Supplementary Figure 1: (A) Bioluminescene recording from lung fibroblasts cultured from Col6a1-Bmal1^{-/-} and wildtype animals on a PER2::luc background. (B) QPCR analysis of *Col6a1* and *Bmal1* expression in Peyer's patches isolated from wildtype (n=5) and Col6a1-Bmal1^{-/-} (n=3) animals.

Supplementary Figure 2: (A) Hind paw thickness (mm) plotted against animal weight (g) measured in female (top) and male (bottom) Col6a1-Bmal1^{-/-} and WT mice (pooled data shown in Figure 2a). (B) X-rays of hind limbs from Col6a1-Bmal1^{-/-} mice and WT littermates age 3 and 6 months, representative of n=3 animals/genotype. Arrow indicates location of a calcaneal spur. (C) X-ray images of the tails of Col6a1-Bmal1^{-/-} mice and WT littermates age 3, 6 and 9 months, arrows indicate areas of calcification within the intervertebral disks. (D) Pixel intensity in a defined region of interest encompassing the intervertebral disk space was guantified in 9 month old mice, n=3/genotype.

Supplementary Figure 3: (A) Comparison of paw thickness in male wildtype (Bmal1^{+/+}, n=9) and KO (*Bmal1^{-/-}*, n=5) mice. Paw thickness (mm) and weights (g) are plotted against one another. (B) X-rays of hind limbs from male *Bmal1^{-/-}* and wildtype littermates, age 4-5 months. A spur protruding from the calcaneum of the *Bmal1^{-/-}* is marked by an arrow, representative of n=3-4 animals/genotype. (C) Quantification of pixel intensity from X-ray images in a region of interest superior to the calcaneus, n=6-8 limbs, unpaired T test.

Supplementary Figure 4: Gating strategy for identification of cells digested from the hind limbs of naïve animals. Single cells were gated as shown below to identify populations of FLS (CD45⁻CD90.2⁺), T cells (CD45⁺CDIIb⁻CD3⁺), neutrophils (CD45⁺CDIIb⁺Ly6C⁺Ly6G⁺) and MHCII^{high} and MHCII^{low} macrophages (CD45⁺CD11b⁺Ly6C⁺CD64⁺F4/80⁺)

Supplementary Figure 5: Gating strategy for identification of cells digested from the hind limbs of arthritic animals. Single cells were gated as shown below to identify populations of neutrophils (CD45⁺CDllb⁺F4/80⁻Ly6C⁺Ly6G⁺) and Ly6C^{hi} and Ly6C^{low} monocytes (CD45⁺CD11b⁺F4/80⁻Ly6G⁻).

Ly6C (PerCP-Cy5.5)

105

10³

103

Supplementary Figure 6: Expression of BMAL1 is unaffected in macrophages. (A) Expression of *Bmal1* (exon 8) was quantified from peritoneal macrophages harvested from Col6a1-Bmal1^{-/-} (3 male and 3 female) and wildtype (4 male and 3 female) mice using QPCR, *gapdh* was utilized as a housekeeping gene and levels were normalized to wildtype expression. (B) Western blot of BMAL1 and β-ACTIN protein levels in bone marrow derived macrophages harvested from Col6a1-Bmal1^{-/-} and wildtype animals. (C) Bioluminescence analysis of PER2::luciferase activity in peritoneal macrophages from Col6a1-Bmal1^{-/-} mice and wildtype counterparts, representative of n=3-4 males/genotype.

Antibody	Fluorophore Clone		Supplier
CD45	AF700	30-F11	BD Biosciences
CD3	Pe-Cy7	145-2C11	Biolegend
CD11b	PE	M1/70	Biolegend
Ly6G	APC-Cy7	IA8	BD Biosciences
Ly6C	PerCP-Cy5.5	AL-21	Biolegend
CD64	FITC	XS4-5/7.1	Biolegend
F4/80	APC	BM8	eBioscience
MHC II	BV650	M5/114.15.2	BD Biosciences
CD90.2	BV786	30-H12	Biolegend

Antibody	Fluorophore	Clone	Supplier
CD45	AF700	30-F11	BD Biosciences
CD11b	PE	M1/70	Biolegend
F4/80	APC	BM8	eBiosciences
Ly6G	APC-Cy7	IA8	Biolegend
Ly6C	PerCP-Cy5.5	AL-21	BD Biosciences

Supplementary Table 3: Primers utilized for QPCR analysis. *Indicates where TaqMan gene expression assays (ThermoFisher Scientific) were utilized with the relevant product code.

	Forward	Reverse	Probe (Fam-Tamra)		
Gapdh	CAATGTGTCCGTCGTCGATCT	GTCCTCAGTGTAGCCCAAGATG	CGTGCCGCCTGGAGAAACCTG CC		
Per2	GCCTTCAGACTCATGATGACA GA	TTTGTGTGCGTCAGCTTTGG	ACTGCTCACTACTGCAGCCGCTC GT		
Bmal1 (exon 8)	CGTCGGGACAAAATGAACAG	GAACAGCCATCCTTAGCAC	TACCAACATGCAATGCAATGT CCAGGAA		
Cry1	CTGGCGTGGAAGTCATCGT	CTGTCCGCCATTGAGTTCTATG	CGCATTTCACATACACTGTAT GACCTGGACA		
Dbp	CCGTGGAGGTGCTAATGACCT	CCTCTGAGAAGCGGTGCCT	TGAACCTGATCCGGCTGATCTTG CC		
116	CTATACCACTTCACAAGTCGGAGG	TGCACAACTCTTTTCTCATTTCC	TTAATTACACATGTTCTCTGGGAA ATCG		
Cxcl1	CTGCACCCAAACCGAAGTC	AGCTTCAGGGTCAAGGCAAG	CACTCAAGAATGGTCGCGAGGC		
Ccl2	TTCTGGGCCTGCTGTTCA	CCAGCCTACTCATTGGGATCA	CTCAGCCAGATGCAGTTAACG CCCC		
lfn gamma	TCAAGTGGCATAGATGTGGAAGAA	TGGCTCTGCAGGATTTTCATG	TCACCATCCTTTTGCCAGTTC CTCCAG		
Rankl	GCACACCTCACCATCAATGCT	GGTACCAAGAGGACAGAGTGACTTT A	CCAGCATCCCATCGGGTTCCC		
Rev-erb α *	Mm00520708_m1	•	1		
Col2a1 *	Mm01309565_m1				
Col6a1*	Mm00487160_m1				
Aggrecan *	Mm00545794_m1				
Prg4 *	Mm01284582_m1				
lhh *	Mm00439613_m1				
Cxcl5 *	Mm00436451_g1				
ll10 *	Mm01288386_m1				
ll13 *	Mm00434204_m1				

Supplementary Table 4: Cytokine secretion by cultured FLS. Cell supernatants were assayed by Bioplex or ELISA (CXCL5 and M-CSF), n=4-6. Data was analyzed using two way ANOVA and post hoc Bonferroni's test (black asterix) or unpaired T test (grey asterix). Effects of genotype are shown within each treatment group (control and + TNF α). Secretion of IL1 α , IL1 β , IL2, IL3, IL4, IL5, IL12p40, IL17, CCL11, G-CSF and CCL3 were minimal and thus data are not shown.

	Control		+ TNFα	
	WT (pg/ml)	Col6a1-Bmal1 ^{-/-} (pg/ml)	WT (pg/ml)	Col6a1-Bmal1 ^{./-} (pg/ml)
IL6	2.3 ± 0.1	3.7 ± 0.2	13.9 ± 0.5	52.6±1.2***
IL9	3.5 ± 0.9	2.4 ± 0.4	11.2 ± 0.8	6.4±0.9**
IL10	1.3 ± 0.4	1.0 ± 0.3	12.3 ± 0.6	2.7±0.5***
IL12 p70	5.8 ± 1.6	5.5 ± 1.3	33.3 ± 2.3	24.1±0.8**
IL13	ND	ND	150.4 ± 12.1	51.7 ± 7.2***
GM-CSF	ND	ND	15.1 ± 0.8	11.2 ± 0.7**
IFNɣ	0.2 ± 0.06	0.2 ± 0.05	5.8 ± 0.3	1.1 ± 0.1***
CXCL1	6.7 ± 0.7	11.7 ± 0.4	170.7 ± 19.0	716.7 ± 22.1***
CCL2	138.0 ± 6.6	303.7 ± 14.5	1447.7 ± 194.4	7586.9 ± 298.4***
CCL4	1.3 ± 0.072	3.9 ± 0.3***	5.2 ± 0.3	11.1 ± 0.3***
CCL5	29.4 ± 2.3	29.6 ± 3.3	387.6 ± 39.1	1574.5 ± 54.7***
ΤΝFα	7.2 ± 0.3	4.9 ± 0.2	13777.5 ± 587.2	14762.7 ± 449.9
CXCL5	1.1 ± 0.2	32.9 ± 2.8	22.6 ± 4.3	430.6 ± 19.1***
M-CSF	ND	15.9 ± 3.0	2.4 ± 1.0	18.5 ± 6.7*