of CMs does not drastically alter cell state. (a) Table
of known chromatin targets of the CMs used in this study. Red boxes indicate the indicated CM
is known to catalyze (directly or indirectly) that chromatin mark, blue indicates the CM can
remove that mark, and pink indicates that the CM is known to bind to or read the mark. Data
was taken from the EpiFactors database'". (b) Knockdown efficiency relative to shLuc for the



indicated knockdowns. Data was derived from the RNA-seq data. (c) Gene expression heatmap
for a selection of pluripotency-related genes and a selection of differentiation-associated genes
for the germ lineages: endoderm, mesoderm, blood mesoderm, surface ectoderm, neural crest,
neurectoderm and germ cells. Lineage-specific genes were taken from'?. (d) Principal
component analysis of the shRNA knockdowns (KD, pink) and control shLuc knockdowns (Ctrl,
red), compared to gene expression in a range of somatic cell types. Raw data was downloaded
from GSE60101, GSE20851, GSE41637, GSE38805 and GSE47948 (See Supplementary
Data 1) and reprocessed using the same RNA-seq pipeline as the other RNA-seq data in this
study. (e) Numbers of significantly differentially regulated genes in the indicated knockdowns.
A gene was considered deregulated by DESeq2 if the P value<0.05 (Benjamini-Hochberg
corrected) and the absolute fold-change was greater than 2. (f) Gene ontology analysis of the
significantly up and down regulated genes in the Mrcs1 knockdown (left) and the Chd4
knockdown (right).
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Supplementary Figure 5. RNA-seq mapping to TEs, validation and associat

chromatin marks. (a) Percent of RNA-seq reads mapping to TEs (top) and to genes (bottom).
The red line indicates the % of reads mapping to the shLuc control. Each bar is the average of
the replicates. (b) RT-gPCR validation of selected TEs in the indicated shRNA knockdowns,

relative to shLuc. P values are from a one-tailed Student’s t-test. The circles are the mean of 3
technical replicates, the red bar is the mean of the 3 biological replicates, and the error bars
are the standard error of the mean. Primers used are described in Supplementary Data 7.



Source data are provided as a Source Data file. (c) Western blot for the pluripotency proteins
OCT4, NANOG and GAPDH, for the indicated shRNA knockdowns. Molecular weight is
indicated as Mr (K). This experiment was performed twice with similar results. (d) Fold change
(relative to shLuc) of all TEs significantly differentially regulated in the indicated knockdowns.
(e) Example genome views of RNA-seq data for the selected TEs in the indicated knockdowns.
(f) Scatter plot showing the relationship between TE fold-change deregulation, and TE age (in
millions of years/Myr) in the indicated shRNA knockdowns. Significantly differentially regulated
TEs are indicated in blue. (g) Heatmap showing the significant associations between chromatin
marks and the TEs deregulated in the indicated shRNA knockdown. P value is from a Fisher’s
exact test, * indicates P value <0.05. (h), Boxplots of the change in expression for all TEs with
either high or low levels, for a selection of chromatin marks and shRNA knockdowns from panel
g. High was defined as all those TE types with fold enrichment >2 for the indicated chromatin
mark. A background of low sites was selected by ranking all TE types from top to bottom by
fold enrichment, and taking the TEs from the bottom of the list until it was the same size as the
number of TEs in the high list. For the boxplots, the midline indicates the median, boxes indicate
the upper and lower quartiles and the whiskers indicate 1.5*interquartile range.
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Supplementary Figure 6. Loss of CMs leads to CM-specific opening of chromatin. (a) All
ATAC peaks that change from closed to open in any knockdown. A peak was considered open
if it had an average RPKM>4, and closed with an RPKM<4. (b) Number of individual peaks that
become open in an shRNA knockdown that was unique, or shared in any 2 shRNA knockdowns.
(c) Pileup tag counts of ATAC-seq data across those peaks that become accessible in the
indicated CM knockdown. The peaks were scaled to the same size, and the flanking 5kb regions
are shown. (d) ATAC-seq peaks that gain accessible chromatin after the indicated shRNA
knockdown, have significantly up-regulated expression of the corresponding flanking genes.
The expression of all genes that were within 10kb of the opened peak in the ATAC-seq data
was measured. Comparisons are between the shLuc control and the indicated CM knockdown.
Significance was derived from a Mann-Whitney U test. For the boxplots, the midline indicates
the median, boxes indicate the upper and lower quartiles and the whiskers indicate
1.5%interquartile range. (e) ATAC peaks that become open in the indicated shRNA knockdown,
are enriched for the corresponding chromatin mark. Examples are shown for shPrmt5
(H3R3me2 catalytic enzyme), and shSetdb1 (H3K9me3 catalytic enzyme).
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Supplementary Figure 7. Strand-specific splicing of MERVLs and MT2_Mm into 2C-
related genes, and RNF2 and H2AK119ub labelling of the Gata2 locus in ESCs. (a) Fold-
change expression level versus shLuc for all genes, and those genes that have a flanking or
intronic MERVL on the same orientation (same ori.) or opposite orientation (opposite ori.) as
the gene. All genes are shown for comparison. Significance is derived from a Mann-Whitney U
test, compared to all genes. For the boxplots, the midline indicates the median, boxes indicate
the upper and lower quartiles and the whiskers indicate 1.5*interquartile range. (b) Example
genome views of alternatively spliced transcripts that splice a MERVL or MERVL-related TE
(MT2, MT2B1) exon into a splice isoform. Zfp352 and Abcb5 were from'. (c) Genome view of
RNF2 binding and H2AK119ub levels at the GataZ2 locus in ESCs. ChlP-seq data was taken
from GSE76825'.
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Supplementary Figure 8. Raw images of Western blots. Top panel shows the Westerns for
Figure 3c and the bottom panels show the Western blots for Supplementary Figure 5c. The
black borders indicate the boundaries of the blotting membrane. The molecular weight markers
are indicated with Mr (K).
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