Molecular Cell, Volume 68

Supplemental Information

The Role of N-α-acetyltransferase 10 Protein

in DNA Methylation and Genomic Imprinting

Chen-Cheng Lee, Shih-Huan Peng, Li Shen, Chung-Fan Lee, Ting-Huei Du, Ming-Lun Kang, Guo-Liang Xu, Anup K. Upadhyay, Xiaodong Cheng, Yu-Ting Yan, Yi Zhang, and Li-Jung Juan

SUPPLEMENTAL INFORMATION

Supplemental Information includes seven figures and seven tables.

Supplemental Tables

Table S1 (related to Figure 1). *Naa10-KO Mice Show Reduced Birthrate.* Birthrates of mice with six different *Naa10* genotypes from *Naa10*-heterozygous (-/X) female mice crossed with WT (X/Y) male or *Naa10*-KO male (-/Y) mice were calculated. Total 48 and 41 mice from *Naa10*-heterozygous female mice crossed with WT male and *Naa10*-KO male mice were obtained, respectively. *Naa10*-KO male mice showed a birthrate of 15-17%, which is lower than the expected 25%. A lower birthrate of 12% was also observed for *Naa10*^{-/-} female mice. The *P*-value was calculated by the chi-square test.

Table S2 (related to Figure 1). Naa10p-KO Mice Show Partial EmbryonicLethality.

Embryonic lethality was estimated in 7 litters from *Naa10^{-/X}* female mice crossed with WT male (Litter 1 ~ 7) or *Naa10*-KO male (Litter 8 ~ 14) mice. Number with brackets indicates the amount of dead embryos. Embryos of 35% of *Naa10*-KO males (n=23 from 13 litters) and 27% of *Naa10*-KO females (n=11 from 5 litters) died with developmental defects during embryonic days 12.5-14.5. In addition, 18% embryonic lethality was observed for heterozygous *Naa10^{-/x}* embryos (n=11 from 6 litters), but no lethality was observed for heterozygous *Naa10^{-/x}* embryos (n=16 from 6 litters). Images of the embryos of 2 representative litters (Litter 1 and Litter 14) are shown in figure S1B.

Table S3 (related to Figure 1). Naa10p-KO Mice Develop Hydrocephalus Brain. Percentages of hydrocephalic *Naa10*-KO mice with dome-shaped skull are shown. Images of 2 representatives of the *Naa10*-KO mice with dome-shaped skull are shown in figure S1E.

Table S4 (related to Figure 2). Naa10p-KO Deregulates Imprinted GeneExpression in Mouse ESCs.

The expression of imprinted genes in the RNA-seq results from figure 2 is shown (Fold change > 1.5 & FPKM > 0.4). Red: up-regulated genes in KO cells. Green: down-regulated genes in KO cells. Fold change = FPKM of KO / average FPKM of WT#1 and WT#2.

Table S5 (related to STAR METHODS). Primers for Genotyping andQuantitative PCR.

TableS6 (related to STAR METHODS). Primers for ChromatinImmunoprecipitation.

Table S7 (related to STAR METHODS). Primers for Bisulfite Sequencing,EMSA Probes, and Site-directed Mutagenesis.

Supplemental Figures

Figure S1 (related to Figure 1). Generation and Characterization of *Naa10*-KO Mice.

- (A) Generation of *Naa10*-KO mice. Top: Schematic illustration of gene targeting strategy used to generate *Naa10*-KO mouse ESCs. A 17.7 kb genomic fragment of *Naa10* was subcloned from a BAC clone (Sanger Institute, UK) into the PL235 plasmid, followed by insertion of loxp into the first and sixth introns and the neomycin resistance gene (*Neo*) cassette flanked by FRT into the sixth intron before loxp (Lee et al., 2001), by which exon 2 to 6 and *Neo* cassette were flanked by loxp sites. The resulting construct was linearized and electroporated into R1 ES cell (129 Sv/Ev) to generate *Naa10*-KO mice (see STAR METHODS). Bottom left: Southern blot confirmation of *Naa10* deletion. Analysis of WT (*Naa10*^{X/X}) and *Naa10*-heterozygous (*Naa10^{-/X}*) female mice is shown. Bottom right: Western blotting shows that Naa10p is undetectable in the *Naa10*-KO (*Naa10^{-/Y}*) MEF.
- (B) Naa10p-KO mice show partial embryonic lethality. Images of the embryos at 13.5 dpc of 2 representative litters from *Naa10*-heterozygous female mice crossed with WT male (Litter 1) or *Naa10*-KO male (Litter 14) mice are shown.
- (C) Positive correlation between embryo size and placenta weight in defective *Naa10*-KO female embryos. Embryo size and placenta weight were measured for embryonic day 13.5 embryos of WT (*Naa10*^{X/X}, n=6) and mutant (*Naa10*^{-/X}, n=10;

Naa10^{-/-}, n=7), derived from *Naa10^{-/X}* females crossed with WT or *Naa10*-KO males. Representative images of embryos (#161, #166 and #167) and their placentae are shown. Embryo size is plotted vs. placenta weight for each individual. The correlation (\mathbb{R}^2) and the p-value for the Pearson analysis are shown.

- (D) Naa10 KO results in placental defects in female embryos. Representative images of haematoxylin and eosin-stained female WT (#161) and Naa10-KO (#167) placentae at 13.5 dpc are shown. Regions in black rectangles are enlarged in the lower panels. De, decidual; Ch, chorionic plate; Gi, trophoblast giant cells; La; labyrinthine zone; Sp, spongioblast.
- (E) Naa10-KO mice spontaneously develop hydrocephalus. Left: Representative images of Naa10p-KO mice with dome-shaped skull. Right: Histological analysis of brain coronal section. The Naa10-KO mice with short life span show enlarged lateral ventricle of hemisphere and significantly dilated third ventricle. Results are from two representative mice (4 and 5 weeks old) of WT, Naa10-KO without dome-shaped (ds) skull, and Naa10-KO with ds skull.

Figure S2 (related to Figure 2). Naa10p KO Deregulates Developmental Genes including Imprinted Genes in Mouse ESCs.

- (A) Naa10p KO does not alter morphology of mouse ESCs. Phase-contrast images of three independent clones of WT (*Naa10^{X/Y}*) and *Naa10*-KO (*Naa10^{-/Y}*) ESCs cultured in N2B27 medium supplemented with Mek inhibitor PD325901, Gsk3 inhibitor Chir99021, and leukemia inhibitory factor (LIF) are shown.
- (B) Naa10p KO does not alter the expression of pluripotency marker genes. mRNA levels of *Nanog* and *Oct4* in three independent WT and *Naa10*-KO ESC clones were examined by RT-qPCR. Error bars represent standard deviation determined from triplicate PCR reactions.
- (C) Naa10p KO deregulates developmental genes in mouse ESCs. Heatmaps and GO term analysis of Naa10p-regulated genes are shown. Differentially expressed genes from two clones each of WT ($Naa10^{X/Y}$) and Naa10-KO ($Naa10^{-/Y}$) hybrid ESCs used in figure 2 were analyzed by RNA-seq. 540 and 1002 genes were up (red)- or down (green)-regulated in both KO ESCs, respectively, [fragments per kilobase of exon per million reads mapped (FPKM) > 0.4, fold change > 1.5].

- (D) Naa10p KO increases gene expression from the imprinted allele in ESCs. Biological repeats (WT#2 and KO#2) for figure 2E are shown.
- (E) Imprinted genes regulated by Naa10p, Zfp57 and Trim28. Van diagram comparison of the differentially expressed imprinted genes in a Zfp57-KO (Quenneville et al., 2011) and two Trim28-KO mouse ESCs (Cheng et al., 2014) with those differentially expressed in two Naa10-KO ESCs (Figure 2C and Table S4). For RNA-seq data, imprinted genes with fold change > 1.5 and FPKM > 0.4 are shown. For microarray, imprinted genes with fold change > 1.5 are shown. Number with brackets indicates numbers of total imprinted genes changed in the category. Genes with * are those affected in both Naa10-KO ESCs. Genes with [#] are those affected in both Trim28-KO ESCs.

Figure S3 (related to Figure 3). Naa10p KO Causes DNA Hypomethylation without Altering DNA Methyltransferase and Demethylase Levels.

- (A) Naa10p KO dysregulates allele-specific imprinted gene methylation in ESCs.Biological repeats (WT#2 and KO#2) for figure 3A are shown.
- (B) Naa10p KO results in global DNA hypomethylation. Shown are the mean DNA methylation levels of two wild-type (WT#1 and WT#2) and *Naa10*-knockout (KO#1 and KO#2) mESCs in various genic and repetitive sequences, and in subcategories of LTR repeats.
- (C) Naa10p KO does not alter the nuclear protein levels of DNA methyltransferases, demethylases, Zfp57 and Trim28 in ESCs. Protein levels of indicated genes in the nuclear extracts of WT and *Naa10*-KO ESCs were analyzed by western blotting. *Dnmt*-TKO, mESCs depleted of Dnmt1/3a/3b.
- (D) Naa10p KO does not disrupt the interaction between Dnmt1 and Uhrf1 in ESCs. Co-immunoprecipitation followed by western blot analysis shows that Uhrf1 is co-immunoprecipitated with Dnmt1 Ab in both WT and *Naa10*-KO ESCs but not mESCs depleted of Dnmt1 (*Dnmt1*-KO). IP, immunoprecipitation.

Figure S4 (related to Figure 4). Naa10p KO Barely Affects Dnmt3a/3b Activities but Impairs Dnmt1 Binding to Multiple ICRs/DMRs in Mouse ESCs.

(A) Naa10p effect on Dnmt3a/3b activities in nuclear extracts of mouse ESCs is limited. Nuclear extracts from two WT, two Naa10-KO or the Dnmt-TKO ESCs were incubated with non-methylated double-stranded DNA oligonucleotides and [³H]-S-adenosyl-L-methionine, followed by determination of radioactivity of the DNA oligonucleotides and western blotting (bottom). After subtracting the background signal of *Dnmt*-TKO cells, the relative Dnmt activity from each sample was normalized to the mean activity of WT replicates (middle). Data were presented as mean \pm SD from biological repeats. Asterisks indicate statistical difference calculated by two-tail t-test, **, p < 0.01. The figure shows that total Dnmt activity in the nuclear extracts was reduced by only 26% when a 34 bp non-methylated DNA oligo was used as the substrate. Because Dnmt1 can also methylate non-methylated DNA *in vitro* (Yokochi and Robertson, 2001), the Naa10p KO-mediated down-regulation of Dnmt3a/3b activities, if any, should have been less than 26%.

- (B) Cell cycle-sorted WT and Naa10p-KO mESCs. mESCs fixed with formaldehyde and stained with propidium iodide were analyzed for DNA content (PI) and cell size (FSC-A), followed by cell sorting. Numbers indicate the percentage/purity of each subset of cells.
- (C) Naa10p KO impairs Dnmt1 binding to multiple ICRs/DMRs during S phase in mouse ESCs. Biological repeats (WT#2 and KO#2) for figure 4C are shown. Error bars represent standard deviation determined from triplicate PCR reactions.
- (D) ChIP-qPCR analyses of Zfp57 occupancy at five representative ICRs/DMRs in WT#1 and KO#1 ESCs are shown. Error bars represent standard deviation determined from triplicate PCR reactions.
- (E) Dnmt1 binding to non-imprinted regions is reduced in Naa10p-KO mESCs. ChIP-qPCR analyses of Dnmt1 occupancy at retrotransposon (IAP), repeat element (LINE) and four representative gene promoters in WT and Naa10p-KO mESC replicates are shown. Error bars represent standard deviation determined from triplicate PCR reactions. Asterisks indicate statistical difference calculated by two-tailed t-test, *, p<0.05; **, p<0.01.</p>

Figure S5 (related to Figure 5). Naa10p Co-localizes with Dnmt1 at Multiple ICRs/DMRs in Mouse ESCs.

Biological repeats (WT#2 and KO#2) of figure 5A are shown. Error bars represent standard deviation determined from triplicate PCR reactions. Asterisks indicate statistical difference calculated by two-tailed t-test, *, p<0.05; **, p<0.01.

Figure S6 (related to Figure 6). Analysis of Naa10p Binding to DNA in mESCs.

- (A) Naa10p preferentially binds to distal intergenic regions. Pie charts show the genomic distribution of Naa10p occupancy in mESCs (right) as well as background annotation (left, mm9). The percentage of Naa10p occupancy at each genomic region is indicated. Distal promoter, 1-3 kb upstream of transcription start site (TSS). Proximal promoter, < 1 kb upstream of TSS. Immediate downstream, < 1 kb of transcription end site (TES). Proximal downstream, 1-3 kb downstream of TES. n, number of Naa10p peaks.</p>
- (B) Naa10p binds to both parental alleles at non-imprinting regions. Genome browser views of two representative loci of non-imprinted regions show Naa10p binding peaks in WT (#1 and #2) and KO#1 ESCs. The ChIP-seq density profiles shown were normalized to density per million total reads with 25-bp resolution. Blue boxes: genes. Maternal B6 (red), paternal JF1 (blue).
- (C) Naa10p-bound sites are enriched for DNA methylation. Barplot comparing the mean DNA methylation levels of Naa10p-bound and -unbound regions in WT ESCs, the results of the integrated analysis of Naa10p ChIP-seq and RRBS are shown. Shown in each bar is the average DNA methylation of all CpGs calculated.
- (D) ICRs/DMRs bound by Naa10p are enriched for imprinted allele-specific SNPs. ICRs/DMRs ChIPed by Naa10p Ab from WT#1 ESC were analyzed by Sanger sequencing. Asterisks indicate SNPs on the imprinted allele.

Figure S7 (related to Figure 7). WT Naa10p, but Not the Human Disease-associated Mutants, Directly Binds to *H19*-ICR and Nucleosomes.

- (A) Naa10p specifically binds to the mouse *H19*-ICR. The binding of recombinant hNaa10p to the biotin-labeled 189 bp ChIP region of mouse *H19*-ICR was analyzed by EMSA in the absence or presence of anti-hNaa10p or cold probe. hNaa10p amount: 2 μg (lanes 2-5 and 7-9). The Naa10p binding was specific because it could be disrupted with the Naa10p Ab and competed away with cold DNA probe. Lanes with the controls of antibody and BSA alone were eliminated from the original image to save space.
- (B) Mutations outside the GCXGXG motif do not disrupt Naa10p binding. The binding of recombinant hNaa10p to the biotin-labeled 20-mer oligo of mouse

H19-ICR with or without mutations indicated in red was analyzed by EMSA. hNaa10p amount: 1 μ g (lanes 2 and 6); 2 μ g (lanes 3 and 7); 4 μ g (lanes 4 and 8). Lanes using DNA probe with irrelevant mutations were eliminated from the original image to save space.

- (C) WT Naa10p, but not clinical-relevant mutants, binds to nucleosomes. EMSA of WT and mutant hNaa10p binding to the biotin-labeled 216 bp Widom DNA reconstituted with HeLa nucleosomes is shown. hNaa10p amount: 0.5 μg (lanes 3, 6, 9 and 12); 1 μg (lanes 4, 7, 10 and 13); 2 μg (lanes 5, 8, 11 and 14).
- (D) The GCXGXG motif is enriched at ICRs/DMRs. The GCXGXG motif in both ICRs/DMRs and the 10 kb-flanked regions was extracted. Frequency of motif per kb is shown for 10 representative ICRs/DMRs. Circle, maternally imprinted genes. Triangle, paternally imprinted genes. The -10k-flanked region of *H19* is known to harbor a somatic DMR.

Table S1 (related to Figure 1)

K	Reduced Dirthrate of <i>Ivaa10</i> -KO mice						
		Naa10 genotype of progeny					
	X/Y	-/Y	X/X	-/X	Х/-	_/_	
Expected probability	25%	25%	25%	25%	-	-	
-/X x X/Y	35%	15%	29%	21%			
<i>P</i> =0.025	(17/48)	(7/48)	(14/48)	(10/48)			
Expected probability	25%	25%	-	-	25%	25%	
-/X x -/Y	32%	17%			39%	12%	
<i>P</i> =0.0002	(13/41)	(7/41)			(16/41)	(5/41)	

Reduced birthrate of *Naa10*-KO mice

Table S2 (related to Figure 1)

	Nag 10 of	1,00010 11	Nagla sonotype of ombryo				
	Naalo ol		Naa	10 genoty	ype of em	bryo	
	breeder	X/Y	-/Y	X/X	-/X	X/-	_/_
Litter 1		1	1(1)	2	2		-
Litter 2		1	1(1)	4	1		-
Litter 3		3	2	1	0		-
Litter 4	-/X x X/Y	3	0	0	1(1)		-
Litter 5		2	2	3	1		-
Litter 6		1	3(1)	2	3(1)		-
Litter 7		1	2(1)	2	3		-
Litter 8		2	2(1)	-		3	0
Litter 9		1	3(1)	-		0	3
Litter 10		1	1	-		2	2(1)
Litter 11	-/X x -/Y	2	1	-		1	0
Litter 12		3	1	-		3	3(1)
Litter 13		1	3(1)	-		4	1
Litter 14		2	1(1)	-		3	2(1)
Lethality		0%	35%	0%	18%	0%	27%
		(0/24)	(8/23)	(0/14)	(2/11)	(0/16)	(3/11)

Lethality of Naa10-KO embryo at 12.5 ~ 14.5 dpc

Table S3 (related to Figure 1)

		• 511 •11 •111 •• • • • •	- aome shapea shan	
		Genotype of N	aa10	
X/Y	-/Y	X/X	-/X & X/-	_/_
0%	34%	0%	4%	31%
(0/61)	(11/32)	(0/24)	(2/55)	(4/13)

Naa10-KO live birth mice with dome-shaped skull

		Fold Change				
Imprinted Genes	Expressed Parental Allele	WT#1	WT#2	KO#1	KO#2	
Htr2a	М	0.838	1.162	9.553	0.666	
Dlk1	Р	1.075	0.925	8.583	2.318	
Axl	М	0.936	1.064	5.411	0.799	
Peg10	Р	1.073	0.927	4.100	2.847	
Wtl	М	0.930	1.070	3.922	1.266	
Peg13	Р	1.087	0.913	3.654	1.802	
Osbpl5	М	0.974	1.026	3.627	0.854	
Rtl1	Р	0.997	1.003	3.484	3.954	
Tfpi2	М	0.763	1.237	3.002	0.062	
Tnfrsf23	М	0.973	1.027	2.211	0.837	
Pon3	М	1.096	0.904	2.140	1.149	
Ndn	Р	1.008	0.992	2.117	1.414	
H13	М	0.971	1.029	2.076	0.833	
Kcnqlotl	Р	1.241	0.759	1.976	1.897	
Pon2	М	1.016	0.984	1.888	1.195	
Mest	Р	1.014	0.986	1.868	1.653	
Sfmbt2	Р	0.945	1.055	1.810	2.585	
Nnat	Р	1.027	0.973	1.805	1.447	
Impact	Р	0.964	1.036	1.718	1.158	
Klf14	М	1.116	0.884	1.664	1.031	
Meg3	М	0.97	1.029	1.646	0.978	
Blcap	М	0.997	1.003	1.615	1.056	
H19	М	1.131	0.869	1.612	2.202	
Casd1	М	0.962	1.038	1.598	1.736	
Dcn	М	0.917	1.083	1.597	0.258	
Peg3	Р	1.036	0.964	1.588	1.587	
Gnas	М	0.993	1.007	1.561	0.937	
Gatm	М	0.985	1.015	1.551	1.004	
Snrpn	Р	1.005	0.994	1.533	1.557	
Sgce	Р	0.997	1.003	1.500	1.561	
Phlda2	М	0.983	1.017	1.463	1.121	
Magel2	Р	1.051	0.949	1.410	0.800	
Mcts2	Р	0.967	1.033	1.327	1.007	

Table S4 (related to Figure 2C)

Zdbf2	Р	0.983	1.017	1.259	0.908
Ube3a	М	1.069	0.931	1.235	1.207
Begain	Р	1.142	0.858	1.197	1.002
Calcr	М	0.877	1.123	1.195	0.554
Cmah	М	1.010	0.990	1.138	0.979
Atp10a	М	0.969	1.031	1.126	1.222
Mkrn3	Р	1.146	0.854	1.078	0.741
Zfp64	Р	1.035	0.965	1.058	1.338
Nap114	М	0.977	1.023	1.029	0.876
Plagl1	Р	1.010	0.990	1.027	1.091
Jade l	Р	0.991	1.009	1.021	0.914
Slc38a4	Р	0.993	1.007	0.992	1.027
Pde4d	Р	1.040	0.960	0.977	1.282
Tbc1d12	Р	1.028	0.972	0.976	0.716
Ipw	Р	0.944	1.056	0.972	0.922
Xlr3b	М	0.880	1.120	0.951	0.732
Copg2	М	0.967	1.033	0.906	0.897
Peg12	Р	0.824	1.176	0.873	1.138
Igf2r	М	1.008	0.992	0.838	0.657
Grb10	М	0.984	1.016	0.829	0.355
Zrsr1	Р	1.016	0.984	0.794	0.888
Trappc9	М	0.970	1.030	0.777	0.891
Ampd3	М	1.067	0.933	0.769	1.015
Cdkn1c	М	1.180	0.820	0.751	0.755
Commd1	М	0.984	1.016	0.705	0.830
Phactr2	М	1.015	0.985	0.698	1.051
Dio3	Р	1.058	0.942	0.673	0.554
Igf2	Р	1.384	0.616	0.639	0.598
Qpct	М	1.087	0.913	0.630	0.837
Ascl2	М	0.538	1.462	0.546	0.801
Ppp1r9a	М	1.012	0.988	0.527	0.564
Cobl	М	0.997	1.003	0.520	0.912
Dhcr7	М	1.041	0.959	0.507	1.000
Slc22a18	М	1.036	0.964	0.479	0.894
Zim3	М	1.117	0.883	0.383	0.683
Mstlr	М	1.054	0.946	0.342	0.540
Art5	М	0.973	1.027	0.316	0.653

Table S5 (related to STAR METHODS)

	Primers for Genotyping						
Name	Direction	Sequence (5' to 3')	Position				
Naa10-CU	Forward	CTTACGGGGTGACCGTGTGA	chrX 65174147-				
			65174128				
Naa10-FD	Reverse	GCTGCAATGACTAAGAGG	chrX 65173836-				
			65173853				
Naa10-JD	Reverse	GACAACCTGGTTACTGACCA	chrX 65170767-				
			65170786				
M-Probe A	Forward	TGAGGGAGGTTAGACACTG	chrX 65163005-				
			65163023				
M-Probe A	Reverse	GTTGAGGCCAAAGAGGCTT	chrX 65163470-				
			65163488				
M-Probe B	Forward	CTGAGATCAGCAGCGGAC	chrX 65163536-				
			65163553				
M-Probe B	Reverse	CTTCCAGAGTCATAGCCCAT	chrX 65164148-				
			65164167				
		Primers for Quantitative PCR					
Name	Direction	Sequence (5' to 3')	Ref.				
Nanog	Forward	TCTTCCTGGTCCCCACAGTTT					
Nanog	Reverse	GCAAGAATAGTTCTCGGGATGAA					
Oct4	Forward	CACCATCTGTCGCTTCGAGG					
Oct4	Reverse	AGGGTCTCCGATTTGCATATCT					
H19	Forward	CCTTGTCGTAGAAGCCGTCTG					
H19	Reverse	GGGTAGCACCATTTCTTTCATCT					
Allele-specific H19	Forward	TCCTTTTGTTCCTTCCTTGC	Sharif et al. 2007				
Allele-specific H19	Reverse	TGATGGACCCAGGACCTCT	Sharif et al. 2007				
Kcnqlotl	Forward	ATGGCCAGTGCCACTAGTTC					

Kcnq1ot1	Reverse	TTTGCTTTCTCGTCGTCTCA	
Allele-specific Kcnqlotl	Forward	CCTCCTGCGAGTTTCTTGTC	Sharif et al. 2007
Allele-specific Kcnq1ot1	Reverse	TGGAACCTCCTTGGAAGATG	Sharif et al. 2007
Igf2	Forward	GTGCTGCATCGCTGCTTAC	
Igf2	Reverse	ACGTCCCTCTCGGACTTGG	
Cdkn1c	Forward	CGAGGAGCAGGACGAGAATC	
Cdkn1c	Reverse	GAAGAAGTCGTTCGCATTGGC	
Gapdh	Forward	TTGCAGTGGCAAAGTGGAG	
Gapdh	Reverse	CATGGTGGTGAAGACACCAG	

Table S6 (related to STAR METHODS)

	Primers for Chromatin Immunoprecipitation					
Name	Direction	Sequence (5' to 3')	Position or Ref.			
Peg10-DMR	Forward	TACTGACCGAATTGTGATGAG	chr6 4747860-			
			4747880			
Peg10-DMR	Reverse	CGCATGAAGCGCCTATTAGG	chr6 4748026-			
			4748007			
Peg13-DMR	Forward	AAAGGAGGCACAGAAAAAGC	ch15 72809661-			
			72809642			
Peg13-DMR	Reverse	TACAACCACAATGCGCCTAT	ch15 72809468-			
			72809487			
Kcnqlotl-	Forward	TCGAGTCCCAAGGTGAGTGG	chr7 143295500-			
DMR			143295481			
Kcnqlotl-	Reverse	GACCCGATTCGGTTTCAGC	chr7 143295401-			
DMR			143295419			
Mest-DMR	Forward	CGGGTGCTTGGCGAAAGCCGTCC	chr6 30736490 -			
			30736512			
Mest-DMR	Reverse	CAAGAATTTGAGGGCGCACAGGG	1 (2072((00			
			chr6 30/36600 -			
	F		30/36622			
HI9-ICK	Forward	GIACAACACACATITCIIGGG	cn/ 142336820-			
	D		142330807			
HI9-ICK	Reverse	ACTCAAAGCIIIGICACAGC	cn/ 142330630 -			
Dec 2 DMD	Econord		142550055			
Pegs-DMR	Forward	AIGGGGICIIGGAIIGGIIA	cnr/ 6/30300 -			
	D	TACTCCACCCACACTCAACC	0/30481			
Peg3-DMR	Reverse	TAGIGCACCCACACIGAACC	cnr/ 6/30308-			
	<u>г</u> 1	TOCATA OTOA A COOCA OCTTO	6/3032/			
Snrpn-DMR	Forward	IGCATACICAAGGCCAGGIIC	chr7 60005915 -			
			60005935			
Snrpn-DMR	Reverse	GCATATTGAAGTTACTACCAC	chr7 60006059 -			
			60006079			
Meg3-IG-	Forward	GCCTGTAACCAATAGACCCAGAG	abr12 100522076			
DMR			cnr12 109535870			
Mag2 IC	Dovorra		- 109333898			
Mego-IG-	Keverse	UAACACCCUATTAACTUAUCAU	chr12 109534007-			
DIVIK			109534028			

IAP-LTR1	Forward	TGGTAAACAAATAATCTGCGCAT	Di Giacomo et al.,
		GA	2014
IAP-LTR1	Reverse	CACTCCCTGATTGGCTGCAG	Di Giacomo et al.,
			2014
IAP-LTR2	Forward	GTGAGAACGCGTCGAATAACAAT	Di Giacomo et al.,
			2014
IAP-LTR2	Reverse	GTGATCCGTAGTTCTGGTTCTGA	Di Giacomo et al.,
			2014
5'-LINE-L1	Forward	TGCGGTACATAGGGAAGCAGG	Di Giacomo et al.,
			2014
5'-LINE-L1	Reverse	CAAGACTCTGCTGGCAAGGTA	Di Giacomo et al.,
			2014
3'UTR-LINE	Forward	CCAAGGAGCTAAAGGGATCTG	Di Giacomo et al.,
-L1			2014
3'UTR-LINE	Reverse	CCGACTAGGCCATCTTTTGAT	Di Giacomo et al.,
-L1			2014
Cyp26a1	Forward	GGAGCCTCTGGTCTCCTTAG	Chr19 37697062 -
			37697081
Cyp26a1	Reverse	TCCTGCTTTCGAGTTCAAAG	Chr19 37697163 -
			37697182
Ereg	Forward	GGGAGTAGCCACACTAGAAG	Chr5 91074409 -
			91074428
Ereg	Reverse	GTTTCCTAATGCCACCCCCC	Chr5 91074519 -
			91074538
Pcdh7	Forward	GGACTCTGGCAGTCCCAGCC	Chr5 57720628 -
			57720647
Pcdh7	Reverse	CTCTGGAAAGTAAACCTCAACC	Chr5 57720721 -
			57720742
Rps6ka4	Forward	CCCCTGACACCCCACCCATC	Chr19 6837485 -
			6837504
Rps6ka4	Reverse	GCGCCCAACCTCTTCTTAGG	Chr19 6837373 -
			6837392
	Primers	for ChIP Followed by Sanger Sequencin	g
Name	Direction	Sequence (5' to 3')	Position
Peg13-DMR	Forward	TGTGTGATAGCTCATCCAAGC	chr15 72809842-
	rorwaru		72809822

Peg13-DMR	Davianaa	CTACAACCACAATGCGCCTA	chr15 72809467-
	Keverse		72809486
Kcnqlotl-	Forward	CAGCGCGGGTTTCTTCTCTG	chr7 143295827-
DMR	Forward		143295808
Kcnqlotl-	Dovorso	GACCCGATTCGGTTTCAGC	chr7 143295401-
DMR	Reverse		143295419
H19-ICR	Forward	GGGTCACAAATGCCACTAGG	chr7 142581935-
	Forward		142581916
<i>H19</i> -ICR	Dovorso	AGCCCATGACTATGGGATCA	chr7 142581701-
	Reveise		142581720
Snrpn-DMR	Forward	GGACTCCTGGAAGTCAGAGC	chr7 60004742 -
	Forward		60004723
Snrpn-DMR	Davaraa	CCCAGACCACACAAGCTG	chr7 60004300 -
	Reveise		60004317
Mest-DMR	Forward	TCTGGGGTTCAGGATTAGAGA	chr6 30737845 -
	rorward		30737865
Mest-DMR	Dovorse	AGCAGAGGCAGCAAGCAG	chr6 30738177 -
	Keveise		30738160

Primers for Bisulfite Sequencing					
Name	Direction	Sequence (5' to 3')	Ref.		
	Forward	AGGGTATTTATATTTAGGATTTAAAGGAA	Sharif et al.		
HI9-ICK	Forward	TATG	Ref. Sharif et al. 2007 Sharif et al. 2007 Rharif et al. 2007		
	Dovorso	ТТТАТСАААААСТААСАТАААССССТААС	Sharif et al.		
1113-ICK	Keveise	С	Ref. Sharif et al. 2007 Sharif et al. 2007 Sharif et al. 2007 Ref. Ref. Ref. 2011 Popp et al. 2015		
Konglott DMP	Forward	ATTTTTGTGGTTTAGGTTTATAGAAGTAGG			
Keng1011-DIVIK	Forward	G			
Kcnqlotl-DMR	Reverse	TACTCCACTCACTACCTTAATACTAACC			
Peg13-DMR	Forward	GGTTTTGTGTGATAGTTTATTTAAG			
Peg13-DMR	Reverse	TAACTCATCATTATACTACAACCAC			
Pri	mers for t	he EMSA Probe and Site-directed Mutagenesis			
Name	Direction	Sequence (5' to 3')	Ref.		
<i>H19</i> -ICR (189	Forward	Piotin CTACAACACACATTTCTTCCC			
bp)-Bio	Forward	Biomi-OTACAACACACATITCTTOOO			
H19-ICR (189	H19-ICR (189 D ACTECA A A CETTER CACA				
bp)	Kevelse	ACTCAAAOCITTOTCACAOC			
hNaal0n S27D	Forward	CTTCTACCATGGCCTTCCCTGGCCCCAGCT	Rope et al.		
invaarop 557P	Forward	С	2011		
hNaa10n V107E	Forward	CTTCAATGCCAAATATTTCTCCCTGCATGT	Popp et al.		
mnaarup viu/F	Forward	CAGG	2015		
hNaa10n P116W	Forward	CATGTCAGGAAGAGTAACTGGGCCGCCCT	Popp et al.		
	rorwaru	GCAC	2015		

Table S7 (related to STAR METHODS)

5 weeks old

s old

Figure S5 (related to Figures 5)

Re-ChIP: α-Dnmt1/α-Naa10p

Figure S6 (related to Figure 6)

В