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1 Geometry and mechanics of self-organised active surfaces

In the following, we derive the hydrodynamic equations for the active fluid surface on axisymmetric surfaces,

using the general covariant equations introduced in the main text [Eqs. (1)–(4), (10), (11)]. The final

equations provide, for a given surface shape and distribution of active tension, a system of partial differential

equations for the instantaneous deformation velocity and the meridional in-plane flow. We also present the

dynamic equation for the stress-regulator (Eq. (13) in the main text) on axisymmetric surfaces, which is

used to evolve the concentration field on the deforming surface.
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1.1 General parameterisation of an embedded surface

Starting from the general surface parameterisation X(s1, s2, t) introduced in the main text, the Gauss-

Weingarten relation [1]

∂iej = −Cijn + Γkijek (S1)

implies for the curvature tensor Cij and Christoffel symbols Γkij

Cij = −n · ∂iej = ej · ∂in (S2)

Γkij = gklel · ∂iej =
1

2
gkl (∂jgil + ∂iglj − ∂lgij) . (S3)

The covariant derivative of a tangent vector field v‖ = viei and a tensor field t = tijei ⊗ ej , where ⊗
denotes the dyadic product in R3, is given by

∇ivj = ej · ∂iv‖ = ∂iv
j + Γjikv

k (S4)

∇itjk = ej · ∂it · ek = ∂it
jk + Γjilt

lk + Γkilt
jl. (S5)

The covariant Levi-Civita tensor is defined by:

ei × ej = εijn. (S6)

1.2 Parameterisation of axisymmetric surfaces

For axisymmetric surfaces, we consider the parameterisation

X(φ, s, t) = r(s, t) ēr + z(s, t)ēz, (S7)

where ēz and ēr are the normalised basis vectors of cylindrical coordinates, φ is the azimuthal angle and s

the arc length parameter. In the following, we determine the explicit form of metric tensor gij , curvature

tensor Cij and Christoffel symbols Γkij using the general definitions introduced above. From here on, we use

the coordinates i ∈ {φ, s} as explicit tensor indices. The basis vectors ei = ∂iX and n = eφ × es/|eφ × es|
read:

eφ = ∂φX = rēφ (S8)

es = ∂sX = ∂sr ēr + ∂sz ēz (S9)

n = ∂sz ēr − ∂sr ēz. (S10)

Using the parameter transformation h = ∂s(u, t)/∂u between the arc length coordinate s and an Eulerian

coordinate u (see Eq. (22) in the main text), the vector eφ is unchanged, and we have eu = hes. The

non-vanishing components of the metric tensor for each parameterisation are therefore given by

gφφ = r(s, t)2 (S11)

gss = 1, (S12)

and

gφφ = r(u, t)2 (S13)

guu := h2. (S14)
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Note that Eq. (S12) defines the arc length parameter s and tensor indices ’s’ can be arbitrarily lifted

and lowered, because the metric tensor is diagonal. Using the tangent angle ψ defined by (∂sr, ∂sz) =

(cosψ, sinψ), Eq. (S2) yields the curvature tensor components

Css = Cuu = ∂sψ(s, t) =
1

h
∂uψ[s(u, t), t] (S15)

Cφφ =
sinψ

r
. (S16)

The Christoffel symbols follow from Eq. (S3) and read:

Γφsφ =
1

2
gφφ∂sgφφ =

cosψ

r

=
1

2h
gφφ∂ugφφ =

1

h
Γφuφ (S17)

Γsφφ = −1

2
gss∂sgφφ = −r cosψ

= −1

2
h2guu

1

h
∂ugφφ = hΓuφφ. (S18)

The only non-zero Levi-Civita tensor component is

εφs = −εsφ = r. (S19)

1.3 Representation of the governing equations on axisymmetric surfaces

Here, we present the explicit form of the hydrodynamic equations for the active fluid surface, as well as

the dynamic equation of the concentration field on axisymmetric surfaces. Note that the final expressions

contain the curvature tensor components Css and Cφφ, as well as Christoffel symbols Γφφs. The time evolution

of these fields during surface deformations is derived separately in Section 2.1.2.

1.3.1 Hydrodynamic equations for the active fluid film on axisymmetric surfaces

The bending moment tensor mH
ij = 2κCkkεij used in this work is purely antisymmetric, such that the normal

moment-balance (Eq. (4), main text) with mi
n = 0 implies that the tension tensor has no antisymmetric

contribution, i.e. εijt
ij = 0. Using εikε

kj = −δji , the in-plane moment balance (Eq. (3) in the main text)

implies:

ti,n = 2κ∂iC
k
k. (S20)

The remaining force balance equations for a surface parameterised by Eq. (S7), read:

∂st
s
s + Γφφs

(
tss − t

φ
φ

)
+ Csst

s
n = −f ext

s (S21)

∂st
s
φ − Γsφφt

φ
s + Cφφt

φ
n = −f ext

φ (S22)

∂st
s
n + Γφφs

(
tsn + tφn

)
− Csstss − C

φ
φt
φ
φ = −f ext

n , (S23)

which can be found using Eqs. (S4) and (S5). Here, we have assumed that all fields are axisymmetric, such

that they only depend on the arc length parameter s. The components of the tension tensor tij = tdij + tHij
read

tss = (ηs + ηb)v
s
s + (ηb − ηs)vφφ + ξf(c) + γ + κCkk

(
Cφφ − C

s
s

)
(S24)

t φφ = (ηs + ηb)v
φ
φ + (ηb − ηs)vss + ξf(c) + γ − κCkk

(
Cφφ − C

s
s

)
(S25)

tsφ = r2tsφ = 2ηsv
s
φ. (S26)
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The components of the symmetrised strain-rate tensor vij (Eq. (8), main text) read:

vss = ∂sv
s + Cssvn (S27)

vφφ = Γφφsv
s + Cφφvn (S28)

vsφ =
r2

2
∂sv

φ. (S29)

In our examples, we have f ext
φ and tφn = 0, such that Eq. (S22) together with Eq. (S29) yields:

∂s
(
r2∂sv

φ
)

+ r cosψ ∂sv
φ = 0. (S30)

This equation is solved by

vφ(s) = A

∫ s

0

1

r3
ds′ + vφ0 , (S31)

with integration constants A and vφ0 . The latter corresponds to rigid-body rotations about the symme-

try axis, which appear because we did not include any external friction forces in our description and we

can simply choose vφ0 = 0. On spherical surfaces, as well as on tubular surfaces with periodic or no-

flux boundary conditions, the form of Eq. (S31) implies A = 0. Under the assumptions made in this

work, Eq. (S22) therefore implies vφ = 0. Using the explicit form of the tension tensor components of

Eqs. (S24) and (S25), the hydrodynamic equations for the active fluid film on axisymmetric surfaces can

be obtained from Eqs. (S21) and (S23) and read:

(ηs + ηb) ∂sv
s
s + (ηb − ηs) ∂svφφ + 2ηsΓ

φ
φs

(
vss − v

φ
φ

)
+ ξ∂sf(c) = 0 (S32)

(ηs + ηb)
(
Cssv

s
s + Cφφv

φ
φ

)
+ (ηb − ηs)

(
Cssv

φ
φ + Cφφv

s
s

)
+ (ξf(c) + γ)Ckk

−κCkk
(
Css − C

φ
φ

)2

− 2κ
(
∂2
sC

k
k + Γφφs∂sC

k
k

)
= p. (S33)

Equations (S32) and (S33) form a closed system of ordinary differential equations, which are – for a given

geometry – linear in the unknown flow fields vn, vs, and in the pressure f ext
n = p.

At the poles of a spherical surface, where Γφφs diverges, Eq. (S32) vanishes identically by symmetry, and

Eq. (S33) yields a non-trivial analytic limit, which is derived in Section 1.3.3. The following identities

are additionally used to avoid the numerical approximation of certain derivatives that appear in those

equations:

∂sC
φ
φ = Γφφs

(
Css − C

φ
φ

)
∂sΓ

φ
φs = −CφφC

s
s − (Γφφs)

2.

This directly follows from the explicit form of these fields given in Eqs. (S16) and (S17).

1.3.2 Dynamic equation for the concentration field

The dynamic equation for the concentration field reads:

∂tc = −∂s (cvs)− Γφsφcvs − cvnC
k
k +D

(
∂2
sc+ Γφsφ∂sc

)
− k (c− c0) . (S34)
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1.3.3 Hydrodynamic equations at the poles of axisymmetric spherical surfaces

In the following, we derive expressions for the hydrodynamic Eqs. (S32), (S33) and (S34) at the poles of

axisymmetric spherical surfaces, where r → 0 and the Christoffel symbol Γφsφ = 1
r cosψ diverges. These

spurious singularities arise due to the axisymmetric surface parameterisation of a spherical surface. The

limits we derive here are used to determine a complete numerical solution of the hydrodynamic balance

equations and the dynamic equation for the concentration field, including the points on the poles of spherical

surfaces.

From the Taylor theorem, it follows that for any function g(s) ∈ C2(R) with g(u) = 0

lim
s→u

g(s)

s− u
=
dg

ds

∣∣∣∣
s=u

. (S35)

Furthermore, globally smooth axisymmetric vector fields must vanish at the poles of a spherical surface.

This includes the tangential flow vs, but also derivatives of scalars, such as the mean curvature H = Ckk/2.

With Eq. (S35), we therefore find the limiting values

Γφsφvs
s→0,L−−−−→ ∂svs (S36)

Γφsφ∂sC
k
k
s→0,L−−−−→ ∂2

sC
k
k (S37)

Γφsφ∂svn
s→0,L−−−−→ ∂2

svn (S38)

at the parametric poles s = {0, L}. Additionally, the principle curvatures must be equal at the poles, which

can be seen by considering Cφφ = 1
r sinψ near the pole s = 0. There, we have ψ(s) = O(s) and therefore,

using Eq. (18) from the main text,

r(s) =

∫ s

0

cosψ(s′)ds′ = s+O(s3). (S39)

Using Eq. (S35), we find from Eq. (S16) that

lim
s→0

Cφφ(s) = lim
s→0

sinψ

s
= ∂sψ|s=0 = Css|s=0. (S40)

Similarly, it can be shown that Cφφ|s=L = ∂sψ|s=L on a spherical surface, such that we indeed

have Cφφ|s=0 = Css|s=0 and Cφφ|s=L = Css|s=L.

Using Eqs. (S36)–(S37), it follows that Eq. (S32) vanishes identically at s = {0, L}, and Eq. (S33) reads:

4ηbC
s
s (∂svs + Cssvn) + 2(ξf(c) + γ)Css − 8κ∂2

sC
s
s = p (S41)

at the poles. This is the final form we use in our numerical scheme to solve the force balance equations at

s = {0, L}.
Using similar arguments, we find for the dynamic equation for the concentration field at the poles of a

spherical surface:

∂tc = 2
(
−∂s (cvs)− cvnCss +D∂2

sc
)
− k (c− c0) . (S42)

2 Dynamic representation of deforming axisymmetric surfaces

Here, we introduce the framework that we have developed to evolve the surface geometry of a deforming

axisymmetry surface. First, we derive a set of dynamic equations for the geometric properties that are

required to represent the surface implicitly, and to formulate covariant differential equations on the surface.

In the second part, we discuss the boundary conditions and additional global constraints that we have

considered in this work.
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2.1 Dynamic equations for the geometry of deforming axisymmetric surfaces

In the following, we provide the derivations of the dynamic equations for the geometric surface properties.

These equations effectively provide a solution for the dynamic equation of the surface d
dtX = vnn, where vn

is determined from the hydrodynamic equations introduced in the previous section. An important element

of this approach is a time-dependent coordinate transformation, which we derive in the first part of this

section. In the second part, we derive the dynamic equations for curvature tensor and Christoffel symbols,

which are required to formulate the hydrodynamic equations Eqs. (S32) and (S33) and the dynamic equation

of the concentration field Eq. (S34) throughout the deformation process.

2.1.1 Time-dependent coordinate transformation

Consider a dynamic shape change of the surface in a Eulerian parameterisation, such that ∂tX = vnn.

Using Eq. (S2), we find:

∂tei = ∂i∂tX

= ∂i (vnn)

= n∂ivn + vnC
j
i ej . (S43)

This implies for the metric tensor

∂tgij = 2ei · ∂tej
= 2Cijvn. (S44)

As explained in the main text, we use in this work a parameter transformation h(u, t) defined by

s(u, t) =

∫ u

0

h(u′, t)du′, (S45)

where u denotes the meridional coordinate of a time-independent Eulerian parameterisation [Eq. (20) in

the main text] and s is the arc length coordinate to which u is mapped. With this definition, Eq. (S44)

can be used to derive

∂th(u, t) = hCssvn, (S46)

which represents a dynamic equation for the parameter transformation h.

2.1.2 Dynamic equations of curvature tensor and Christoffel symbols

In the following, we derive the dynamics equations for geometric surface properties. Note that all fields

on which partial time derivatives act are evaluated at coordinates of the fixed Eulerian parameterisation.

Spatial derivatives with respect to the arc length parameter s are computed using

∂s =
1

h
∂u. (S47)

First, we derive a dynamic equation for the tangent angle ψ. For this, we take the time derivative of both

sides of the identity sinψ = eu · ēz/h, which yields

cosψ∂tψ = ēz ·
(
−eu

∂th

h2
+

1

h
∂teu

)
= ēz · (−esC

s
svn + n∂svn + vnC

s
ses)

= ēz · n ∂svn,
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where we have used Eq. (S43) to evaluate ∂teu. Using ēz · n = − cosψ, we thus obtain

∂tψ = −∂svn. (S48)

Although this derivation is only valid for ψ 6= n+ π/2, n ∈ Z, the same calculation starting with cosψ =

eu · ēr/h shows that Eq. (S48) is indeed valid for all ψ. Using Eqs. (S46) and (S48), we find for the

meridional curvature

∂tC
s
s = ∂t

(
1

h
∂uψ

)
= −∂th

h2
∂uψ + ∂s∂tψ

= −Cssvn∂sψ − ∂2
svn

= −(Css)
2vn −

1

h
∂u

(
1

h
∂uvn

)
. (S49)

Similarly, using Eqs. (S16) with (S53), we find for the azimuthal curvature

∂tC
φ
φ = ∂t

sinψ

r

= − sinψ

r2
∂tr +

cosψ

r
∂tψ

= −
(

sinψ

r

)2

vn −
cosψ

r
∂svn

= −(Cφφ)2vn −
1

h2
Γφφu∂uvn. (S50)

Note that Eqs. (S49) and (S50) are equivalent at the poles of spherical surfaces, which can be seen from

Eq. (S38). Hence, Css = Cφφ at the poles remains true during deformations if Eqs. (S49) and (S50) are

used to evolve the surface curvature.

For the Christoffel symbol Γφφu, we have

∂tΓ
φ
φu = ∂t

(
hΓφφs

)
= vnC

s
sΓ
φ
φu + h

(
sinψ

r
∂svn −

cosψ sinψ

r2
vn

)
= vnC

s
sΓ
φ
φu + Cφφ∂uvn + hvn

(
∂s

sinψ

r
− cosψ

r
∂sψ

)
= ∂u

(
Cφφvn

)
. (S51)

In the second step, we have used Eqs. (S17), (S46), (S53), and (S48). In the last two steps we used

∂sr = cosψ and the explicit components of the curvature tensor from Eqs. (S15) and (S16). Similarly,

starting with Eq. (S18), we find:

∂tΓ
u
φφ = ∂t

(
1

h
Γsφφ

)
= −vnC

s
s

h
Γsφφ −

1

h
(r sinψ∂svn + cosψ sinψ vn)

= −vnC
s
s

h
Γsφφ −

r2

h

[
sinψ

r
∂svn − vn

(
∂s

sinψ

r
− cosψ

r
∂sψ

)]
=
gφφ
h2

(
vn∂uC

φ
φ − C

φ
φ∂uvn

)
. (S52)

This relation is not used in the present work but given here for completeness.
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2.1.3 Surface reconstruction

As explained in the main text, the axisymmetric surface can be reconstructed by integrating the meridional

curvature [Eqs. (17)–(19)]. On spherical surfaces, we integrate the curvature from one surface pole (s =

u = 0) to the other (s|u=L0 = L), where r(t)|u=0 = 0. The value of z(t)|u=0 can be found from integrating

∂tz|u=0 = −vn|u=0. In the following, we show that local constraints at the poles of spherical surfaces are

sufficient to ensure that the endpoint of the resulting integral curve remains on the axial symmetry axis.

To see this, we use Eq. (S44), which implies ∂tgφφ(u, t) = 2gφφC
φ
φvn and thus:

∂tr(u, t) = vn sinψ. (S53)

Here, we have additionally used Eqs. (S13) and (S16). A surface that is smooth at the poles s ∈ {0, L}
obeys ψ|s=0 = 0 and ψ|s=L = π. Equation (S53) therefore implies ∂tr|s=0,L = 0, as long as smoothness of

the surface at the poles is ensured. The latter is in turn guaranteed by closure conditions on axisymmetric

surfaces, which ensure that the deformation field vn is globally smooth [see Section 2.2.1, Eq. (S56)].

Hence, local constraints are sufficient to ensure ∂tr|s=0,L = 0, such that the endpoint of the reconstructed

meridional outline remains on the symmetry axis throughout deformations of the spherical surface.

On periodic tubular surfaces, we use Eqs. (S48) and (S53) to keep track of ψ(t)|u=0 and r(t)|u=0, respec-

tively. Due to the periodicity of the tubular surface, we can ignore shifts of the point X|u=0 in z-direction

and choose for convenience z(t)|u=0 = 0. Altogether, this allows to reconstruct periodic tubular surfaces

using Eqs. (17)–(19) given in the main text.

2.2 Boundary conditions and global constraints for the surface dynamics

Here, we present details on the boundary conditions and global constraints we have used to determine

solutions of the hydrodynamic Eqs. (S32), (S33). Fields on axisymmetric spherical surfaces must have

specific symmetries at the poles that ensure global smoothness. These closure conditions effectively define

boundary conditions for solutions of the hydrodynamic equations, which we discuss in the first part of this

section. In the second part, we derive a condition on the deformation field vn that ensures conservation of

the volume enclosed by the surface during deformations. The corresponding Lagrange multiplier defines

a pressure that we have used as an external force in the numerical solutions. In the last part, we discuss

the translational invariance of the hydrodynamic equations and explain how specific reference frames have

been chosen in this work to determine unique solutions for the flow field v.

2.2.1 Closure conditions on spherical axisymmetric surfaces

On spherical, axially symmetric surfaces, there exist generic constraints at the parametric poles s ∈ {0, L}
that ensure global regularity of the fields and smooth poles throughout the deformation process.

To ensure global smoothness of the field defined on the surface, we require at the poles of an axisymmetric

spherical surface

v‖
∣∣
s=0,L

= 0 (S54)

∂sc|s=0,L = 0. (S55)

Smoothness of the surface shape at the poles requires ψ|s=0 = 0 (ψ|s=L = π). We see from Eq. (S48) that

this is ensured during deformations by the condition

∂svn|s=0,L = 0. (S56)
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For initial conditions with smooth poles, the constraint Eq. (S56) additionally ensures that the integral

representation of a spherical surface is well-defined, which we have discussed in Section 2.1.3.

Equations (S54) and (S56) are formally imposed as boundary conditions when solving the hydrodynamic

Eqs. (S32) and (S33) for the in-plane velocity vs and the deformation velocity vn on a spherical surface.

Eq. (S55) only needs to be fulfilled by the initial condition for c, because on an axisymmetric surface the

dynamic equation for the concentration field Eq. (S34) implies ∂t(∂sc)|s=0,L = 0.

2.2.2 Conservation of the enclosed volume

We have considered the case where the volume enclosed by the surface is conserved throughout the defor-

mation process. Here, we briefly explain how this constraint was implemented into our framework. The

volume enclosed by an axisymmetric surface can be expressed in our parameterisation as

V = π

∫ z(ub)

z(ua)

r2dz = π

∫ ub

ua

r2 sinψ hdu. (S57)

For a deformation velocity vn, volume changes are therefore given by

∂tV = π

∫ s(ub,t)

s(ua,t)

(
2rvn sin2 ψ − r2 cosψ ∂svn + r2vnC

s
s sinψ

)
ds

= 2π

∫ ub

ua

vn
√
gdu− πr2 cosψ vn

∣∣s(ub,t)

s(ua,t)
. (S58)

Here, we have used Eqs. (S15), (S46), (S53), and (S48) and
√
g(u) = rh. Equation (S58) is valid for

spherical surfaces, as well as for open surfaces (r|s=0, r|s=L 6= 0) with vs|s=0,L = 0 and for tubular surfaces

with periodic boundary conditions. On spherical surfaces and on tubular surfaces with periodic boundary

conditions, the cases studied in this work, the boundary term in Eq. (S58) vanishes. We therefore solve

the hydrodynamic Eqs. (S32) and (S33) by additionally imposing∫ ub

ua

vn
√
gdu = 0 (S59)

on the deformation velocity vn. In Eq. (S33), we additionally introduce a homogeneous pressure p = f ext
n as

an external force, which is computed simultaneously with the flow fields vs and vn. Note that the pressure

effectively serves as the Lagrange multiplier for the constraint Eq. (S59) and ensures that ∂tV = 0.

2.2.3 Translational invariance and choice of reference frame

The hydrodynamic equations describing the active fluid surface are translational invariant, such that solu-

tions are only defined up to a constant velocity vector. In the following, we explain how we eliminated this

degeneracy when solving the force balance equations, which requires choosing specific reference frames.

In an axisymmetric parameterisation, only translations along the z-axis with a constant vector v0 = v0ēz

are relevant. In the local basis on the surface such a translation can be expressed as

v0 = v0 (sinψ es − cosψ n) . (S60)

We denote translation for the purpose of this discussion as v = v′−v0, where v′ and c′(s′, t) is an arbitrary

solution of the hydrodynamic Eqs. (S32) and (S33) and the dynamic equation of the concentration field

Eq. (S34). Using v0
s = v0 sinψ and v0

n = −v0 cosψ, one can verify explicitly that the hydrodynamic

equations are unchanged and the dynamic equation of the concentration field is invariant under v′ → v+v0
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Figure S1: Exemplary dynamics of collocation points and the geometric fields required to reconstruct and

iterate the surface shape. (A) Collocation points in physical space are initially homogeneously spaced

(h = 1) and become inhomogeneously distributed during shape changes. (B) Coordinate transformation h

and dimensionless meridional curvature C̃ss = R0C
s
s in the reference space S0. Note the compression

(dilution) of collocation points in (A) in regions with h < 1 (h > 1). (C) In-plane flow field ṽs = vsτ/R0

and deformation velocity ṽn = vnτ/R0 (τ = ηb/γ). The latter is used to determine the temporal changes

of the meridional curvature Css as explained in the main text.

and c′(s′, t) → c(s − v0
st, t). In the following, we briefly explain which reference frame we have chosen in

the different examples shown in the main text and how this fixes v0 in a way that uniquely defines v.

To fix v0 on spherical surfaces, we have chosen in this work the reference frame where v|s=0 = −v|s=L ⇒
vn|s=0 = vn|s=L, which implies v0 = (v′n|s=L − v′n|s=0) /2. This choice ensures that vn = 0 everywhere, if

the geometry of the surfaces shape is stationary.

On periodic tubular surfaces, it is convenient to impose
∫ L

0
vsds = 0 when determining the flow fields

using our numerical approach. This choice implicitly fixes v0 =
∫ L

0
v′sds/L0 and was used for the solutions

shown in Figs. 4 B and C. To determine the in-plane flow field in the reference frame of the stationary

constriction shown in Fig. 4 D, we have used that the surface geometry does not change in the final steady

state. Therefore, the normal flow field must be of the form v′n = −v′0 cosψ. We then chose v0 = v′0, for

which v = v′ − v0 yields a flow field with vn = 0 and the constriction does not move. The corresponding

tangential flow in this reference frame is shown in Fig. 4 D.

3 Details of the numerical approach

In the following, we present a detailed description of the numerical discretisation method we have used to

solve the differential equations introduced above. We present validation results of this implementation and

list the parameters that used to obtain the numerical solutions presented in this work.
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3.1 Numerical discretisation

We discretise Eqs. (S32) and (S33) on the initial arc length domain S|t=0 = S0 = [0, L0] by N equally

spaced collocation points. Each point carries the local differential geometric information of the initial shape,

given by the extrinsic curvature and the Christoffel symbols, as well as other problem-specific quantities,

such as concentration fields. For brevity, we collectively refer to all fields stored on collocation points

u(i) ∈ S0 as {Φ(i)} (see Fig. 1 B, main text). On this grid, we express the derivative operators of the

force balance Eqs. (S32) and (S33) using centred fourth-order finite difference operators [2] and solve the

resulting linear system of equations for the flow field components (vn, v‖) and the internal pressure p using

LU decomposition as implemented in Matlab [3]. The latter follows from conservation of the enclosed

volume, which is imposed using the integral constraint in Eq. (S58) using Simpson integration weights

[2]. Then, we use the dynamic equations for the intrinsic and extrinsic geometry, Eqs. (S46), (S53), and

Eqs. (S49)–(S51), as well as the dynamic equation for the concentration field Eq. (S34) to update the

set {Φ(i)} using explicit Euler time stepping with step size δt. In subsequent time steps, the coordinate

transformation h is used to express all equations in the reference space S0, which allows solving the force

balance equations and evolving the set {Φ(i)} on the same equidistant grid. Figure S1 shows an example of

the typical dynamics of collocation points in the physical space, as well as a time series of the different fields

that are required to reconstruct and iterate the surface shape. The expected error convergence behaviour

O(N−4, δt) is verified in the following section, using a range of numerical tests.

3.2 Grid convergence analysis and simulation code validation

We validate the spatial discretisation of S0 by solving the hydrodynamic Eqs. (S32) and (S33) for vs

and vn on a spheroidal surface using increasing numbers N of collocation points. Figure S2 A shows the

corresponding behaviour of the maximum error norm with respect to the numerical solution computed for

N = 3201 collocation points for the flow-field components vn and vs, confirming fourth-order convergence.

Next, we validate the temporal convergence using a process as shown in Fig. S1, gradually increasing the

number of time steps Nt used to reach a fixed final time point (Fig. S2 B). As expected from using explicit

Euler time stepping, the geometric fields converge with ∼ N−1
t .

Finally, we test the conservation of enclosed volume and total molecule number using a ‘numerical exper-

iment’ as presented in Fig. 2 C of the main text. The volume is determined by integrating the curvature

via Eqs. (17)–(19) and using

V = π

∫ z(L)

z(0)

r2dz. (S61)

This is an important validation of the constraint imposed by Eq. (S58), which enforces volume conservation

using intrinsic fields on the surface, while Eq. (S61) determines the volume using the surface representation

in the embedding space. The total amount of the chemical species is given by

Nc =

∫
Γ

c dA. (S62)

Even though the concentration field c and the surface area are changing in space and time in this test case,

Nc should be constant when there is no degradation k = 0. In this case, only diffusion and advection on the

surface, as well as surface-area changes are modulating the local concentration. This validation therefore

demonstrates that our reparameterisation approach faithfully evolves the metric properties of the surface.

The behaviour of the relative numerical errors for V and Nc over time are depicted in Fig. S2 C.
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Figure S2: Validation of convergence behaviour and conservation properties. (A) Grid convergence of the

spatial discretisation: Numerical solutions fh of Eqs. (S32) and (S33) for single time step on a prolate

spheroid with eccentricity 0.6 and homogeneous surface concentration compared with the high-resolution

solution f for N = 3201 in the maximum error norm || · ||∞. (B) Grid convergence of the temporal

discretisation: Principle curvatures of a passive tubular surface (ξ = 0) after convergence to non-trivial

stationary shape (inset) compared with the solution for Nt = 3.2× 105 in the maximum error norm || · ||∞.

(C) Relative numerical error of the conservation of the enclosed volume and the total amount of the

chemical species: Relaxation of an active, spheroidal surface with initial eccentricity 0.6.

3.3 Parameters used for numerical results

L0/(2πr0) ξ/γ κ/(γl2c) Dτ/l2c kτ

Fig. 2 B – 10 0 0.3 0

Fig. 2 C – 15 0 8 0

Fig. 3 B 0.95 6 0 0.05 1.95

Fig. 3 C 0.82 6 0 0.05 1.95

Fig. 3 D 1.1 6 0.25 0.05 1.95

Fig. S2 A – 5 0 – –

Fig. S2 B 2.5 – 0.15 – –

Fig. S2 C – 2 0 4 0

Table S1: Overview of parameters used for the numerical results. The characteristic length for the sphere

is its radius lc = R0, for the tubular surface the radius of the azimuthal cross-section lc = r0. The

characteristic time-scale is given by τ = ηb/γ. The enclosed volume spherical surfaces was set to V/R3
0 =

4π/3. The Hill-coefficient m in Eq. (12) was in all simulations shown in the main text set to m = 2, such

that f(c0) = c0∂cf(c0) = 1/2. The surface viscosity ratio was in all simulations set to ηs/ηb = 1.

4 Linear stability analysis

In the following, we present the details of the linear stability analysis from which we have determined the

critical contractility parameters α∗s and α∗c given in the main text, as well as the stability diagram for a
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cylinder surface shown in Fig. 3 A.

4.1 Linear stability analysis of a deforming contractile sphere

We linearise the hydrodynamic equations around the stationary state of a sphere with radius R0 at rest

(v = 0) and a homogeneous concentration field c0. The internal pressure is given by ps0 = 2[γ+ξf(c0)]/R0.

We expand perturbations of in-plane flows, shape and concentration as

δv‖ =

∞∑
l=1

l∑
m≥−l

(δv
(1)
lmΨlm + δv

(2)
lmΦlm) (S63)

δR =

∞∑
l=0

l∑
m≥−l

δRlmYlm (S64)

δc =

∞∑
l=0

l∑
m≥−l

δclmYlm. (S65)

Vector spherical harmonics are defined by [4]

Ψlm = R0∇ΓYlm (S66)

Φlm = ēR ×Ψlm, (S67)

where we denote the normalised standard basis of spherical coordinates by {ēR, ēθ, ēφ}. The surface

gradient can be written as

R0∇Γ = ēθ∂θ +
ēφ

sin θ
∂φ. (S68)

Axisymmetry implies m = 0 and corresponds to expansion presented in the main text, where Yl :=

Yl,m=0. However, we note that even if general perturbations are considered the final dispersion relation

is independent of m. Volume conservation implies δR0 = 0. A homogeneous concentration perturbation

with δc0 simply leads to a change of the internal pressure but does not generate flows and is therefore not

relevant for the stability analysis. The modes δRl with l ≥ 1, to linear order, do not contribute to changes

of the enclosed volume. Therefore, there are no first order contributions to perturbations of the pressure

ps0 for l ≥ 1. Furthermore, we have to linear order δvn ≈ δṘ, where the dot denotes the derivative with

respect to time. With this, the linearisation of the force balance equations and the dynamic equation of

the concentration field yields∑
l≥1

(
ηs(1− l)(2 + l)

(
δv

(1)
l Ψl + δv

(2)
l Φl

)
+
[
ηb
(
2δṘl − l(l + 1)δv

(1)
l

)
+R0ξ∂cf(c0)δcl

]
Ψl

)
= 0 (S69)

∑
l≥1

(
2ηb
(
2δṘl − l(l + 1)δv

(1)
l

)
+ 2R0ξ∂cf(c0)δcl +

(
κ

R2
0

l(l + 1) + γ + ξf(c0)

)
(l − 1)(l + 2)δRl

)
Yl = 0 (S70)

∑
l≥1

(
δċl +

c0
R0

(
2δṘl − l(l + 1)δv

(1)
l

)
+
[
R2

0Dl(l + 1) + k
]
δcl

)
Yl = 0. (S71)

From the orthogonality of the scalar and vector spherical harmonics it follows that δv
(2)
l = 0 (l ≥ 2).

As there is no friction with the environment, we also have to exclude full body rotations: δv
(2)
1 = 0. The

l = 1 mode yields a pure translation if δṘ1 = δv
(1)
1 . However, there is also a surface compression associated

with δṘ1 − δv(1)
1 , which tangential and normal force balance relate to the contractility. Together with the

dynamic equation of the concentration field, this yields

δċ1 =

(
−2D

R2
0

− k +
ξ

ηb
c0∂cf(c0)

)
δc1. (S72)
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The prefactor in brackets represents the growth rate λ1 of a perturbation δc1 = δc(0)e
λ1t and the definition

of the critical contractility parameter α∗s (Eq. (26), main text) follows from λ1 = 0. One can verify that the

general Jacobian of this system for l ≥ 2 yields growth-rates λl with < (λl) < λ1, such that the polar mode

l = 1 always becomes unstable first and growth fastest. Note that the bending rigidity κ only contributes

to the instability threshold of modes with l ≥ 2.

4.2 Linear stability analysis of a deforming contractile cylinder

We linearise the hydrodynamic equations around the stationary state of a cylinder surface with radius r0

and length L0 at rest (v = 0) and a homogeneous concentration field c0. The internal pressure is given by

pc0 = (γ + ξf(c0) − κr−2
0 )/r0. It follows from Eq. (S9) that, to first order, es ≈ ēz and hence δvs ≈ δvz.

We expand perturbations of in-plane flows, shape and concentration as

δv‖ = ēz

∞∑
n=−∞

δv(n)
z exp(iknz) (S73)

δr =

∞∑
n=−∞

δr(n) exp(iknz) (S74)

δc =

∞∑
n=−∞

δc(n) exp(iknz), (S75)

where kn = 2πn/L0. Using these expansions in the hydrodynamic equations yields to linear order:

−(ηs + ηb)k
2
nδv

(n)
z + (ηb − ηs)

ikn
r0
δv(n)
n + iknξ∂cf(c0)δc(n) = 0

(S76)

i(ηb − ηs)
kn
r0
δv(n)
z + (ηs + ηb)

1

r2
0

δv(n)
n +

ξ

r0
∂cf(c0)δc(n) +

[
κBc(knr0) +

γ + ξf(c0)

r2
0

(k2
nr

2
0 − 1)

]
δr(n) = 0

(S77)

∂tδc
(n) + c0

(
iknδv

(n)
z +

δv
(n)
n

r0

)
+
(
Dk2

n + k
)
δc(n) = 0,

(S78)

where we have collected contributions from the bending rigidity into

Bc(knr0) = 4
k2
n

r2
0

+
1

r4
0

(2k2
nr

2
0 − 3)

(
k2
nr

2
0 − 1

)
. (S79)

The function Bc(knr0) describes contributions from deformations of a passive tubular surface with bending

rigidity and is equivalent to the results found in Ref [5]. In Eq. (S77), we have also used that shape pertur-

bations δr(n) with |n| ≥ 1 do not change the enclosed volume to linear order, such that no perturbations

of the pressure occur to linear for modes with |n| ≥ 1. Volume conservation additionally implies δr(0) = 0.

Homogeneous perturbations of the concentration field δc(0) do not lead to flows and are therefore not

relevant for the stability analysis of the shape.

Tangential flows δv
(n)
z follow from Eqs. (S76) and (S77) as

iknδv
(n)
z =

ηs − ηb
4ηsηb

[
−κr2

0Bc(knr0) + (γ + ξf(c0))
(
1− k2

nr
2
0

)] δr(n)

r0
− ξc0∂cf(c0)

2ηb

δc(n)

c0
,

14



which is used to eliminate δv
(n)
z . Using δvn ≈ δṙ to first order, we find the linearised, closed dynamical

system in (δr(n), δc(n)) given by

∂tδr
(n)

r0
=
ηs + ηb
4ηsηb

[
−κr2

0Bc(knr0) + (γ + ξf(c0))
(
1− k2

nr
2
0

)] δr(n)

r0
− ξc0∂cf(c0)

2ηb

δc(n)

c0
(S80)

∂tδc
(n)

c0
=

1

2ηb

[
κr2

0Bc(knr0)− (γ + ξf(c0))
(
1− k2

nr
2
0

)] δr(n)

r0
+

(
ξc0∂cf(c0)

ηb
−Dk2

n − k
)
δc(n)

c0
. (S81)

Equations (S80) and (S81) define a Jacobian J(kn) for each mode n by:(
∂tδr

(n)/r0

∂tδc
(n)/c0

)
= J(kn) ·

(
δr(n)/r0

δc(n)/c0

)
. (S82)

The eigenvalues of J(kn) have been determined numerically to construct the stability diagram shown in

Fig. 3 A. For a passive tubular surface (ξ = 0) without bending rigidity (κ = 0) the growth-rate of shape

perturbations is positive for (
1− k2

nr
2
0

)
> 0⇔ L > 2πr0. (S83)

This corresponds to the classical Plateau-Rayleigh instability that is only determined by the geometry of

the cylinder.

In the following, we present a brief analytic characterisation of J near the critical contractility α∗c given

in Eq. (27) (main text) for κ = 0. Note that J(kn) = J(−kn), such that we restrict the following discussion

to kn ≥ 0. For the purpose of this analysis, we introduce a dimensionless wavenumber k̃n := knr0, such

that the Plateau-Rayleigh threshold is k̃n = 1, and a viscosity parameter ν̄ = (ηs + ηb)(4ηs) > 1/4.

The stationary state is stable if and only if Tr(J) < 0 and det(J) > 0 [6]. The condition Tr(J) = 0 defines

the critical wavenumber

k̃cn =

√
αγ − ηbk + ν̄[γ + ξf(c0)]

ηbD/r2
0 + ν̄[γ + ξf(c0)]

, (S84)

and Tr(J) > 0 (Tr(J) < 0) for k̃n < k̃cn (k̃n > k̃cn). The point k̃cn = 1 then defines the critical contractility α∗c
given in Eq. (27) (main text) and shown as black dashed line in Fig. 3 A. Furthermore, α > α∗c (α < α∗c)

implies k̃cn > 1 (k̃cn < 1). Hence, if α > α∗c then there must exist a k̃n > 1 with Tr(J) > 0, such that the

relative length L0/r0 at which unstable cylinders exist, is reduced compared to the length given by the

Plateau-Rayleigh criterion in Eq. (S83). This corresponds to the decrease in the aspect ratio at which the

cylinder becomes unstable when α becomes larger than α∗c .

To characterise this point further, we consider the positive roots of det(J) = 0 and κ = 0 given by:

k̃(1)
n = 1 (S85)

k̃(2)
n =

√
αγ − (ηb + ηs)k

(ηb + ηs)D/r2
0

. (S86)

From this, we see that α < α∗c implies k̃
(2)
n < 1, as well as k̃

(2)
n < k̃cn < 1. From the analysis of the

determinant it follows furthermore that k̃
(2)
n < 1 implies det(J) > 0 for k̃n > 1 and det(J) < 0 for

k̃
(2)
n < k̃n < 1. If α < α∗c , cylinders are therefore stable for k̃n > 1 (Tr(J) < 0, det(J) > 0) and unstable

for k̃n < 1, which amounts to the Plateau-Rayleigh criterion in Eq. (S83).

To conclude, we have demonstrated that, for α < α∗c , active cylindrical surfaces essentially behave like a

passive tube, the stability of which is only affected by the geometric Plateau-Rayleigh criterion. Above the

contractility threshold, α > α∗c , the mechano-chemical self-organisation of the surface starts to interfere

with this behaviour, leading to a reduction in the maximum aspect ratio at which cylindrical surfaces are

stable.
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SI Video Captions

SI Video 1: Spontaneous formation of contractility pattern and surface shape with polar asymme-

try. Red arrows denote the in-plane flow field v‖. Colours represent the concentration

of stress-regulator (see Fig. 2 B for colour code). The characteristic time is defined

as τ = ηb/γ. Parameters: V/R3
0 = 4π/3, ξ/γ = 10, Dτ/R2

0 = 0.3, ηs/ηb = 1,

Hill-coefficient in f(c) (Eq. 12): m = 2.

SI Video 2: Shape relaxation. Red arrows denote the in-plane flow field v‖. Colours represent the

concentration of stress-regulator (see Fig. 2 C for colour code). The characteristic time

is defined as τ = ηb/γ. Parameters: V/R3
0 = 4π/3, ξ/γ = 15, Dτ/R2

0 = 8, ηs/ηb = 1,

Hill-coefficient in f(c) (Eq. 12): m = 2.

SI Video 3: Self-organised constriction of a tubular surface. Red arrows denote the in-plane flow

field v‖. Colours represent the concentration of stress-regulator (see Fig. 3 B for colour

code). The characteristic time is defined as τ = ηb/γ. Parameters: L0/(2πr0) = 0.95,

ξ/γ = 6, Dτ/R2
0 = 0.05, ηs/ηb = 1, Hill-coefficient in f(c) (Eq. 12): m = 2, kτ = 1.95.

SI Video 4: Mechano-chemical shape oscillation of a tubular surface. Red arrows denote the

in-plane flow field v‖. Colours represent the concentration of stress-regulator (see

Fig. 3 C for colour code). The characteristic time is defined as τ = ηb/γ. Parameters:

L0/(2πr0) = 0.82, ξ/γ = 6, Dτ/R2
0 = 0.05, ηs/ηb = 1, Hill-coefficient in f(c) (Eq. 12):

m = 2, kτ = 1.95.

SI Video 5: Spontaneous symmetry breaking and peristaltic motion of a tubular surface with bend-

ing rigidity. Red arrows denote the in-plane flow field v‖. The shape dynamics is

shown in the reference frame where
∫ L

0
vsds = 0. Colours represent the concentration

of stress-regulator (see Fig. 3 B for colour code). The characteristic time is defined

as τ = ηb/γ. Parameters: L0/(2πr0) = 1.1, ξ/γ = 6, Dτ/R2
0 = 0.05, ηs/ηb = 1,

Hill-coefficient in f(c) (Eq. 12): m = 2, kτ = 1.95, κ/(γr2
0) = 0.25.


