
Supplementary Data 
 

Supplementary Methods S1 (Extending the number of complete 
genome sequences for E. faecium) 

Illumina sequencing 
 
Bacterial isolates were grown overnight (O/N) at 37°C on blood agar plates. Single colonies were 
picked up and grown O/N at 37°C with Brain Heart Infusion (BHI). Bacterial cell pellets were 
pretreated and incubated 1-4 hours with 180 µL of enzymatic lysis buffer. Subsequently, 0.75 mg 
proteinase K were added and incubated at 56°C until lysis completion. 20 µL of RNAse A (10mg/mL) 
were added and incubated for 5’ at room-temperature (RT). Total DNA purification was performed 
using and following the protocol from NucleoSpin 96 Tissue Core Kit (Machery-Nagel), vacuum 
processing. DNA concentration was measured using Quant-it Picogreen (Thermo Fisher Scientific). 
Library preparation was carried out following Nextera DNA Library Prep Reference Guide. Finally, 
Nextera libraries were sequenced using Illumina NextSeq at USEQ, Utrecht, The Netherlands 
(http://www.useq.nl).  
 

WGS short-read assemblies  
 
Illumina reads were trimmed using nesoni clip, part of the nesoni toolkit (version 0.132), with the 
following settings: ‘--adaptor-clip yes --match 10 --max-errors 1 --clip-ambiguous yes --quality 10 --
length 90 --trim-start 0 --trim-end 0 --gzip no --out-separate yes pairs:’. Trimmed reads were then 
assembled into scaffolds using SPAdes (version 3.5.0) with default settings. Scaffolds with an average 
coverage lower than 10 and/or a length smaller than 500bp were removed from the assemblies.  
 

Isolate selection for ONT sequencing   
 
A fraction (n=60) of the total number of isolates (n=1,644) was selected for long-read sequencing 
with ONT.  The plasmid content of the isolates in silico were estimated using PlasmidSPAdes 
(version 3.8.2) [1]. Prokka (version 1.12) was used to annotate the putative plasmid contigs using the 
Enterococcus database included in Prokka [2]. Orthologous clustered genes were estimated using 
Roary (version 3.8), splitting paralogues and defining a threshold of 95% amino-acid level similarity 
to cluster protein sequences [3]. This multi-dimensionality matrix was then reduced and visualized to 
two dimensions using the t-Distributed Stochastic Neighbor Embedding (t-SNE) (theta = 0.5, 
iterations = 1000, dims = 2) using the implementation provided in the R (version 3.3.3) package Rtsne 
(version 0.13) [4, 5]. k-means (iter.max = 1000) provided in the R package stats was used to allocate 
50 centroids into the dimensionality reduced distribution given by tSNE. Euclidean distance of each 
isolate was calculated to extract the 50 isolates closest to each centroid.  
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To cover all plasmid replication genes not present in the first selection, 12 additional isolates were 
selected for ONT sequencing. This second selection was based on a reciprocal blast of the predicted 
plasmid orthologous genes against 76 previously described plasmid replication amino-acid sequences 
from the genus Enterococcus [6]. Reciprocal blast allowed to identify miss-annotated genes 
corresponding to plasmid replication sequences. Isolates bearing plasmid replication genes not present 
in the first selection were sorted and selected based on highest number of orthologous genes.  
 

ONT sequencing 
 
E. faecium selected isolates were grown O/N at  37°C on blood agar plates, then single colonies were 
picked up and grown with BHI at 37°C. Genomic DNA was extracted using the Wizard Genomic 
DNA purification kit (Promega) following manufacturer’s instructions. Isolated DNA was sheared 
(4000 rpm, 2x120 seconds) using G-tubes (Covaris). Library preparation was performed using 
Ligation Sequencing Kit 1D (SQK-LSK108) with the Native Barcoding Kit 1D (EXP-NBD103). 
Genomic libraries were loaded onto R9.4 (FLO-MIN106) flowcells using the MinION device (Mk2). 
Libraries were basecalled using Metrichor workflows (Run 1 ,2, 3), Albacore 1.01 (Run 4, 5) and 
Albacore 1.1.0 (Run 6). ONT Sequencing and basecalling were conducted at USEQ, Utrecht, The 
Netherlands (http://www.useq.nl) 
 

ONT reads and hybrid assembly  
 
Fastq files were obtained from base-called data using Poretools (version 0.6.0) except for Run6 in 
which fastq files were retrieved using Albacore (version 1.1.0). Distribution of read length and total 
number of reads were calculated using Bioawk (version 20110810, https://github.com/lh3/bioawk). 
We used Porechop (version 0.2.1, https://github.com/rrwick/Porechop) to trim reads and filter out 
chimeras from different bins specifying  the flag “--discard_middle”. Illumina reads were trimmed 
using seqtk (version 1.2-r94, https://github.com/lh3/seqtk) with the command “--trimfq” prior to 
assembly. 
 
Hybrid assembly was performed using Unicycler (version 0.4.1), specifying “bold” mode [7]. Briefly, 
Unicycler uses SPAdes (version 3.6.2) to create different assembly graphs based on different k-mer 
size only considering Illumina reads [8]. The best assembly graph was selected by Unicycler based on 
number of dead-ends and contiguity. Next, all ONT reads were used to scaffold and solve the 
assembly graph. Additionally, we specified the same file as described above (Isolate selection for 
ONT sequencing) containing 76 known plasmid replication sequences to rotate and change the 0-
coordinate of replicons resulting from hybrid assembly [6]. Finally, Unicycler conducted several 
rounds of Pilon (version 1.22) to polish genome sequences using Illumina reads [9].  
 

Categorization of Unicycler contigs  
 
Unicycler contigs were labeled either as chromosome or plasmids based on size and circularity. 
Contigs were categorized as chromosome if they were larger than 350 kbp, regardless of circularity. 
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However, only contigs were categorized as plasmids if they were circular and smaller than 350 kbp. 
Putative plasmids smaller than 350 kbp and lacking circularization signatures were not categorized. 
Draft annotation (Prokka - version 1.12) of plasmid sequences allowed to identify and discard four 
putative complete phage sequences present as circular contigs.  
 

Supplementary Methods S2 (Building a machine-learning model) 
For each bacterial species, we tuned and compared five different supervised algorithms provided in 
mlr R package (version 2.11): logistic regression, Bayesian classifier, decision trees, random forest 
(RF) and support-vector machine (SVM) [10]. We defined a two-class classification problem using 
the category ‘plasmid’ as positive-class. To train and test the resulting classifiers we considered 
pentamer frequencies (n=1024) which were calculated using oligonucleotideFrequency function 
available in R package biostrings (version 2.42.1). Mlr package was used to split SPAdes labeled 
contigs into training (80%) and test set (20%), preserving the frequencies of each class in both sets 
(Supplementary Table S4).  
 
 
 
Decision trees, random forest and support-vector machines hyperparameters were optimized using 
random search in a predefined search space (Supplementary Table S5). We performed 10-fold cross-
validation to assess the quality of hyperparameters combination, using error rate as performance 
measure. For each object, posterior probabilities were generated and the class with a highest posterior 
probability was assigned.  
  

Supplementary Methods S3  
In this study, we used Illumina NextSeq/MiSeq data for 1,644 E. faecium isolates that are available 
under the ENA project PRJEB28495. A fraction (n = 62) of these 1,644 E. faecium isolates was 
completed using ONT MinION reads which are publicly available under the figshare projects: 
10.6084/m9.figshare.7046804 ; 10.6084/m9.figshare.7047686 
 
From these 62 ONT isolates, 5 were not used to label short-read contigs to train and test mlplasmids 
models. These 5 isolates (E2079, E2364, E4457, E7591, E8172 and E9101) were used to benchmark 
E. faecium mlplasmids models against other plasmid tools. A complete overview of the different 
datasets used in this study is available at Supplementary Table S6.  
 
 
 

Supplementary Results S1 

Comparison of mlplasmids against other plasmid prediction tools  

Only with the purpose of comparing mlplasmids and plasflow prediction, we created an artificial and 
third category for mlplasmids named ‘unclassified’ in which we included all contigs first assigned as 
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plasmid- or chromosome-derived but with a posterior probability lower than 0.7. We only defined a 
mlplasmids ‘unclassified’ category for this particular analysis, since mlplasmids prediction only 
consists of two classes: plasmid or chromosome, and users can decide whether filter out predicted 
contigs based on their associated posterior probabilities.  

For the three single species datasets, the frequency of this category was lower for mlplasmids (E. 
faecium = 0.03 ; K. pneumoniae = 0.10 ; E. coli = 0.05)  compared to PlasFlow (E. faecium = 0.16; K. 
pneumoniae = 0.17 ; E. coli = 0.21) (Fig. S6). These results showed that most of predicted contigs had 
an associated high posterior probability of belonging to either plasmid- or chromosome-class with 
mlplasmids compared to PlasFlow. To show the potential of mlplasmids predicting unclassified 
contigs from PlasFlow, we considered unclassified contigs by plasflow and observed the posterior 
probabilities given by mlplasmids. For E. faecium and K. pneumoniae datasets, we observed that 
unclassified contigs from PlasFlow derived from the chromosome-class and plasmid-class were 
mostly correctly predicted by mlplasmids (Fig. S7a and S7b). For E. coli, unclassified contigs from 
the plasmid-class showed a non-uniform distribution whereas contigs from the chromosome-class 
were in general correctly predicted (Fig. S7c). 

Supplementary Results S2 

Applicability for predicting sequences derived from incomplete long-read assemblies 
 
For all bacterial species, mlplasmids did not recover any false positive sequences (Specificity = 1). 
For E. coli, only a single plasmid sequence (NC_022662.1) was wrongly predicted as chromosome-
derived but with a low posterior probability associated to that class (0.53). In the case of K. 
pneumoniae, mlplasmids misclassified a plasmid sequence with a length of 26.45 kbp 
(NZ_CP015133.1) from K. pneumoniae strain KPN555. For E. faecium two sequences were 
misclassified as chromosomal (NZ_LT598665.1 and NZ_CP019991.1) and the last sequence 
(NZ_CP019991.1) could correspond to a phage since its NCBI annotation showed two phage-related 
genes. This demonstrates the flexibility of mlplasmids to predict sequences with different lengths 
compared to average contig length used to train and test resulting classifiers and discarded 
misclassifications due to a correlation between pentamer frequencies and contig length. This may 
facilitate the classification of contigs generated from incomplete hybrid or long-read assemblies as 
exemplified for isolate E. faecium E7070. This isolate was selected for ONT sequencing and after 
hybrid assembly, 16 contigs were reported. Contigs predicted as plasmid by mlplasmids (n = 6) 
contained circularization signatures whereas the rest of the contigs (n = 10) were predicted as 
chromosome-derived (Fig. S9). This facilitated the design of appropriate PCR reactions to complete 
the genome sequence for E7070.  
 
 
 
 
 
 
 
 
 



Supplementary Tables 
 
 
Supplementary Table S4. Description of the training and test sets used for each bacterial species. For each 
dataset (training or test), the number of objects (SPAdes contigs) and number of features (5-mer combinations) 
are indicated.  

Bacterial 
species 

Set Number of 
objects 

Number of 
features 

Prevalence 
plasmid-class 

Prevalence 
chromosome-
class 

E. faecium Training set 8336 1024  0.33 0.67 

E. faecium Test set 2085 1024 0.34 0.66 

K. pneumoniae Training set 10051 1024 0.38 
 

0.62 

K. pneumoniae Test set 2513 
 

1024 0.37 0.67 

E. coli Training set 10061 1024 0.12 0.88 

E. coli  Test set 2651 1024 0.14 0.86 

 
 
 
Supplementary Table S5. Hyperparameters optimized for decision trees, random forest, and support vector 
machine.  

Classifier Hyperparameter Search space (min-max value) 

Decision trees minsplit 10/50 

Decision trees minbucket 5/50 

Decision trees cp 0.001/0.2 

Random Forest ntree 50/1000 

Random Forest mtry 3/10 

Random Forest nodesize 10/50 

Support-vector machine C (-10)/10  

Support-vector machine sigma (-10)/10 

 
 
 
 
 
 
 
 



 
Supplementary Table S6.Sequencing/Assembly data used in this study.  

Bacterial 
species 

Analysis Dataset Availability 

E. faecium Labeling short-read contigs 
as chromosome- or plasmid- 
derived  

Newly generated E. 
faecium genomes (n = 
55)  

Illumina NextSeq/Miseq reads: 
ENA Project : PRJEB28495 
 
ONT MinION reads:  
figshare projects: 
10.6084/m9.figshare.704680410
.6084/m9.figshare.7047686 

E. faecium Benchmarking against other 
plasmid tools   

Newly generated E. 
faecium genomes (n = 
7)  

Illumina NextSeq/Miseq reads; 
ENA Project : PRJEB28495 
 
ONT MinION reads; 
figshare projects: 
10.6084/m9.figshare.7046804 
10.6084/m9.figshare.7047686 

E. faecium Prediction of the 
plasmidome content 

Newly generated 
1,644 E. faecium 
genomes 

Illumina NextSeq/Miseq reads; 
ENA Project : PRJEB28495 

E. faecium Validating mlplasmids 
against complete genome 
sequences 

Suppl. Table S1 Publicly available NCBI 
genomes 

E. faecium Predicting the location of 
AMR genes 

Suppl. Table S3 Publicly available NCBI 
genomes 

K. pneumoniae 
and E. coli 

Labeling short-read contigs 
as chromosome- or plasmid- 
derived  

Suppl. Table S1 Publicly available NCBI 
genomes 

K. pneumoniae 
and E. coli 

Benchmarking against other 
plasmid tools   

Suppl. Table S2 Publicly available NCBI 
genomes 

K. pneumoniae 
and E. coli  

Predicting the location of 
AMR genes 

Suppl. Table S3 Publicly available NCBI 
genomes 

 
 
 
Supplementary Table S7. SPAdes assembly statistics using Illumina MiSeq/NextSeq.   

Technology Number of 
isolates 

Mean 
Coverage  

Mean N50 Mean contig 
length 

Median 
contig length 

Average 
Number of 
contigs 

Illumina 
MiSeq 

63 98 X 54616 bp 21531 bp  6898 bp 169.1  

Illumina 
NextSeq 

 1581 113 X 52256 bp 17989 bp 5356 bp  176.3 



 

Supplementary Figures 
 

 
Figure S1. Ward hierarchical clustering of computed pairwise mash distances (k = 21 ; s = 1,000) from E. 
faecium isolates. Based on dendrogram branch lengths, we defined three clusters (black, blue and grey) and 
visualized mash distances using heatmap based on their genome content similarity.  At the bottom y-axis, we 
coloured in red E. faecium isolates (n = 60) that were selected and completed using ONT sequencing and 
Illumina sequencing. Rest of the isolates corresponded to publicly available NCBI complete genomes from E. 
faecium (n = 24).     



 
Figure S2. Ward hierarchical clustering of computed pairwise mash distances (k = 21 ; s = 1,000) from K. 
pneumoniae isolates retrieved from Assembly Entrez NCBI database (n = 156). Based on dendrogram 
branch lengths, we defined three clusters of isolates (blue, grey and black) and visualized mash distances using 
heatmap to group isolates based on their genome content similarity.  
 



 
Figure S3. Ward hierarchical clustering of computed pairwise mash distances (k = 21 ; s = 1,000) from E. 
coli isolates retrieved from Assembly Entrez NCBI database (n = 168). Based on dendrogram branch 
lengths, we defined three clusters of isolates (grey, black and blue) and visualized mash distances using heatmap 
to group isolates based on their genome content similarity.  



 
Figure S4. t-sne clustering of all chromosome and plasmid sequences from Assembly Entrez NCBI 
database corresponding to E. coli, K. pneumoniae and E. faecium based on pentamer frequencies.  Each 
point in the graph corresponds to a different type replicon: E. coli chromosome (red), E. coli plasmid (yellow), 
K. pneumoniae chromosome (dark blue), K. pneumoniae plasmid (pink), E. faecium chromosome (green) and E. 
faecium plasmid (light blue).  
 



 
Figure S5. Distribution of correct- and miss- classified short-reads contigs for: Logistic Model, Bayesian 
Classifier (Naive Bayes), Decision trees, Random Forest, and Support-Vector Machine (SVM). Except for the 
Bayesian classifier, misclassification most notably occured in contigs with  
 



 
 
Figure S6. Categorizing the prediction of mlplasmids and plasflow for E. faecium (a), K. pneumoniae (b) 
and E. coli (c) contigs belonging to our validation sets. We used a minimum posterior probability of 0.7 to 
assign a contig either to the chromosome- or plasmid-class and with a minimum length of 1,000 bp. Rest of the 
contigs were included in the category ‘unclassified’.  



 
Figure S7. Unraveling the origin of contigs unclassified by plasflow using mlplasmids. E. faecium contigs 
(a), K. pneumoniae (b) and E. coli (c) which were predicted as ‘unclassified’ by plasflow were interrogated 
using mlplasmids. Each predicted contig was grouped into chromosome- or and plasmid-derived (x-axis), 
coloured based on prediction evaluation and associated probability plasmid-class (y-axis) represented.  
 
 
 



 
Figure S8. Estimating mlplasmids potential to predict plasmid sequences transferred by HGT events. We 
used all the three species models available in mlplasmids to predict contigs belonging to E. faecium (a), K. 
pneumoniae (b) and E. coli (c) validation sets. Each plasmid-derived contig was coloured as false-negative 
(orange) or true-positive (green) based on evaluation of mlplasmids prediction.  



 
Figure S9. mlplasmids applicability to predict contigs derived from incomplete hybrid or long-read 
assemblies. Bandage visualization of the hybrid assembly obtained for the E. faecium isolate E7070. For this 
isolate, hybrid assembly using Unicycler did not result in a complete assembly (chromosome and plasmids in 
single and circular components). Resulting contigs were labeled based on mlplasmids prediction.  
 
 
 



 
Figure S10. Enterococcus faecium resistome. Draft genomes available in NCBI Genomes FTP ( n = 369) were 
downloaded and screened using Abricate and ResFinder for the presence of antibiotic resistance genes. Each 
contig containing a resistance gene was predicted with mlplasmids to predict plasmid- or chromosome-origin. 
For visualization purposes, only antibiotic resistance genes present more than five times are shown.  
 
 



 
Figure S11. Highlighted genes for Klebsiella pneumoniae (panel A) and Escherichia coli (panel B).  



 
 
Figure S12. Escherichia coli resistome. Draft genomes available in NCBI Genomes FTP (n = 5,234) were 
downloaded and screened using Abricate and ResFinder for the presence of antibiotic resistance genes. Each 
contig containing a resistance gene was predicted with mlplasmids to predict plasmid- or chromosome-origin. 
For visualization purposes, only antibiotic resistance genes present more than five times are shown.  
 
 
 
 
 
 
 
 



 
 
Figure S13. Predicting the plasmidome content of E. faecium isolates (n = 1,644). Posterior probabilities of 
short-read contigs (n= 289,369) of belonging to chromosome- or plasmid-class using our optimized mlplasmids 
E. faecium model for our collection of 1,644 Illumina sequenced E. faecium isolates.  
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