

Supplementary Materials: Evaluation of β-Sitosterol Loaded PLGA and PEG-PLA Nanoparticles for Effective Treatment of Breast Cancer: Preparation, Physicochemical Characterization, and Antitumor Activity

Moses Andima, Gabriella Costabile, Lorenz Isert, Albert J. Ndakala, Solomon Derese and Olivia M. Merkel

Figure S1. Time course for calorimetric reaction of β -sitosterol with Liebermann-Burchard reagent.

Figure S2. UV-Vis spectrum for calorimetric reaction of β -sitosterol with Liebermann-Burchard reagent.

Figure S3. Surface morphology of nanoparticles after incubation in PBS and PBS/FBS.

		Intra-Assay Precision					Inter-Assay Precision				
Concentration mg/mL	1	0.25	0.1	0.5	0.05	1	0.25	0.1	0.05	0.0125	
Abaarban aa far threa rung	1.016	0.329	0.136	0.475	0.081	1.025	0.313	0.148	0.081	0.04	
Absorbance for three runs	1.001	0.335	0.139	0.493	0.082	1.028	0.304	0.146	0.082	0.038	
(OD)	0.994	0.333	0.131	0.469	0.083	0.987	0.306	0.143	0.083	0.039	
Mean Abs at 622 nm	1.004	0.332	0.135	0.479	0.082	1.013	0.308	0.146	0.082	0.039	
St.Dev	0.011	0.003	0.004	0.012	0.001	0.023	0.005	0.003	0.001	0.001	
% RSD	1.120	0.919	2.986	2.608	1.220	2.255	1.536	1.728	1.220	2.564	

Table S1 Method precision characterized by intra-assay and inter-assay precision.

For intra-assay precision, samples were run in triplicate at five different concentration levels on the same day. For inter-assay precision samples were run at five different concentration levels on three different days, each in triplicate for each day. Precision is indicated by the %RSD with an acceptance of ± 2 %RSD.

Table S2. Spike recovery for determination of Liebermann-Burchard method for determination of β -Sit.

Spiked Quantity (mg)	Recovered Quantity (mg)	Spike Recovery (%)
0	0	0
0.4	0.3818	95.45
0.8	0.7767	97.0
1.5	1.554	103.60

Spike recovery was determined by standard addition method. Here, to 0.5 mL of stock nanoparticle suspension of β -Sit was added 1 mL of standard solution of β -Sit at three concentration levels; that is 0.4, 0.8 and 1.5 mg/mL. The spiked samples were extracted by shaking with DCM for 30 minutes. Absorbance of the recovered sample was measured using a microplate reader. Amount of β -Sit in the recovered sample was determined from the standard curve.

Recovery was determined using the equation below with acceptance level of ±5%

$$Recovery = \frac{[\beta - \text{Sit in spiked sample}] - [\beta - \text{Sit in unspiked sample}]}{[Spiked sample]} x \ 100$$

Where [] = concentration.

Formulation	Sonication	Formulation -	Physico-Chemical Properties				
Parameter	Amplitude (%)	Code	Z-Average (nm)	PDI	Zeta Potential(mV)		
	20	A1 (DCM)	335.7 ± 134.2	0.28 ± 0.02	-9.84 ± 6023		
	25	A2 (DCM)	260.5 ± 62.81	0.072 ± 0.01	-10.3 ± 6.40		
	30	A3 (DCM)	216.0 ± 96.83	0.138 ± 0.01	-10.6 ± 6084		
Effect of organic	20	A4 (Acetone)	242.8 ± 55.87	0.004 ± 0.01	-13.7 ± 7.97		
	25	A5 (Acetone)	221.9 ± 50.31	0.094 ± 0.02	-10.0 ± 5.54		
solvent	30	A6 (Acetone)	230.0 ± 75.53	0.129 ± 0.03	-10.3 ± 6.40		
	20	A7 (Ethyl acetate)	A7 (Ethyl acetate) 182.0 ± 61.93		-7.97 ± 5.05		
	25	A8 (Ethyl acetate)	173.5 ± 60.97	0.094 ± 0.02	10.1 ± 5.54		
	30	A9 (Ethyl acetate)	197.6 ± 69.28	0.129 ± 0.04	10.3 ± 6.40		
	20	B1 (5 mg/mL)	256.6 ± 103.9	0.183 ± 0.01	-14.3 ± 7.48		
	25	B2 (5 mg/mL)	273.2 ± 90.52	0.254 ± 0.05	-12.7 ± 3.68		
	30	B3 (5 mg/mL)	274.6 ± 121.0	0.143 ± 0.01	-13.7 ± 8.01		
	20	B4 (10 mg/mL)	212.6 ± 13.71	0.146 ± 0.01	-10.55 ± 0.29		
	25	B5 (10 mg/mL)	210.7 ± 5.43	0.116 ± 0.02	-10.75 ± 1.07		
D-1	30	B6 (10 mg/mL)	216.2 ± 5.40	0.156 ± 0.01	-9.33 ± 0.50		
Polymer concentration	20	B7 (15 mg/mL)	211.4 ± 13.27	0.148 ± 0.01	-11.27 ± 0.35		
	25	B8 (15 mg/mL)	205.9 ± 4.81	0.135 ± 0.01	-10.82 ± 0.33		
	30	B9 (15 mg/mL)	206.4 ± 9.29	0.175 ± 0.02	-10.19 ± 0.11		
	20	B10 (20 mg/mL)	194.2 ± 0.21	0.044 ± 0.02	-13.15 ± 3.18		
	25	B11 (20 mg/mL) 202.1 ± 9.83		0.118 ± 0.01	14.00 ± 1.13		
	30	B12 (20 mg/mL)	184.7 ± 0.57	0.067 ± 0.01	14.45 ± 1.48		
PVA concentration	20	C1 (1 %, w/v)	219.6 ± 16.54	0.06 ± 0.01	-14.6 ± 0.49		
(% w/v)	20	C2 (2 % w/v)	175.5 ± 46.84	0.042 ± 0.01	-15.0 ± 6.38		
Aqueous/Org phase	20	D1 (2:1, vol:vol)	321.0 ± 69.85	0.093 ± 0.04	-8.31 ± 6.81		
ratio	20	D2 (5:1, vol:vol)	219.5 ± 51.70	0.064 ± 0.01	-14.3 ± 7.98		
	20	E1 (4 hours)	233.5 ± 3.32	0.045 ± 0.01	-12.8 ± 6.42		
	25	E2 (4 hours)	217.8 ± 0.99	0.107 ± 0.01	-14.3 ± 7.48		
Duration of solvent	30	E3 (4 hours)	207.2 ± 5.37	0.135 ± 0.02	-13.7 ± 8.01		
evaporation (Hours)	20	E4 (15 hours)	178.8 ± 4.60	0.137 ± 0.01	-11.5 ± 5.00		
	25	E5 (15 hours)	175.2 ± 2.33	0.042 ± 0.01	-12.7 ± 3.68		
	30	E6 (15 hours)	178.1 ± 2.12	0.127 ± 0.01	-12.5 ± 3.11		

Table S3 Physicochemical properties of blank nanoparticles.

The effect of different nanoparticle formulation parameters were investigated one at a time by keeping other factors constant and varying one factor along with sonication amplitude. Results are presented as Mean \pm SD, n = 3.

Table	S4.	Physicochemical	parameters	of	stigmasterol-loaded	PLGA	and	PEG-PLA
nanop	artic	les.						

		Physicochemical Parameters								
	Feeding Drug Concentration (mg/mL)	D (1 1		Zeta	Loading Efficiency (%)					
Polymer Type		(nm)	PDI	Potential (mV)	Method A	Method B				
	1	200.1 ± 87.20	0.134 ± 0.01	-8.61 ± 5.04	34.05 ± 0.44	83.17 ± 1.17				
	2	206.0 ± 68.70	0.111 ± 0.02	-8.17 ± 6.27	51.95 ± 8.70	77.38 ± 3.68				
PLGA	4	218.7 ± 83.40	0.114 ± 0.02	-8.98 ± 4.72	72.21 ± 3.83	95.95 ± 0.01				
	8	231.8 ± 89.51	0.107 ± 0.02	-8.39 ± 4.96	ND	ND				
	1	240.3 ± 102.2	0.182 ± 0.01	-24.6 ± 4.48	64.84 ± 1.46	81.91 ± 2.94				
PEG-PLA (R25)	2	245.3 ± 84.85	0.09 ± 0.01	-19.6 ± 6.48	51.74 ± 0.07	83.99 ±				
	4	245.0 ± 77.63	0.075 ± 0.01	-23.7 ± 9.48	57.90 ± 0.024	82.07 ± 4.95				
	8	266.2 ± 72.89	0.058 ± 0.01	-20.6 ± 8.79	ND	ND				

Effect of varying feeding drug concentration on particle size, size distribution, zeta potential and drug loading efficiency were investigated. Concentration of polymer used was fixed at 20 mg/mL, Ethyl acetate was used for PLGA nanoparticle formulation while acetone was used for PEG–PLA nanoparticle formulations. Sonication power amplitude was 30 %, organic to aqueous phase ratio being 5:1, duration of solvent evaporation 15 hours.