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Almost Irreversible Dye Binding

We observed that extracellular dye removal does not affect the fluorescence signal from bound

dye-DNA complexes in intact nuclei (cf., Fig. Ba and Fig. Bb). Since the major contribution

of the Hoechst fluorescence corresponds to dye bound tightly to the minor groove of DNA, we

concluded that this binding is virtually irreversible on the time scales of our experiments (72

hours or less).

By contrast, if we expose cells to Hoechst and then lyse them, we observe that the intensity

of the fluorescence signal depends on whether extracellular dye was removed or not prior to ly-

sis. The blue curve in Fig. C corresponds to the case where extracellular Hoechst is not removed

prior to lysis. The green curve in Fig. C corresponds to the case where extracellular Hoechst

is removed (and cells are resuspended in dPBS) prior to lysis. Long exposure to Hoechst prior

to lysis guarantees the achievement of the steady-state levels of bound DNA in both cases prior

to lysis. After lysis, the fluorescence signal intensity of bound dye drops instantaneously if

extracellular Hoechst was removed prior to lysis (cf. blue and green curves). We believe this

decrease corresponds to a new steady-state due to equilibration between bound DNA of lysed

cells and fresh (dye-free) buffer used to re-suspend the cells.

The fact that a new equilibrium can be achieved means that binding is reversible (and that

the time scale is faster than our detection limit of 1 minute) if cells are lysed. To ensure that

the decrease in signal intensity is not due to a technical issue of losing cell lysate during cen-

trifugation and re-suspension, we repeated these steps twice in a series with additional TritonX

treatment, as well. The corresponding signal is depicted by the red curve in Fig. C.

Note that the time-dependence of the signals in Figs. B and C is most likely due to photo-

bleaching and not chemical re-equilibration on the time scales of our experiments. This con-

clusion is supported by the similarity in time-dependent reduction of the signal in all cases,
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including those involving calf thymus DNA control experiments.

Moments of Inertia, Theoretical Considerations

All of our theoretical and numerical calculations are based on an idealized model of the cell;

namely, we assume radial symmetry in both shape and target distribution of the cell. Within

our experimental setting, we measure fluorescence intensity emitted from a thick slice of each

nucleus in the z-direction. To emulate the experimental data, we considered parameters of the

idealized model that can be expressed in terms of a z-projection of physical variables. We

consider the total intrinsic amount of bound DNA in the cell, ”mass” of the nucleus M0 (that

emulates Itot in the experimental signal), and moment of ”inertia”M2 with respect to the z-axis:

Mn =

∫
V

(r2
x + r2

y)
n/2 ρ(~r ) d~r, (1)

where V and ρ(~r ) are volume and target density of DNA in the cell, respectively.

For a general non-uniform but radially symmetric ”mass” distribution of the target density

ρ(r), we derive the following moments of inertia:

M0 =

∫ R

0

(4π r2) ρ(r) dr, (2a)

M2 =

∫ R

0

2

3
r2 (4π r2) ρ(r) dr. (2b)

The quadratures Eq. (2) are obtained by partitioning the entire sphere into thin shells of radius

r where local density is uniform. The mass of each thin shell is ∆m = (4π r2) ρ(r) dr and its

radius is r by construction. The first two moments of inertia of a thin spherical shell are well

known, namely ∆m and 2
3
r2 ∆m for a thin shell of mass ∆m (cf., (2)). Since the total moment

of inertia of any object is the sum of its partitions’ moments, we can derive Eq. (2).
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For time- and position-dependent concentration of free DNA ρ = v(r, t) in our numerical

simulation, we used Eq. (2) in order to calculate equivalents of experimentally measured Itot(t)

and M2(t). We assume that the measured fluorescence signal is linearly proportional to the

mass of bound DNA molecules within the measurement volume.

In order to compare reaction front propagation dynamics between individual nuclei, we

defined the dimensionless quantity

µ(t) =
1

〈r2
x + r2

y〉
M2(t)

M0(t)
, (3)

where 〈r2
x + r2

y〉 describes the average squared radius of the entire nucleus along the x − y

plane. The usefulness of the variable µ is clear if one considers a limiting case such as a

reaction-limited front propagation. In this case, diffusion is fast and all moments of inertia,

as defined in Eq. (1) have the same time dependence since free dye distribution is uniform

everywhere in the nucleus, and, therefore, ρ(r, t) = ρ(t). This means that µ(t) = const, (see

Eq. (3)), which only depends on the geometry of the nucleus. Hence, we interpret the moment

in time when µ(t) reaches a constant value as the terminal state of front propagation. After

this time, dye incorporation occurs uniformly throughout entire nucleus. Since our definition of

the dimensionless variable µ(t) includes normalization to geometric size, we can compare the

dynamics of µ(t) between individual nuclei regardless of their size.

Below, we consider a few limiting cases of the result Eq. (2), which were used as references

in figures throughout the article. The moment of inertia of a solid uniform shell with outer

radius R> and inner radius R< is given by

M sh
2 =

2

5

R5
> −R5

<

R3
> −R3

<

M0. (4)

The moment of inertia of a solid uniform disk of radius R> is given by

Md
2 = 〈r2

x + r2
y〉M0 =

1

2
R2

>M0. (5)
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Hence, the thickness of the shell can be deduced from the dimensionless geometric ratio:

µsh =
M sh

2

〈r2
x + r2

y〉M0

=
M sh

2

Md
2

=
4

5

R5
> −R5

<

R2
>(R3

> −R3
<)
. (6)

For solid ball, thin shell, and thick shell, one derives, respectively

µ =


4
5
, if R< = 0

4
3
, if (R> −R<)� R>

31
35
, if R> = 2R<

(7)

where the condition on the right specifies each limiting case.

Comparison of Sub-Regional to Total Fluorescence Intensity

For an arbitrary sized sub-region of an ideal spherical nucleus, one can define the time-dependent

sub-total fluorescence intensity J(r, t). Using this notation, the total nuclear fluorescence in-

tensity is J(R, t) = Itot(t), where R is the size of the nucleus. For a uniformly distributed

fluorescence density ρ(t) and small sub-region size r/R� 1, one derives:

J(r, t) ≈ ρ(t) · (2R) · π r2 (8a)

J(R, t) = ρ(t) · (4/3) πR3 (8b)

Hence, once dye is spread homogeneously throughout the nucleus, one expects a parametric

plot J(r, t) vs. J(R, t) to have a slope of (3/2) · r2/R2. By contrast, at the very initial phase

of dye incorporation, one expects only a thin layer of the nucleus (close to the surface) of size

h(t) to be fluorescent. In this case, we derive:

J(r, t) ≈ ρ(t) · 2h(t) · π r2 (9a)

J(R, t) = ρ(t) · h(t) · 4 πR2 (9b)
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Therefore, in this regime, the expected slope of the parametric curve is (1/2) · r2/R2.

In this particular experiment, the dye concentration in solution was high enough ([dye] =

2µM ) to ensure that the intensity of nuclear fluorescence saturates at the steady-state. As a

result, a parametric plot of the data (Fig. E) exhibits point “condensation” toward the ends of

the parameterized curves, consistent with theoretical expectations. Straight line segments of

the curves depicted in Figure E correspond to slopes in the limiting cases defined by Eqs. (8)

and (9).

Comparison of sub-regional to total fluorescence intensity (Fig. E) demonstrates variabil-

ity in the dynamics of reaction front propagation among cells. However, quantification of the

dynamics based on this representation relies heavily on a uniform distribution of target den-

sity and symmetry of the nuclei. We used the pixel intensity coefficient of variation CVp as a

proxy for homogenization of dye in each individual nucleus. Indeed, once dye molecules are

distributed uniformly throughout the nucleus, one expects binding kinetics to be uniform, as

well [cf. Eq. (5)]. This approach can be used to infer the dynamics of dye propagation in the

nucleus; however, it is fairly sensitive to the background subtraction method used.

Numerical Simulation of Reaction–Diffusion System

We used Wolfram Mathematica 11 to run simulations of nonlinear reaction–diffusion models.

All models assume stationary targets (specific and non-specific) and diffusing dye molecules.

All initial and boundary conditions as well as the distribution of targets inside the nucleus were

assumed to be spherically symmetric. Hence, the Laplacian that describes the diffusion operator

in the main text, Eq. (10), is given as

∇2
xu =

1

r2

∂

∂r

(
r2∂ u

∂r

)
(10)

in spherical coordinates. We assumed a Neumann boundary condition in the center of nucleus

r = 0 and a Robin boundary condition imposed at the nuclear membrane r = 1, where 1 is a
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dimensionless radius of the nucleus. Our initial condition assumed a dye-free nucleus at time

t = 0.

For a binding model with only specific binding interactions, these initial and boundary condi-

tions are, then,

u(r, 0) = 0, if r < 1 (11a)

v(r, 0) = c, if r < 1 (11b)

u1,0(0, t) = 0 (11c)

u{1,0}(1, t) = Bi [uext − u(1, t)] (11d)

whereBi is a corresponding Biot number (effective mass transfer coefficient). Similar boundary

conditions were imposed for numerical simulation of the model describing multiple types of

targets, both specific and non-specific.

Numerical Simulation of Dye Incorporation Kinetics

In what follows, we assumed that a solution to reaction-diffusion equation(s) should always

exist and be unique due to the physical nature of the problem at hand. We relied on the conver-

gence of the numerical simulation as a guide for an acceptable parameter range.

A typical MFC10A cell nucleus has an ellipsoidal geometry of the characteristic size Rn ≈

20µm. If we measure the length in units of 20µm and the dye concentration in units of µM

(the characteristic concentration of dye in our setting), the resulting transformation corresponds

to the introduction of dimensionless length and concentration terms into Eqs. (9)–(12). In these

(dimensionless) units, the size of a nucleus is Rn ∼ 1 and the diffusion coefficient of free dye

in water is:

D ∼ 400µm2 sec−1

(20µm)2
= 1 sec−1 (12)
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The association rate kon in these units is, then, approximately 102 sec−1. The overall DNA

concentration in the nucleus (estimated as the number of base pairs per total volume, [bp]) is:

[bp] ∼ 3 · 109

(4/3)π(20µm)3
= 9 · 1019 l−1 = 150µM (13)

or [bp] = 150 in dimensionless units.

Dye binding affinity and subsequent fluorescence depend upon the DNA base pair sequence.

Dye binding to an AATT site is of significantly greater affinity than to other sites and results

in a greater fluorescence intensity (1). Other investigators have estimated that such complexes

in calf thymus DNA (CT) occur with a frequency of about 1 binding site per 100 base pairs (3).

Taking this observation into account, we estimate the concentration of the available specific

binding sites to be:

vmax ∼ 1.5 (14)

using the dimensionless units introduced above and in Eq. (13).

Using dimensionless units of length and concentration, one derives from Eqs. (9)–(12):

R(u, v) = 102 u (1.5− v)− 10−1 v (15a)

∂tu(r, t) =
1

r
∂2
r (r u)−R (15b)

∂tv(r, t) = R(u, v) (15c)

∂ru(r, t) = Bi [uext − u(r, t)] , r = 1 (15d)

u(r, 0) = 0, v(r, 0) = 0, r ≤ 1 (15e)

Here, we assume that the nucleus is a sphere of radius Rn = 1, and that Bi is the Biot number

given by:

Bi =
hmRn

D
(16)
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The only unknown parameter in Eq. (15) is the Biot number, which can be determined by fitting

the experimental data.

Upon further consideration, one realizes that the model described by Eq. (15) is inadequate.

The main problem here is not only the dynamics (see below), but also the steady-state prediction

based on Eq. (15). In the steady-state, the free extracellular dye concentration will be the same

as the intracellular concentration, uext = ust. Hence, the bound dye concentration in the steady-

state is given by the solution:

R(u, v) = 102 ust (1.5− vst)− 10−1 vst = 0 (17)

vst = 1.5
102 uext

102 uext + 10−1
µM (18)

and is completely insensitive to uext in the range of concentrations higher than 0.01µM ; how-

ever, we observed a great sensitivity to dye concentration in cell culture in the range of 0.1µM−

10µM .

Not surprisingly, the numerical solution of Eq. (15) for a broad range of Bi ∈ {10−6, 1}

does not produce the dynamical behavior observed in our experiments. The results of the nu-

merical simulation for [dye] = 1µM are depicted in Figures Ka and Kb. Note first that the time

dependence of the experimental traces does not approximate linear behavior. Second and more

importantly, we observed a high degree of correlation between the relaxation rates for Itot and

M2, which is not the case for the numerical simulation of Eq. (15).

The incorporation of continuous dye depletion into our model, uext = uext(t), does not

remedy this situation (Figs. Kc and Kd). In the case of rapid dye depletion, the linear behavior

in Fig. Ka appears more realistic (Fig. Kc); however, the kinetics of the moment of inertia is still

largely independent of the Biot number in this setting. In addition, the dye depletion rate cannot

be faster than the typical rate of uptake of dye by an individual cell. Hence, for a significant

population of cells, we can expect the behavior depicted in Figures Ka and Kb. Thus, given
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these findings, the model described by Eq. (15) is an inadequate fit to the experimental data.

Despite this shortcoming, it is very instructive to investigate the dynamic behavior prescribed

by the model of Eq. (15) in order to refine the model further and best fit the experimental data.

Numerical Estimate of the Concentration of Non-Specific Binders in the
Cell

In order to estimate the amount of non-specific species interacting with Hoechst dye, we use

steady-state experimental data depicted in Figures Ga and Gb. We consider a simple reaction

scheme, which is essentially a homogeneous version of Eqs. (34)–(38) since we are interested

only in steady-state conditions in which all targets are uniformly distributed within the cell:

u (ci − vi) = Ki
d vi (19a)

u+
2∑

i=1

vi = dye (19b)

s =
2∑

i=1

ai vi (19c)

Here u and dye are the concentrations of free and total dye molecules in solution, respec-

tively; and vi and ci are concentrations of bound and total species of class i (i.e., specific and

non-specific binders, respectively). The Ki
d is the dissociation constant and ai is fluorescence

intensity for each species. Finally, s is a “signal,” or the resulting fluorescence we observe ex-

perimentally. We assume here that all binding reactions are binary and that there are only two

different classes of species for simplicity.

Several variables in system Eq. (19) can be measured directly, namely, signal s, dye con-

centrations u, and dye. Ideally, we have to fit four parameters that presumably remain constant

under all experimental conditions, namely, the dissociation constants Ki
d and total species con-

centrations ci. Since the system Eq. (19) is underdetermined for a given condition (for 2 species
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there are 4 equations and 8 unknowns), the dye/cell titration data can be used to estimate the

binding parameters. In Figure P, we compare the experimental data with the fitted simulation

of Eq. (19). This estimate supports the assumptions used for the numerical reaction–diffusion

simulations in the previous section, at least within an order of magnitude.

Mean-Field Solution to Autonomous Binary Reaction Model

An implicit solution of a differential equation of the following form:

d

dt
v = −k · (v − λ1)(v − λ2), (20a)

v(0) = c, (20b)

is given by:

t =

∫ v(t)

c

dz [k · (v − λ1)(v − λ2)]−1 =
1

k · (λ2 − λ1)
log

[
z − λ2

z − λ1

]z=v(t)

z=c

. (21)

Hence, a characteristic relaxation rate of dye binding dynamics is given by:

β = k · |λ2 − λ1|. (22)

In what follows, we demonstrate that for autonomous mean-field dye-DNA binding models

involving any number of interacting species, the problem can be reduced to Eq. (20) and, hence,

have a solution given by Eq. (21).

Indeed, for a single species of dye binding molecules, the reaction scheme is simply:

U + V
kon−−⇀↽−−
koff

UV. (23)

Where V represent free DNA that can bind to dye molecule U .
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The reaction dynamics is described by:

d

dt
v(t) = −kon u(t) · v(t) + koff [c− v(t)], (24a)

u(t)− v(t) = const = u0 − c, (24b)

v(0) = c, (24c)

where u and v are concentrations of species U and V , respectively.

It is straightforward to map Eq. (24a) onto Eq. (20) by identifying:

a1,2 = −1

2
(Kd + u0 − c)±

√
(Kd + u0 − c)2 + 4Kd c, (25)

and k = kon. By construction, λ1 corresponds to the steady-state solution of Eq. (24a).

Hence, the characteristic relaxation rate of reaction dynamics in the case of a single binding

species is given by:

β = k · |λ2 − λ1| = kon ·
√

(Kd + u0 − c)2 + 4Kd c. (26)

The explicit time dependence of free DNA concentration, v(t), can be derived by resolving the

implicit solution, Eq. (21), as:[
v(t)− λ2

v(t)− λ1

]
=

[
c− λ2

c− λ1

]
exp(β t) . (27)

Using Eq. (27) one can resolve v(t) explicitly.

We note here that the derived expression for the relaxation rate Eq. (26) would, of course,

also describe the relaxation rate of dye uptake (due to conservation of total dye molecules).

Dye depletion is mostly driven by buffering by non-specific binding [cf., Eq. (30)]. Since we

wish to determine the dynamics of intracellular dye concentration and not simply in the nucleus,
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concentrations are calculated per well volume V ∼ 150µl:

cn ∼ (NcellsNbp)/(V NA) ∼ 1µM (28)

where Ncells ∼ 3 · 104 is a typical number of cells per well (96 well plate), and Nbp ∼ 3 ·

109 and NA are the number of base pairs in the genome and Avogadro’s number, respectively.

Combining Eqs. (26) and (28), it is possible to estimate the dye uptake rate based on a mean-

field model.

Let us now turn to a system that involves multiple interacting species. In this case, one can

describe the interactions as follows:

U + Vi
kion−−⇀↽−−
kioff

UVi. (29)

Here Vi represent different stationary species i that can bind to a diffusing molecule (walker) U

and immobilize it. We restrict our analysis to two species of stationary molecules, specific i = s

and non-specific i = n. We will assume that concentrations of non-specific species, vi = [Vi],

and reaction rates, kioff , kion, satisfy the following relationships:

vs � vn, (30a)

ksoff � knoff . (30b)

kson = knon = kon. (30c)

The first two assumptions in Equations (30a) and (30b) can be reasoned rather straightforwardly

based on the operational definition of specificity. The last assumption in Equation (30c) reflects

the fact that the binding rate is driven by the diffusion rate and molecular weight of the same

species U and, hence, is similar for all binding reactions.
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The dynamics of the reaction model Equation (29) is described by

d

dt
vi(t) = −kion u(t) · vi(t) + kioff [ci − vi(t)], i = n, s (31a)

u(t)−
∑
i=n,s

vi(t) = const = u0 −
∑
i=n,s

ci, (31b)

vi(0) = ci i = n, s, (31c)

where u is the concentration of a given mobile species u = [U ].

Numerical simulations of Eq. (31) suggest that for abundant non-specific species, cn > u0,

there are two characteristic regimes of Eq. (31) dynamics. These behaviour of these two regimes

is shown in Fig. Ja (blue curve) and can be interpreted as follows: On very short time scales

(first regime), free dye quickly becomes bound by interacting species Vi. The second regime

corresponds to much slower re-distribution of bound dye molecules between species Vi. In

the first regime, the dynamics is driven by binding only (dissociation rate is negligible in this

regime). Hence for equal association rates, Eq. (30c), one expects that free species Vi concen-

trations vi(t) are proportional to each other in this regime. Indeed, under these assumptions, we

can derive from Eq. (31):

d

dt
vi(t) ≈ −kon u(t) · vi(t), i = n, s (32a)

dvi
vi
≈ −kon u(t), i = n, s. (32b)

Hence, we derive for this regime a relationship:

vn(t)

vs(t)
≈ const =

cn
cs
, (33)

which is, of course, generalizable to greater amounts of interacting species.

In the second regime, dissociation becomes important. However, if the amount of remaining

free dye is small, we can derive a second conservation law of the total amount of bound dye
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molecules that relates concentrations vi(t) in linear fashion. The simplest way to do so is to

substitute an ansatz into Equation (31).

vn(t) = g1 + g2 vs(t), (34)

The coefficients g1 and g2 can be resolved by demanding consistency between the resulting

equations in Eq. (31):

g1 k
n
off + g2 csk

s
off + g1 [g1 + u0 − cn − cs] kon = cn k

n
off (35a)

g1 kon + g2 (knoff − ksoff + g1 kon) = 0. (35b)

The algebraic equations Eq. (35) have three possible solutions, with one being physically mean-

ingful.

To demonstrate that the conservation laws for both regimes are correct, we considered a

parametric plot of concentrations {vs, vn} determined by numerical simulation of Eq. (31). The

result, shown in Fig. Jb, illustrates the linear dependence of vs(t) and vn(t) in the two regimes

(blue curve). The linear solutions of conservation laws Eqs. (33) and (34) (dashed black and

red lines, repectively) fit these two regimes very well. The intersection of two linear curves

Eqs. (33) and (34) allows one to estimate the transition point between two regimes:

vs(τ) =
g1

cn/cs − g2

, (36)

where τ is a transition time point between two regimes.

Note that owing to the conservation law Eq. (34), a full dynamical model Eq. (31) can be

reduced to an effective single variable (e.g., vs) differential equation in both regimes. In both

cases, the resulting equation is precisely the same type as for an equation involving a single

interacting species Eq. (20) considered above. The only difference is the renormalization in
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binding/dissociation rates and the initial conditions. In particular, the initial conditions for the

slow second regime relaxation is given by Eq. (36). Hence, one can derive the explicit temporal

dependence of vi(t) in these regimes. The resulting analytical approximation for the second

(slow) regime is shown in Fig. Ja (dashed red curve).

Finally, we derive renormalized reaction rates, initial condition, and relaxation rate β for

specific binding due to the existence of non-specific interactions, with the following relation-

ships for renormalized quantities (marked with asterisks):

k∗on = kon(1 + g2) , (37a)

k∗off = koff , (37b)

c∗s = cs , (37c)

u∗0 =
g1 − cn + g2cs + u0

1 + g2

, (37d)

β = kon

√
((g1 − cn − cs + u0) +Ks

d)2 + 4(g2 + 1)csKs
d . (37e)

Under the assumptions of Eq. (30), the g2 coefficient is negative and has a value close to −1.

Hence, the effective binding rate k∗on is significantly smaller compared to the microscopic bind-

ing rate kon by roughly a factor cs/cn. The change in the renormalized initial dye concentration

is small and also scales as cs/cn. The remainder of the parameters have bare values under

renormalization conditions (integrating out the degrees of freedom of the non-specific species).

Data Availability

Time resolved microscopy image datasets for all single cell experiments are publicly available

using link below:

https://omero.hms.harvard.edu/webclient/?show=screen-1006
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(a) (b)

Figure A: (a) Normalized fluorescence intensity, I/I∗, of formalin-fixed HeLa cells measured
by microplate reader for Hoechst dye concentration of 8µg/ml. Here I∗ is the intensity at 3
hours of measurement, I∗ = I(180min). Cell density is ∼ 3 · 104 cells/well. Extrapolated
half-lives of kinetics (using spline interpolation) are T1/2 = 14.3, 11.2, and 3.2 minutes for
[Digitonin] = 0, 12.5 and 50µg/ml, respectively.
(b) Time course of fluorescence intensity of cells treated with Triton X-100 (0.1%), with the re-
mainder of the conditions as in (a) Extrapolated half-lives of kinetics (using spline interpolation)
are T1/2 = 4.1, 4.1, and 3.5 minutes for [Digitonin] = 0, 12.5 and 50µg/ml, respectively.
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(a)

(b)

Figure B: Decay of cell fluorescence intensity, I , in the (a) absence or (b) presence of dye (at
the same concentrations) in solution.

21



Figure C: Decay of cell lysate fluorescence intensity, I , for samples initially incubated with
4µg/ml dye. Calf thymus DNA (CT) concentration is 12µg/ml, cell density is ∼ 1.2 ·
106 cells/ml. The chase buffer was either dPBS or dPBS + 0.001% Triton X-100. The esti-
mated loss of cell lysate due to re-suspension was ∼ 10%.

22



Figure D: Dye incorporation dynamics at different positions in typical spheroidal (circular)
MFC10A nuclei. Dye concentration is 16µM ; magnification is 60x.
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Figure E: Time traces of individual nuclear and sub-nuclear dye incorporation, [dye] = 2µM ,
plotted parametrically. The sub-nuclear region is 10% of the area of the whole nucleus, r2/R2 =
0.1.
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(a) (b)

Figure F: (a) Relaxation rate βItot of Itot vs. relaxation rate βMI of moment of inertia M2 , for
individual cells, [dye] = 16µM .
(b) Relaxation rate β of Itot for different dye concentrations, population average.
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(a) (b)

(c) (d)

Figure G: Fluorescence intensity I of (a) suspended cells and (b) equivalent concentration of
calf thymus DNA (CT) extrapolated from titration dataset.
(c) Fluorescence intensity I of supernatant incubated with 100µg/ml CT. Initial dye concen-
trations incubated with cells are listed in the legend.
(d) Concentration of dye taken up by cells was determined using CT standard.

26



Figure H: Fluorescence intensity, I , of calf thymus DNA (CT) incubated with Hoechst dye at
different relative concentrations.
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Figure I: Hoechst dye fluorescence intensity vs. concentration using calf thymus DNA (CT)
(concentration, 100 µg/ml).

28



(a) (b)

(c) (d)

(e)

Figure J: (a) Comparison of time dependence of free specific DNA species (numerical simula-
tion, blue solid curve) and its analytic approximation (red dashed curve). Simulation parame-
ters: kon = 100, knoff = 1.1, ksoff = 0.033, u0 = 100, c1 = 120, c2 = 1.5, where concentration
dependent parameters are measured in µM units and time dependent parameters are measured
in sec.
(b) Parametric plot of the concentrations {vs(t), vn(t)}, numerical simulations (blue solid curve)
and analytical prediction based on conservation laws for two regimes Eqs. (33) and (34) (red
dashed lines).
Numerical simulation of squared displacement relative to an initial position of a tracer molecule
diffusing in the 3d space: (c) no binding interactions, k+ = 0 (d) k+ > 0. Flat lines correspond
to a period of tracer trajectory while bound to immobile species.
(e) Mean squared displacement averaged over many trajectories and realizations of initial dis-
tribution of interacting species with two different k+ values.
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(a) (b)

(c) (d)

Figure K: (a) Numerical simulation (fixed external concentration uext) of overall dye incorpo-
ration per unit volume for different Biot numbers, uext = 1µM . (b) Moment of inertia M2 as a
function of time, same conditions as in (a).
(c) Numerical simulation of overall dye incorporation per unit volume for different Biot num-
bers, uext = 1µM exp(−3 ·10−4sec−1 t). (d) Moment of inertiaM2 as a function of time, same
conditions as in (c).
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Figure L: Histogram of Itot(T ), where T is the final time point of measurement. Live cells, dye
concentration is 2µM
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(a) (b)

Figure M: Traces of population average intensity, Itot , for different initial dye concentrations
(shown in legend) at the first addition of dye in the double incubation experiment and either (a)
[dye2] = 0.125µM or (b) [dye2] = 1µM dye concentration for the second addition.
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(a) (b)

(c) (d)

Figure N: Statistics (at steady-state) of fluorescence intensity, Itot : (a, b) population mean of
G1 and G2 phases correspondingly for different dye concentrations [dye1] in the first phase of
dye addition. Different curves correspond to concentrations of dye in the second phase of dye
addition.
(c, d) coefficient of variation of G1 and G2 subpopulations, same conditions as above.
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(a) (b)

Figure O: (a, b): Traces of normalized intensity, I∗tot, [dye] = 1µM , for G1 and G2 subpopula-
tions.
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(a)

(b)

Figure P: Experimental data (a) of observed cell fluorescence and extrapolated free dye concen-
tration compared to simulation (b) using parameters: K1

d = 0.1, K2
d = 2 µg/ml, c1 = 1.7, c1 =

34 pg/cell.
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(a) (b)

(c) (d)

Figure Q: Population average Itot time dependences for different doxorubicin concentrations in
fixed cell culture, (a) [dye] = 8µM and (b) [dye] = 0.25µM .
Population average CVp time dependences for different doxorubicin concentrations in fixed cell
culture, same conditions as in (a, b).
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