Online Data Supplement

Culture-independent Analysis of Pediatric Broncho-alveolar Lavage (BAL) Specimens

Philip Zachariah MD MS, Chanelle Ryan BA, Sruti Nadimpalli MD MPH, Gina Coscia MD, Michelle Kolb, Hannah Smith, Marc Foca MD, Lisa Saiman MD MPH, Paul J. Planet MD PhD

Supplementary Table

Table S1 Long-form of Table 4 with taxa expanded to show each OTU. All OTUs included in the top 5

OTUs are listed, organized by genus. Some genera, e.g. Stenotrophomonas, had multiple different

OTUs with the same designation, with species or strain not identified. These had different OTU

numbers so it is assumed that they are different species or strains.

* The genus [Prevotella] belongs to the family Paraprevotellaceae.

+ 21 different OTUs, detected in 61 samples, were not identified to genus level.

оти	Identified by routine culture				Not identified by routine culture			
	n samples			Maan	n samples			Maan
	CF	IC	nIC	wear	CF	IC	nIC	wean
Staphylococcus sp.	18	2	1	2127	4	14	16	1004
Staphylococcus sciuri	-	-	-	-	3	1	2	38
Streptococcus sp.	-	3	1	653	12	4	13	398
Streptococcus sp.	-	2	-	14	-	-	-	-
Streptococcus agalactiae	-	-	-	-	-	-	1	480
Streptococcus anginosus	-	-	-	-	1	-	-	91
Streptococcus sp.	-	-	-	-	-	-	1	1
Haemophilus sp.	1	1	4	2531	2	4	9	997
Stenotrophomonas sp.	11	-	1	2815	3	1	2	205
Stenotrophomonas sp.	4	-	-	499	2	-	1	81
Stenotrophomonas sp.	6	-	-	39	-	-	-	-
Stenotrophomonas sp	1	-	-	6	-	-	-	-
Escherichia coli	-	1	-	892	5	6	7	213
Prevotella melaninogenca					4	2	1	485
Prevotella melaninogenica					2	-	1	90

Prevotella nanceiensis	l				1	2	-	143
Prevotella sp.					1	_	1	127
Prevotella sp.					-	1	-	422
[Prevotella] sp. *					-	-	3	600
[Prevotella] sp. *					1	-	-	21
Neisseria subflava					2	2	7	581
Neisseria cinerea					-	-	1	502
Actinobacillus parahaemolyticus					2	3	7	490
Veillonella dispar					3	3	5	132
Veillonella dispar					1	-	-	190
Pseudomonas sp.	4	-	-	1695	2	1	2	772
Enterococcus sp.					2	1	5	261
Methylobacterium sp.					2	5	1	240
Fusobacterium sp.					1	3	2	505
Moraxella sp.					1	2	3	334
Brevibacillus sp.					1	4	1	138
Sphingomonas sp.					2	4	_	111
Acinetobacter rhizosphaerae					_	2	1	1286
, Acinetobacter sp.					1	-	1	70
Delftia sp.	-	_	1	851	1	1	2	775
Corynebacterium sp.					_	2	1	974
Corynebacterium sp.					1	-	-	1
Corynebacterium sp.					-	1	-	1
Rothia mucilaginosa					4	-	1	89
Granulicatella sp.					2	-	2	731
Capnocytophaga ochracea					-	1	1	339
Capnocytophaga sp.					-	-	2	148
Achromobacter sp.	1	-	1	2049	-	-	1	1275
Parvimonas sp.					1	2	-	636
Parvimonas sp.					1	-	-	303
Pantoea agglomerans					-	-	2	1962
Legionella sp.					1	1	-	403
Porphyromonas endodontalis					-	-	1	560
Porphyromonas sp.					1	-	-	63
Campylobacter sp.					-	1	1	293
Aggregatibacter sp.					-	1	1	261
WAL_1855D					2	-	-	219
Meiothermus sp.					-	2	-	129
Leptotrichia sp.					-	-	1	127
Leptotrichia sp.					1	-	-	1
Proteus sp.	1	-	-	2338	-	-	1	38
Nocardia sp.	-	1	-	936	-	-	-	-

Nocardia sp.	1	-	-	22
Chryseobacterium sp.	-	-	1	2126
Bacteroides sp.	-	-	1	1163
Abiotrophia sp.	-	-	1	397
Mycoplasma sp.	-	-	1	365
Dialister sp.	-	-	1	232
Lautropia sp.	-	_	1	152
Jeotgalicoccus sp.	-	1	-	93
Janthinobacterium sp.	-	1	-	88
Sporosarcina sp.	-	-	1	75
Paracoccus sp.	-	1	-	63
Geobacillus sp.	-	1	-	52
Bacillus endophyticus	-	-	1	46
Cloacibacterium sp.	1	-	-	26
Enterobacter sp.	-	-	1	14
Serratia marcescens	-	1	-	7
Sphingobium sp.	1	-	-	1
Devosia sp.	1	-	-	1
Bradyrhizobium sp.	1	-	-	1
Finegoldia sp.	1	_	-	1
unidentified †	20	21	20	331

Supplementary Figure Legends

Figure S1. (A) Genus abundance, by OTU read count, in each diagnostic group. Following multivariate analysis, relative abundance of *Corynebacterium* and *Escherichia* are significantly lower in the CF group compared to the nIC group (p=0.03 and 0.001,respectively). **(B)** Genus abundance separated by use of treatment antibiotics. Following multivariate analysis, relative abundance of the genera shown are significantly lower (p<0.05) in the samples exposed to treatment antibiotics within 7 days of sampling.

Figure S2. (A) Pearson correlation analysis of correlation of OTU abundance with prevalence. In all diagnosis groups, abundance is positively correlated with prevalence, with significant Pearson correlation coefficients with r values of 0.55-0.62 (p<0.0001 in all diagnoses). (B) Defining core taxa: 30% and 50% prevalence are marked with dashed lines. The 2.5% and 97.5% confidence limits of a chi-squared distribution are marked. OTUs falling outside of these limits are non-randomly dispersed. Dots representing non-randomly dispersed OTUs present in ≥30% but <50% of samples are solid grey, and open circles represent OTUs present in ≥50% of samples. Black dots are not included in any core.

Figure S1. (A) Genus abundance, by OTU read count, in each diagnostic group. Following multivariate analysis, relative abundance of Corynebacterium and Escherichia are significantly lower in the CF group compared to the nIC group (p=0.03 and 0.001,respectively). (B) Genus abundance separated by use of treatment antibiotics. Following multivariate analysis, relative abundance of the genera shown are

significantly lower (p<0.05) in the samples exposed to treatment antibiotics within 7 days of sampling.

155x169mm (300 x 300 DPI)

Figure S2. (A) Pearson correlation analysis of correlation of OTU abundance with prevalence. In all diagnosis groups, abundance is positively correlated with prevalence, with significant Pearson correlation coefficients with r values of 0.55-0.62 (p<0.0001 in all diagnoses). (B) Defining core taxa: 30% and 50% prevalence are marked with dashed lines. The 2.5% and 97.5% confidence limits of a chi-squared distribution are marked. OTUs falling outside of these limits are non-randomly dispersed. Dots representing non-randomly dispersed OTUs present in ≥30% but <50% of samples are solid grey, and open circles represent OTUs present in ≥50% of samples. Black dots are not included in any core.</p>

103x48mm (300 x 300 DPI)