Supplemental Figure S1 Uncropped western blot from Figure 3B

Western blot analysis using an anti-human CaMKIV antibody raised against the N-terminus of the protein. A truncated protein of ~37kDa (p.Lys303Serfs²8) was detected in proband A-4's cells but not in control cells. The experiment was performed with fibroblasts derived from proband A-4 (A-4) and two healthy controls (CTRL, CTRL-2). Two biological replicates are shown for each cell line (CTRL, CTRL-2, A-4).

Supplemental Figure S2 Uncropped western blots and raw data from Figure 3D

Bottom: western blot analysis assessing phospho-CREB and total CREB expression in fibroblasts derived from proband A-4 (A4) and a healthy control (CTRL). Cells were treated with vehicle (veh) or STO-609, an inhibitor of CaMKK activity. Three biological replicates are shown for each condition (CTRL-veh, CTRL-STO-609, A4-veh, A4-STO-609). Top: table and bar plot showing results of densitometric quantification, depicting the ratio of phosphorylated CREB to total CREB. Data in the bar plot are presented as mean \pm standard error of the mean, n = 3.

Supplemental Table Recessive variants identified in proband A-4

Gene	OMIM disease- association	Genomic position (hg 19)	RefSeq transcipt	Variation nucleotide	Variation amino acid	Variant type	Known disease- causing mutation (ClinVar)	dbSNP142	Frequency in- house exomes (N=12,000) (allele count/ total allele number)	Frequency gnomAD (allele count/ total allele number)	Mode
EPPK1	no	chr8:144940706	NM_031308	c.6716G>A	p.Arg2239His	missense	no	rs112377501	98/24,000	1,035/219,198	compound heterozygous
EPPK1	no	chr8:144941879	NM_031308	c.5543C>T	p.Ala1848Val	missense	no	rs150969952	106/24,000	653/277,068	compound heterozygous
HYDIN	yes (MIM: 608647)	chr16:70934984	NM_001270974	c.8971C>A	p.Pro2991Thr	missense	no	not found	33/24,000	87/246,152	compound heterozygous
HYDIN	yes (MIM: 608647)	chr16:71212894	NM_001270974	c.318A>G	p.Ile106Met	missense	no	not found	not found	4/276,608	compound heterozygous

A search for rare biallelic variants in the trio-whole-exome sequencing datasets from proband A-4 and his parents detected four compound heterozygous variants in *EPPK1* and *HYDIN*. The *EPPK1* variants were deemed unlikely to be responsible for proband A-4's neurodevelopmental phenotype because of the predominant role of *EPPK1* in keratinocyte proliferation and wound healing. In addition, we observed a large number (N=240) of in-house-sequenced exomes from individuals with no overlapping phenotypes that contained \geq 2 rare non-synonymous variants in *EPPK1*. The *HYDIN* variants were dismissed because loss-of-function mutations in this gene cause primary ciliary dyskinesia type 5, characterized by progressive decline in lung function and recurrent airway infections, symptoms not seen in proband A-4's clinical presentation was considered unlikely.