# Shelterin and subtelomeric DNA sequences control nucleosome maintenance and genome stability

Thomas S. van Emden, Marta Forn, Ignasi Forné, Zsuzsa Sarkadi, Matías Capella, Lucía Martín Caballero, Sabine Fischer-Burkart, Cornelia Brönner, Marco Simonetta, David Toczyski, Mario Halic, Axel Imhof, and Sigurd Braun

#### Appendix items

- p. 1 Table of contents
- p. 2 Appendix Figure S1
- p. 3 Appendix Figure S2
- p. 5 Appendix Figure S3
- p. 6 Appendix Table S1
- p. 10 Appendix Table S2
- p. 12 Appendix References

### van Emden, Forn et al. Appendix Figure S1



## Appendix Figure S1 - qPCR primer specificity and DNA fragment size from ChIP samples.

A qPCR products of indicated primer pairs using WT and *ccq1* $\Delta$  genomic DNA (input material from ChIP reactions) were analyzed on a 2% agarose gel. Each primer pair results in a single product and reproducible product size for both WT and *ccq1* $\Delta$  samples, ruling out the possibility that potential genetic rearrangements upon deletion of *ccq1*<sup>+</sup> affect primer specificity. The most telomere-proximal primers were used in previous studies (Tomita & Cooper, 2008; Harland et al, 2014). Note that while the 'forward' primers of these primer pairs anneal to different regions (i.e. 23 bp and 116 bp relative to the telomeric repeats, here denotated as 0.02 kb and 0.1 kb), the resulting PCR products overlap due to the position of the corresponding 'reverse' primers (i.e. 289 bp and 250 bp, respectively). Nonetheless, ChIP experiments performed with Shelterin, CLRC and H3K9me2 (see Figure 1C-E, S2A-B, 2B, respectively) suggest that these primer pairs appear to discriminate between different regions.

B DNA fragment sizes of telomere-proximal fragments (TAS1) DNA analyzed with different primer combinations, as indicated in the scheme. Shown are results for genomic DNA (not-sonicated, left), input DNA (sonicated, middle) and H3 ChIP DNA (sonicated, right). Note that despite multiple primer binding sites (due to the repetitive nature of the TAS) sonication suppresses the appearance of additional (unspecific) PCR products and that products longer than 800 bp are hardly detected in the ChIP material.



#### van Emden, Forn et al. Appendix Figure S2

# Appendix Figure S2 - Normalization of histone qPCR-ChIP data and telomere length detection in WT and (early) $ccq1\Delta$ cells.

A,B ChIP-qPCR analysis of Rik1<sup>TAP</sup> (A) and UBA<sup>FLAG</sup>Raf1 levels (B) in WT and *ccq1*  $\Delta$  cells (negative control: untagged strain) (n = 2 and 3 independent biological experiments for Rik1<sup>TAP</sup> and UBA<sup>FLAG</sup>Raf1, respectively).

C,D ChIP-qPCR analyses of H3K9me2 (A) and H3 (B) in WT and  $ccq1\Delta$  cells for TAS regions, heterochromatic (HC, shaded in red) and euchromatic loci (EC, shaded in green). The dotted line indicates average EC level based on levels of three euchromatic genes ( $ade2^+$ ,  $act1^+$  and  $tef3^+$ ) (n = 5 independent biological experiments). Note that relative differences among various loci are highly reproducible within an individual replicate despite some variability in ChIP efficiency among different replicates, underscoring the significance of using internal references for ChIP normalization.

E Telomere length analysis of different mutants using telo-PCR, which amplifies the entire repeats and 629 bp of the adjacent TAS1 region (Moravec et al, 2016). PCR products are analyzed on a 0.8% agarose gel. Note that telomeres are shortened in early  $ccq1\Delta$  (~200 nt) but still retain telomeric repeats. Telomeric shortening is not seen in mutants deficient in CLRC or SHREC despite the similar nucleosome-loss phenotype as seen in  $ccq1\Delta$  cells (see Fig. 3).

F qPCR analysis of genomic input DNA in WT and  $ccq1\Delta$  cells normalized to EC which is set to 1 (dotted line). Only minor differences (i.e. < 20%) were detected between WT and ccq1 $\Delta$ , which have been taken into account by normalizing ChIP data (n = 3 independent experiments).

Data information: In (A, B), data are normalized to input (error bars: range and SEM). In (F), data are input normalized (see methods) and represented as mean ± SEM.



### van Emden, Forn et al. Appendix Figure S3

Appendix Figure S3 - Normalization for minichromosome loss.

A qPCR analysis as in (Fig. 7A) but with strains harboring the minichromosomesome *Ch16 m23::ura4*<sup>+</sup>. Right panel shows same data as Fig. 7B (note different scale); left and middle panels show analyses for minichromosome (Ch16) and *ura4*<sup>+</sup> (not normalized for minichromosome loss).

B Selected mutants from A, displayed individually (matching color code) for direct comparison of Ch16 (closed dots) and *ura4*<sup>+</sup> (open dots) levels.

# Appendix Table S1 - Strains used in this study, Related to Experimental Procedures

| Strain              | Genotype                                                                                             | Source | Figure                                                                    |
|---------------------|------------------------------------------------------------------------------------------------------|--------|---------------------------------------------------------------------------|
| PSB1615             | P (h+) leu1-32 ade6-210 ura4-DS/E imr1L(NcoI)::ura4+ otr1R(SphI)::ade6+<br>ccq1-HA:kanMX rik1::hygMX | 1      | lb-c EV1f                                                                 |
| PSB1444             | P (h+) leu1-32 ade6-210 ura4-DS/E imr1L(NcoI)::ura4+ otr1R(SphI)::ade6+<br>ccq1-HA:kanMX             | 1      | lb-c, e 3B EV1e-f                                                         |
| PSB0017<br>(FY1193) | P (h+) leu1-32 ade6-210 ura4-DS/E imr1L(NcoI)::ura4+ otr1R(SphI)::ade6+                              | 2      | 1b-e 2b-c 3b-d 4a 5a,<br>d 6a-b EV1b-c S1b<br>S2c-d EV2a-c EV3b<br>EV4b-c |
| PSB1622             | P (h+) leu1-32 ade6-210 ura4-DS/E imr1L(NcoI)::ura4+ otr1R(SphI)::ade6+<br>ccq1-HA:kanMX clr4::hygMX | 1      | 1c 3b                                                                     |
| PSB1099             | P (h+) leu1-32 ade6-MS/E ura4-DS/E taz1-GFP:kanMX cut11-<br>mCherry:hygMX                            | 1      | 1d                                                                        |
| PSB1614             | P (h+) leu1-32 ade6-MS/E ura4-DS/E taz1-GFP:kanMX cut11-<br>mCherry:hygMX rik1::natMX                | 1      | 1d                                                                        |
| PSB1450             | P (h+) leu1-32 ade6-210 ura4-DS/E imr1L(Nco1)::ura4+ otr1R(Sph1)::ade6+<br>rap1-HA:kanMX             | 1      | 1d EV1e-f                                                                 |
| PSB1447             | P (h+) leu1-32 ade6-210 ura4-DS/E imr1L(NcoI)::ura4+ otr1R(SphI)::ade6+<br>tpz1-HA:kanMX             | 1      | ld EV1f                                                                   |
| PSB1548             | P (h+) leu1-32 ade6-210 ura4-DS/E imr1L(NcoI)::ura4+ otr1R(SphI)::ade6+<br>poz1-HA:kanMX             | 1      | ld EV1f                                                                   |
| PSB1571             | P (h+) leu1-32 ade6-210 ura4-DS/E imr1L(NcoI)::ura4+ otr1R(SphI)::ade6+<br>pot1-HA:kanMX             | 1      | ld EV1f                                                                   |
| PSB1619             | P (h+) leu1-32 ade6-210 ura4-DS/E imr1L(NcoI)::ura4+ otr1R(SphI)::ade6+<br>tpz1-HA:kanMX rik1::hygMX | 1      | ld EV1f                                                                   |
| PSB1744             | P (h+) leu1-32 ade6-210 ura4-DS/E imr1L(NcoI)::ura4+ otr1R(SphI)::ade6+<br>rap1-HA:kanMX rik1::hygMX | 1      | ld EV1f                                                                   |
| PSB1745             | P (h+) leu1-32 ade6-210 ura4-DS/E imr1L(NcoI)::ura4+ otr1R(SphI)::ade6+<br>poz1-HA:kanMX rik1::hygMX | 1      | 1d EV1f                                                                   |

| PSB1746             | P (h+) leu1-32 ade6-210 ura4-DS/E imr1L(NcoI)::ura4+ otr1R(SphI)::ade6+<br>pot1-HA:kanMX rik1::hygMX             | 1 | ld EV1f                                                |
|---------------------|------------------------------------------------------------------------------------------------------------------|---|--------------------------------------------------------|
| PSB1677             | P (h+) leu1-32 ade6-210 ura4-DS/E imr1L(NcoI)::ura4+ otr1R(SphI)::ade6+<br>ccq1-HA:kanMX swi6::natMX chp2::hygMX | 1 | 1e 3b                                                  |
| PSB1801<br>(A2730)  | P (h+) ura4::[4xTetOade6+] leu1+:nmt181xTetRoff-2xFLAG-clr4-cdd ade6-<br>DN/N                                    | 3 | lf                                                     |
| PSB1861             | P (h+) ura4::[4xTetOade6+] leu1+:nmt181xTetRoff-2xFLAG-clr4-cdd ade6-<br>DN/N ccq1-HA:kanMX                      | 1 | 1f                                                     |
| PSB1728             | P (h+) leu1-32 ade6-210 ura4-DS/E imr1L(NcoI)::ura4+ otr1R(SphI)::ade6+<br>ccq1::natMX                           | 1 | 2b-c 3b-d 5a 6a-b<br>EV1c, e-f S1a EV2a<br>EV3b EV4b-c |
| PSB2127<br>(FY520)  | Mat1Msmt0 leu1-32 his2- ura4 DS/E ade6-210 m23::ura4-Tel72                                                       | 8 | 2b-c 5b 7b EV5b S3                                     |
| PSB0074<br>(PM0304) | P (h+) leu1-32 ade6-210 ura4-DS/E imr1L(NcoI)::ura4+ otr1R(SphI)::ade6+<br>rik1::natMX                           | 5 | 3b,d 6a-b S1e EV2a<br>EV4b-c                           |
| PSB1741             | P (h+) leu1-32 ade6-210 ura4-DS/E imr1L(NcoI)::ura4+ otr1R(SphI)::ade6+<br>rik1::natMX ccq1::kanMX               | 1 | 3b,d 6a-b S1e EV4b-<br>c                               |
| PSB0067<br>(SPT812) | <i>P</i> ( <i>h</i> +) <i>leu1-32 ade6-210 otr1::ura4</i> <sup>+</sup> <i>mit1::kanMX</i>                        | 6 | 3с                                                     |
| PSB0025<br>(SBP007) | P (h+) leu1-32 ade6-210 ura4-DS/E imr1L(NcoI)::ura4+ otr1R(SphI)::ade6+<br>mit1::kanMX                           | 5 | 3c 6a-b 5b S1e EV2a<br>EV3b EV4c                       |
| PSB1730             | P (h+) leu1-32 ade6-210 ura4-DS/E imr1L(NcoI)::ura4+ otr1R(SphI)::ade6+<br>clr3::kanMX                           | 1 | 3c 6a-b S1e EV4c                                       |
| PSB2028             | P (h+) leu1-32 ade6-210 ura4-DS/E imr1L(NcoI)::ura4+ otr1R(SphI)::ade6+<br>mit1::kanMX ccq1::natMX               | 1 | 3c 6a-b S1e EV4c                                       |
| PSB2029             | P (h+) leu1-32 ade6-210 ura4-DS/E imr1L(NcoI)::ura4+ otr1R(SphI)::ade6+<br>clr3::kanMX ccq1::natMX               | 1 | 3c 6a-b S1e EV4c                                       |
| PSB0068<br>(SPT981) | P (h+) leu1-32 ade6-210 otr1::ura4 <sup>+</sup> mit1-K587A                                                       | 6 | 3c-d                                                   |
| PSB0069<br>(SPT981) | <i>P</i> ( <i>h</i> +) <i>leu1-32 ade6-210 otr1::ura4</i> <sup>+</sup>                                           | 6 | 3c-d                                                   |

| PSB2338             | M (h-) ade6-M216 his7-366 leu1-32 ura4-D18 SH1L::ura4+ SH1R::his7+<br>SH2L::his7+ SH2R::his7+ SH3L::ura4+ Leu1::Leu1-TAS1(800bp)                | 1 | 5a                 |
|---------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|---|--------------------|
| PSB2369             | M (h-) ade6-M216 his7-366 leu1-32 ura4-D18 SH1L::ura4+ SH1R::his7+<br>SH2L::his7+ SH2R::his7+ SH3L::ura4+ Leu1::Leu1-TAS1(800bp)<br>ccq1::natMX | 1 | 5a                 |
| PSB0072<br>(FY1862) | P (h90) leu1-32 his3D1 ade6-210 ura4-D18 otr1R(Sph1)::ade6+<br>tel(1L)::his3+ tel(2L)::ura4+                                                    | 9 | 5b 7a EV3a EV5a    |
| PSB0023<br>(SBP005) | P (h+) leu1-32 ade6-210 ura4-DS/E imr1L(NcoI)::ura4+ otr1R(SphI)::ade6+<br>clr1::kanMX                                                          | 5 | 6a-b EV4c          |
| PSB0952             | P (h+) leu1-32 ade6-210 ura4-DS/E imr1L(NcoI)::ura4+ otr1R(SphI)::ade6+<br>natMX:DSK2-FLAG-raf1                                                 | 1 | EV1a-c S2b Table 1 |
| PSB1036             | P (h+) leu1-32 ade6-210 ura4-DS/E imr1L(NcoI)::ura4+ otr1R(SphI)::ade6+<br>natMX:DSK2-FLAG-raf1 rik1::hygMX                                     | 1 | EV1a-c Table 1     |
| PSB1446             | P (h+) leu1-32 ade6-210 ura4-DS/E imr1L(NcoI)::ura4+ otr1R(SphI)::ade6+<br>natMX:DSK2-FLAG-raf1 ccq1-HA:kanMX rik1::hygMX                       | 1 | EV1d               |
| PSB1448             | P (h+) leu1-32 ade6-210 ura4-DS/E imr1L(NcoI)::ura4+ otr1R(SphI)::ade6+<br>natMX:DSK2-FLAG-raf1 tpz1-HA:kanMX                                   | 1 | EV1d               |
| PSB1449             | P (h+) leu1-32 ade6-210 ura4-DS/E imr1L(NcoI)::ura4+ otr1R(SphI)::ade6+<br>natMX:DSK2-FLAG-raf1 tpz1-HA:kanMX rik1::hygMX                       | 1 | EV1d               |
| PSB1445             | P (h+) leu1-32 ade6-210 ura4-DS/E imr1L(NcoI)::ura4+ otr1R(SphI)::ade6+<br>natMX:DSK2-FLAG-raf1 ccq1-HA:kanMX                                   | 1 | EV1d S1b           |
| PSB0192<br>(SBP105) | P (h-) smt0 leu1-32 ade6-210 ura4-D18 epe1:CBP-2x-FLAG:kanMX                                                                                    | 5 | EV1e               |
| PSB0269<br>(SBP157) | P (h-) smt0 leu1-32 ade6-210 ura4-D18 epe1:CBP-2x-FLAG:kanMX pREP-<br>nmt1p-6His-ubi-LEU2                                                       | 5 | EV1e               |
| PSB1519             | P (h+) leu1-32 ade6-210 ura4-DS/E imr1L(NcoI)::ura4+ otr1R(SphI)::ade6+<br>ccq1-HA:kanMX pREP-nmt1p-6His-ubi-LEU2                               | 1 | EV1e               |
| PSB1552             | P (h+) leu1-32 ade6-210 ura4-DS/E imr1L(NcoI)::ura4+ otr1R(SphI)::ade6+<br>rap1-HA:kanMX pREP-nmt1p-6His-ubi-LEU2                               | 1 | EV1e               |
| PSB1661             | P (h+) leu1-32 ade6-210 ura4-DS/E imr1L(NcoI)::ura4+ otr1R(SphI)::ade6+<br>ccq1-HA:kanMX rik1::hygMX pREP-nmt1p-6His-ubi-LEU2                   | 1 | EV1e               |

| PSB1751             | P (h+) leu1-32 ade6-210 ura4-DS/E imr1L(NcoI)::ura4+ otr1R(SphI)::ade6+<br>rap1-HA:kanMX rik1::hygMX pREP-nmt1p-6His-ubi-LEU2 | 1 | EV1e |
|---------------------|-------------------------------------------------------------------------------------------------------------------------------|---|------|
| PSB0064<br>(SPY44)  | P (h+) leu1-32ade6-M210 ura4-DS/E imr(Nco1)::ura4+ ori1 rik1-<br>TAP:kanMX                                                    | 4 | S1A  |
| PSB1755             | P (h+) leu1-32ade6-M210 ura4-DS/E imr(Nco1)::ura4+ ori1 rik1-<br>TAP:kanMX ccq1::natMX                                        | 1 | Sla  |
| PSB2056             | P (h90) leu1-32 his3D1 ade6-210 ura4-D18 otr1R(Sph1)::ade6+<br>tel(1L)::his3+ tel(2L)::ura4+ ccq1::natMX                      | Ι | EV3a |
| PSB1134             | P (h+) leu1-32 ade6-210 Ura4-DS/E imr1L(NcoI)::ura4 <sup>+</sup> otr1R(SphI)::ade6 <sup>+</sup><br>taz1::hygMX                | Ι | EV3b |
| PSB2082             | P (h+) leu1-32 ade6-210 ura4-DS/E imr1L(NcoI)::ura4+ otr1R(SphI)::ade6+<br>mit1::kanMX taz1::hygMX                            | Ι | EV3b |
| PSB2083             | P (h+) leu1-32 ade6-210 Ura4-DS/E imr1L(NcoI)::ura4 <sup>+</sup> otr1R(SphI)::ade6 <sup>+</sup><br>taz1::hygMX ccq1::kanMX    | 1 | EV3b |
| PSB2102<br>(K240)   | M (h-) leul - 32                                                                                                              | 7 | EV3c |
| PSB2103<br>(KYP176) | M (h-) leu1 - 32 snf21 - 36(ts)                                                                                               | 7 | EV3c |
| PSB2125             | M (h-) leu1 - 32 mit1::kanMX                                                                                                  | 1 | EV3c |
| PSB2126             | M (h-) leu1 - 32 snf21 - 36(ts) mit1::kanMX                                                                                   | 1 | EV3c |
| PSB0078             | P (h90) leu1-32 his3D1 ade6-210 ura4-D18 otr1R(Sph1)::ade6+<br>tel(1L)::his3+ tel(2L)::ura4+ rik1::natMX                      | 1 | EV5a |
| PSB2336             | P (h90) leu1-32 his3D1 ade6-210 ura4-D18 otr1R(Sph1)::ade6+<br>tel(1L)::his3+ tel(2L)::ura4+ clr3::natMX                      | 1 | EV5a |
| PSB2371             | P (h90) leu1-32 his3D1 ade6-210 ura4-D18 otr1R(Sph1)::ade6+<br>tel(1L)::his3+ tel(2L)::ura4+ clr3::natMX                      | 1 | EV5a |

Strain numbers in brackets indicate original strain numbers.

1 = This study; 2, 3, 8 and 9 = Allshire laboratory (Ekwall *et al*, 1999); 4 = Danesh Moazed laboratory; 5 = Madhani laboratory (Braun *et al*, 2011); 6 and 7 = Grewal laboratory (Sugiyama *et al*, 2007) (Yamada *et al*, 2008).

## Appendix Table S2 - Primer sets used for RT-qPCR, ChIP analysis, Telomere-PCR and strain generation, Related to Experimental Procedures

| oligo name                              | FOR oligo                          | REV oligo                             | locus                               | reference                     |
|-----------------------------------------|------------------------------------|---------------------------------------|-------------------------------------|-------------------------------|
| Sg0243/0244<br>(P059/060)               | TGCTCTGACTTGGCTTGTCTT              | CCCTAACTTGGAAAGGCACA                  | cen-dg                              | (Braun <i>et al</i> , 2011)   |
| Sg0272/0273<br>(P_F'tlh1-<br>mb274/276) | ATGGTCGTCGCTTCAGAAATTGC            | CTCCTTGGAAGAATTGCAAGCCTC              | <i>tlh1</i> <sup>+</sup> 5 '        | (Bühler <i>et al</i> , 2007)  |
| Sg0423/0424<br>(P638/639)               | AACCCTCAGCTTTGGGTCTT               | TTTGCATACGATCGGCAATA                  | $act1^+$                            | (Braun <i>et al</i> , 2011)   |
| Sg1026/1027                             | CAGCAATATCGTACTCCTGAA              | ATGCTGAGAAAGTCTTTGCTG                 | ura4 <sup>+</sup>                   | This study                    |
| Sg1032/1033                             | GAGCATGGTGGTGGTTATGGA              | CGACTAAACCGAAAGCCTCGA                 | cen-imr                             | This study                    |
| Sg1038/1039                             | GAAGTTCACTCAGTCATAATTAATTGG<br>AAC | GGGCCCAATAGTGGGGGGCATTGTAT<br>TTGTG   | TERRA                               | (Bah <i>et al</i> , 2012)     |
| Sg1906/1097<br>(Telomeric<br>STE1)      | CGGCTGACGGGTGGGGGCCCAATA           | GTGTGGAATTGAGTATGGTGAA                | 20bp from tel repeats               | (Tomita &<br>Cooper,<br>2008) |
| Sg1908/1909<br>(JK380/381)              | TATTTCTTTATTCAACTTACCGCACT<br>TC   | CAGTAGTGCAGTGTATTATGATAAT<br>TAAAATGG | 100bp from<br>tel repeats /<br>TAS1 | (Harland <i>et al</i> , 2014) |
| Sg2038/2039                             | TTATTCACCCATACACACTACACC           | GATGAATGGATTAAAAGGTGTTGG              | 744bp from tel repeats              | This study                    |
| Sg2102/2103                             | ATCTACTCCAATATAGTCCTCTGC           | GATAATGGATGGAGGTAAGAGAGG              | 1297bp from tel repeats             | This study                    |
| Sg2106/2107                             | TTATATTCCTGCATCCCAACACAT           | AAAGAAGATAAAAGCAGGGGACTA              | 2275bp from tel repeats             | This study                    |
| Sg2139/2149                             | TCGTTAACAACATTTAACGATTACTCG        | ACGTTTGTTGAGTGATATGTCGTCG             | 2758bp from tel repeats             | This study                    |
| Sg2141/2142                             | TACTCCAACACACTCAATACATACC          | AAGTAGGAGAATGAAGAAGTAATC<br>AAAG      | 2012bp from tel repeats             | This study                    |

| Sg2309/2310<br>(qura4<br>5'for/rev) | TCGCAGACATTGGAAATACC                                | ATGGCAATTTGTGATATGAGC                                 | -0.5 Kb from <i>tetO</i> | (Audergon et<br>al, 2015)                  |
|-------------------------------------|-----------------------------------------------------|-------------------------------------------------------|--------------------------|--------------------------------------------|
| Sg2527/2585                         | GTAGACAGCAATCCAGGTCAAAGAC                           | TTTCCTACCAGCGGTCCGTCTTCC                              | HC island 14             | (Zofall <i>et al</i> , 2016)<br>this study |
| Sg2671/2672                         | AGGCATCTGATCCCAATGAG                                | ATTTTGGATGCCTTGGATGA                                  | $ade2^+$                 | This study                                 |
| Sg2708/2709                         | TGAGTGTGCTGGAGTACGTT                                | CGGGATCCGGGGGGGGGGGGGGGGG<br>GG                       | Telo-PCR                 | (Moravec <i>et al</i> , 2016)              |
| Sg2736/2737                         | TGGCCTTCTTAGCCTTTTCA                                | CTGAGGAAGTTTGGGCTGTC                                  | tef3 <sup>+</sup>        | This study                                 |
| Sg2972/2973                         | AGAAGAAGAACAGACGGGTGA                               | CCCCATAACCCTAACCTCGT                                  | HC island 15             | This study                                 |
| Sg2983/2984                         | GGTAAGCCTAGTAACGATGCC                               | GTGCCAACAGTGATACGCAA                                  | his3 <sup>+</sup>        | This study                                 |
| Sg2985/2986                         | CCCCGACGACATATCACTCA                                | ATGAACGACAAACAGCAGGC                                  | TAS2                     | This study                                 |
| Sg2991/2992                         | CCTCTGACAGATGCTCAAACC                               | TGGTTACGGTTATTAGGTGATGT                               | TAS3                     | This study                                 |
| Sg3119/3120                         | CAATTGGGCCGAATGATGGT                                | TGCTCACGTCCTCCATCAAT                                  | $ade6^+$                 | This study                                 |
| Sg3121/3122                         | TGACCCCGATGCAATTGTTG                                | AGAGTTGCAGGAGAGGGTTC                                  | $ade6^+$                 | This study                                 |
| Sg3123/3124                         | TTCCAGTAATCGGCGTTCCT                                | CGACAGGCTAAAATACCGGC                                  | $ade6^+$                 | This study                                 |
| Sg3182/3183                         | GGGCCCCCCCTCGAGGTCGACTAT<br>CTTTATTCAACTTACCGCACTTC | CGCTCTAGAACTAGTGGATCCG<br>ATGAATGGATTAAAAGGTGTTG<br>G | TAS1 region              | This study                                 |

Names in brackets indicate original oligonucleotide names used by previous studies.

### **Appendix References**

- Audergon P, Catania S, Kagansky A, Tong P, Shukla M, Pidoux A & Allshire RC (2015) Restricted epigenetic inheritance of H3K9 methylation. *Science* **348**: 128–132
- Bah A, Wischnewski H, Shchepachev V & Azzalin CM (2012) The telomeric transcriptome of Schizosaccharomyces pombe. *Nucleic Acids Res* **40**: 2995–3005
- Braun S, Garcia JF, Rowley M, Rougemaille M, Shankar S & Madhani HD (2011) The Cul4-Ddb1(Cdt)<sup>2</sup> ubiquitin ligase inhibits invasion of a boundary-associated antisilencing factor into heterochromatin. *Cell* **144:** 41–54
- Bühler M, Haas W, Gygi SP & Moazed D (2007) RNAi-dependent and -independent RNA turnover mechanisms contribute to heterochromatic gene silencing. *Cell* **129**: 707–721
- Ekwall K, Cranston G & Allshire RC (1999) Fission yeast mutants that alleviate transcriptional silencing in centromeric flanking repeats and disrupt chromosome segregation. *Genetics* **153**: 1153–1169
- Harland JL, Chang YT, Moser BA & Nakamura TM (2014) Tpz1-Ccq1 and Tpz1-Poz1 Interactions within Fission Yeast Shelterin Modulate Ccq1 Thr93 Phosphorylation and Telomerase Recruitment. *PLoS Genet*
- Moravec M, Wischnewski H, Bah A, Hu Y, Liu N, Lafranchi L, King MC & Azzalin CM (2016) TERRA promotes telomerase-mediated telomere elongation in Schizosaccharomyces pombe. *EMBO Rep* **17**: 999–1012
- Sugiyama T, Cam HP, Sugiyama R, Noma K-I, Zofall M, Kobayashi R & Grewal SIS (2007) SHREC, an effector complex for heterochromatic transcriptional silencing. *Cell* **128**: 491–504
- Tomita K & Cooper JP (2008) Fission yeast Ccq1 is telomerase recruiter and local checkpoint controller. *Genes Dev* 22: 3461–3474
- Yamada K, Hirota K, Mizuno K-I, Shibata T & Ohta K (2008) Essential roles of Snf21, a Swi2/Snf2 family chromatin remodeler, in fission yeast mitosis. *Genes Genet. Syst.* **83**: 361–372
- Zofall M, Smith DR, Mizuguchi T, Dhakshnamoorthy J & Grewal SIS (2016) Taz1-Shelterin Promotes Facultative Heterochromatin Assembly at Chromosome-Internal Sites Containing Late Replication Origins. *Mol Cell* **62**: 862–874