Cell Reports, Volume 25

## **Supplemental Information**

## **Myeloid-Derived Suppressor Cells Produce IL-10**

## to Elicit DNMT3b-Dependent IRF8 Silencing

## to Promote Colitis-Associated Colon Tumorigenesis

Mohammed L. Ibrahim, John D. Klement, Chunwan Lu, Priscilla S. Redd, Wei Xiao, Dafeng Yang, Darren D. Browning, Natasha M. Savage, Phillip J. Buckhaults, Herbert C. Morse III, and Kebin Liu



**Figure S1. Creation of the IRF8 cKO mouse. Related to Figures 1 and 2.** (A) Diagram of creation of mice with IRF8 deficiency in the colonic epithelial cells (termed IRF8 cKO mouse). (B) DNA was extracted from mouse tail snaps and analyzed by PCR. The genotypes of 3 homozygous IRF8 cKO mice are shown. (C) RNA was extracted from colon tissues of WT (n=3) and IRF8 cKO (n=3) mice, and analyzed by RT-PCR using a PCR primer pair flanking the exon 2 of *irf8* cDNA. The WT IRF8 (IRF8 WT) and truncated mutant IRF8 (IRF8 Mut) are indicated at the right.



**Figure S2. MDSC and T cell profiles in WT and IRF8-deficient mice. Related to Figure 1.** (A & B). Cells were prepared from spleens of aged matched WT (n=3), IRF8KO (n=3) and IRF8cKO (n=3) mice. Cells were stained with CD11b- and Gr1-specific (A), and CD4- and CD8-specific (B) antibodies and analyzed by flow cytometry. Shown are representative flow cytometry plots. (C) Quantification of percentages of CD11b<sup>+</sup>Gr1<sup>+</sup>, CD4<sup>+</sup> and CD8<sup>+</sup> cells as shown in A and B. Column: mean; Bar: SD.



Figure S3. Cytokine expression levels in DSS-treated mouse colon. Related to Figures 4 and 5. WT C57BL/6 mice were treated with the 2% DSS-water cycle as described in the experimental procedures. Colon tissues were collected from mice at the indicated time points and analyzed by RT-PCR for IL6, IL22 and IFN $\gamma$  mRNA levels.  $\beta$ -actin was used as normalization control.



Figure S4. Inflammation induces IL10 up-regulation in colon. Related to Figure 5. C57BL/6 mice were treated with 2% DSS as described in the experimental procedures. CD11b<sup>+</sup>Gr1<sup>+</sup> MDSCs were purified from mouse spleens at day 21 and analyzed by qPCR for IL10 mRNA level with  $\beta$ -action as internal control.



**Figure S5. Effects of chronic inflammation on T cell profile. A. Related to Figure 5**. (A) WT mice were treated with DSS as described in the experimental procedures and analyzed for CD4<sup>+</sup> and CD8<sup>+</sup> T cells in the spleens at the indicated time. Shown are representative results of one of three mice. (B) Quantification of percentages of CD4<sup>+</sup> and CD8<sup>+</sup> cells as shown in A. Column: mean; Bar: SD.



Figure S6. Cytokine regulation of gene expression in normal colon epithelial and colon carcinoma cells in vitro. Related to Figures 6 and 7. (A) HT29 and CCD841 cells were treated with recombinant IL6, IL22 and IFN $\gamma$  for 24 hours and analyzed for the indicated proteins by Western blotting. (B) HT29 and CCD841 cells were treated with recombinant IL10, IL6, and IL22 for 2 hours and analyzed for the indicated proteins by Western blotting.

Table S1. Oligonucleotide Sequences\*. Related to Figures 1, 2, 3, 4, 5, 6, and 7.

| Oligo Name         | Sequence (5'-3')                   | Application                                |
|--------------------|------------------------------------|--------------------------------------------|
| mIRF8-F            | GATCGAACAGATCGACAGCA               |                                            |
| mIRF8-B            | GCTGGTTCAGCTTTGTCTCC               | RT-PCR                                     |
| mDNMT1-F           | TTGATGGTGGCGAGAAGGTG               |                                            |
| mDNMT1-B           | AATGGTAGAAGGAGGAACAGTGGTC          | RT-PCR                                     |
| mDNMT3A-F          | CCAGCCAAGAAACCCAGAAAG              |                                            |
| mDNMT3A-B          | AGCAATCCCATCAAAGAGAGAGACAG         | RT-PCR                                     |
| mDNMT3b-F          | CAAACCCAACAAGAAGCAACCAG            |                                            |
| mDNMT3b-B          | CCAGACACTCCACACAGAAGCATC           | RT-PCR                                     |
| mCD11b-F           | GCAGTCATCTTGAGGAACCGTG             |                                            |
| mCD11b-B           | AGTTGGTATTGCCATCAGCGTC             | RT-PCR                                     |
| mIL10-F            | GCTGGACAACATACTGCTAACCGAC          |                                            |
| mIL10-B            | CTTGCTCTTATTTTCACAGGGGAG           | RT-PCR                                     |
| mIL6-F             | TCTGGGAAATCGTGGAAATGAG             |                                            |
| mIL6-B             | TCTCTGAAGGACTCTGGCTTTGTC           | RT-PCR                                     |
| mIL22-F            | CGTCAACCGCACCTTTATGC               |                                            |
| mIL22-B            | TTCTGGATGTTCTGGTCGTCACCG           | RT-PCR                                     |
| mIFNG-F            | CCATCAGCAACAACATAAGCGTC            |                                            |
| mIFNG-B            | TCTCTTCCCCACCCCGAATCAGCAG          | RT-PCR                                     |
| mKi67-F            | CATCATTGACCGCTCCTTTAGG             |                                            |
| mKi67-B            | TGTTTCTGCCAGTGTGCTGTTCTAC          | RT-PCR                                     |
| mβ-actin-F         | ATTGTTACCAACTGGGACGACATG           |                                            |
| mβ-actin-B         | CTTCATGAGGTAGTCTGTCAGGTC           | RT-PCR                                     |
| mβ-actin-Q-F       | CTGGCACCACCTTCTACAATG              |                                            |
| mβ-actin-Q-B       | GGGTCATCTTTTCACGGTTGG              | qPCR                                       |
| mIRF8exon1F        | GCGCGGGCAGCGTGGGAACCGGCG           |                                            |
| mIRF8exon3B        | GTCACTTCTTCAAAATCTGGGCTC           | RT-PCR: IRF8 cKO                           |
| mIRF8-CpGI-F       | GGGATAGAGGTTTTTTAAATTTGAA          |                                            |
| mIRF8-CpGI-B       | AACAACCAAAACAAACACCTACTAAC         | BS-PCR of <i>irf</i> 8 promoter CpG island |
| mIRF8-MSP-U-F      | TTTTGGGGTAGTTTTTTTTTTTTTGTTGTTTTT  |                                            |
| mIRF8-MSP-U-B      | TCCCACACAAAAACAACAATCACAAA         | MS-PCR of <i>irf</i> 8 promoter CpG ialand |
| mIRF8-MSP-M-F      | TGGGGTAGTTTTTTTTTTCGTCGTTTTC       |                                            |
| mIRF8-MSP-M-B      | GCGCGCAAAACGACGATCGCGCG            | MS-PCR of <i>irf</i> 8 promoter CpG ialand |
| Tg-Vil1-Cre-Common | GCCTTCTCCTCTAGGCTCGT               |                                            |
| Tg-Vil1-Cre-Wild   | TATAGGGCAGAGCTGGAGGA               | Genotyping villin-cre mouse                |
| Tg-Vil1-Cre-Mutant | AGGCAAATTTTGGTGTACGG               |                                            |
| IRF8-Floxp-F       | TTGGGGATTTCCAGGCTGTTCTA            |                                            |
| IRF8-Floxp-B       | CACAGGGAGTCCCTCTTACAAT             | Genotyping <i>irf8 floxp</i> mouse         |
| hDNMT1-XhoI-F      | GTACTCGAG TCCAGGCACACACTACCATTC    |                                            |
| hDNMT1-HindIII-B   | CATAAGCTT CGGGTTCAAGCGATTCTTCTG    | PGL3-Cloning                               |
| hDNMT3b-KpnI-F     | ACTCGGTACCTGTAAAGAAAGGCTGGACGGC    |                                            |
| hDNMT3b-HindIII-B  | CATAAGCTT AAATAAACAGGTCTATGGGGAGGG | PGL3-Cloning                               |
| hDNMT3b-ChIP1-F    | TTTGTGCCAGAAAGCCAA                 |                                            |
| hDNMT3b-ChIP1-B    | CCAGGTGAGTAAATGAGTGAAGGG           | ChIP                                       |
| hDNMT3b-ChIP2-F    | GTGCTGTTTTCCAGTGGTTCAATG           |                                            |
| hDNMT3b-ChIP2-B    | TGCCTGTCATCCTGCTTTGG               | ChIP                                       |
| hDNMT3b-ChIP3-F    | AATTACCTGGCCTCTGCCTTGG             |                                            |
| hDNMT3b-ChIP3-B    | GCTCTTTCCTAAAGCTGGGATTG            | ChIP                                       |
| hDNMT1-ChIP1-F     | GCCTGGGAGATAAAGGAAGACTCTG          |                                            |
| hDNMT1-ChIP2-B     | GCGGAAATGATGGACACTACACC            | ChIP                                       |
| hDNMT1-CHIP3-F     | GACCCCATCTCTACAAAAAACTGC           |                                            |
| hDNMT1-CHIP2-B     | TAAGTGCCTACTGTGTGTCCACCC           | ChIP                                       |
| hDNMT1-ChIP3-F     | TGAGCGAGGGCAAAAGGATG               |                                            |
| hDNMT1-ChIP3-B     | AGTTGAAAGAGGAGGCGTCTGAG            | ChIP                                       |
| hDNMT1-F           | GAAGGAGGCAGATGACGATGAG             |                                            |
| hDNMT1-B           | AATAACAGAGACACAGTCCCCCAC           | RT-PCR                                     |
| hDNMT3b-F          | CCAACAACAAGAGCAGCCTGG              |                                            |
| hDNMT3b-B          | GCACTCCACAGAAAACACCG               | RT-PCR                                     |
| hIRF8-CpGI-F       | TTTTGAAGTTGGGATTTTTTTGTTT          |                                            |
| hIRF8-CpGI-B       | TAAAATCCRAACCTCTTCTAAAACC          | RT-PCR                                     |
| hIRF8-MSP-U-F      | CCATCCCCATAAAATAACACACAAA          |                                            |
| hIRF8-MSP-U-B      | GATGGTGTAGATGTGTGTGTTTGTGGTTT      | MS-PCR of IRF8 promoter CpG ialand         |
| hIRF8-MSP-M-F      | TCCCCGTAAAATAACGCGCGACGAA          |                                            |
| hIRF8-MSP-M-B      | CGGTGTAGACGTGCGTTTGCGGTTT          | MS-PCR of IRF8 promoter CpG ialand         |
| hIRF8-F            | GCTCATCCAATCTCCCAAGTCTC            |                                            |
| hIRF8-B            | CTCTATTCGCCTGTGAACTCCATC           | RT-PCR                                     |
| hβ-actin-F         | GGAACGGTGAAGGTGACAGCAG             |                                            |
| hβ-actin-B         | TGTGGACTTGGGAGAGGACTGG             | RT-PCR                                     |
| hβ-actin-Q-F       | TGAAGGTGACAGCAGTCGGTTG             |                                            |
| hβ-actin-Q-B       | GGCTTTTAGGATGGCAAGGGAC             | qPCR                                       |

\*m: mouse; h:human