
1 
 

Supplementary Table 1. Sequence similarity between top-ranked off-targets (TMX3 and AAGAB) and the 
target site in ß-actin (ACTB) reveals sequence similarity as the cause of guideRNA-dependent off-target 
editing.   

mRNA sequence bound by gRNAa 

ACTB 5’-GGGAGGUGAUAGCAUUGCU-3’ 
TMX3 5’-AGGAGGUGAUAGCAUUUUG-3’ 
AAGAB 5’-CCAGGUUGAUAGCAUUGUG-3’ 

a edited adenosines are highlighted in bold and not matching nucleotides in red.   
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Supplementary Table 2. Comparison SNAP-ADAR and dCas13b-ADAR system (Cox et al. Science 2017) 

 SNAP-ADAR (SA) system dCas13b-ADAR system 

Targeting System 

SNAP-tag – gRNA covalent bond 

SNAP-tag: human, < 200 aa 

gRNA: ca. 22 nt, chemically stabilized 

guideRNA / dCAS13b RNP assemblya) 

Cas13: bacterial >1000 aa 

gRNA: ~85 nt, genetically encoded 

 

Deaminase tested 
4 enzymes fully tested: ADAR1 and ADAR2 

each wildtype and E488Q  

1 enzyme strongly tested: ADAR2 E488Q (REPAIRv1) 

1 enzyme briefly tested: ADRA2 E488Q/T375G (REPAIRv2) 

Delivery 

SNAP-ADAR: single genomic copy, inducible 

gRNA: lipofection of chemically stabilized gRNA 

(22 nt) 

dCas-ADAR: massive overexpression via plasmid lipofection 

guideRNA: massive overexpression via plasmid lipofection 

Editing of endogenous 

targets 
ACTB, GAPDH, GUSB, SA, KRAS, STAT1 KRAS and PPIB 

Concurrent editing 

3 sites or 4 endogenous house keeping 

transcripts, no loss in efficiency 

2 sites or 2 endogenous signaling transcripts 

(KRAS, STAT1), no loss in efficiency  

Nothing shown 

Editing range for the best 

editable codon (UAG) on 

endogenous targets 

wild-type SA: 15 - 90%, (12 sites on 6 targets, 

ORF & UTRs) 

SAQ variants: 46 - 90%, (13 sites on 6 targets, 

ORF & UTRs) 

REPAIRv2: 7-25%,  (5 sites on 2 targets, only ORF)  

 

REPAIRv1: 15-40%,  (5 sites on 2 targets, only ORF) 

 

Codon scope 
all 16 codons tested on an endogenous target 

with SA1Q and SA2Q 

all 16 codons tested, but on an overexpressed reporter 

transcript with overexpressed Cas-ADAR. The co-

overexpression together with the low editing yields suggest 

that the shallow codon specificity observed could be an 

overexpression artefact. Codon scope was only tested for 

REPAIRv1, not for version 2 

Applications in the 

manuscript 

Manipulation of signaling transcripts, KRAS and 

STAT1, recoding of phosporylation switch 

Tyr701 in STAT1 

Manipulation of the signaling transcript KRAS, but not at a 

phosphorylation site. The claimed editing of 34 “release-

relevant transcripts” (Figure 4) is somewhat misleading.b) 

Editing duration stable over several days Nothing shown 

Off-targets in 

gRNA/substrate duplex 

the guideRNA/mRNA duplex is small (19 bp), 

chemical modification of guideRNA blocks off-

target editing almost entirely even in A-rich 

codons 

General: the guideRNA/mRNA duplex is large (50 bp) 

REPAIRv1: massive problem, several sites, high yields  

REPAIRv2: better, but present, too little data is shown yet 

Global off-target editing 

Wild-type SA: almost absent  

SAQ variants: moderate (≈1000 sites, might be 

further decreased by lowering SAQ expression) 

REPAIRv2: almost absent (but the 125x coverage/deep 

sequencing analysis (Figure 6D) was done with 15fold less 

Cas13-ADAR plasmid (10 ng instead of 150 ng) than used in 

the relevant editing reactions on KRAS and PPIB (Figure 6F & 

Figure 5). It is unclear if KRAS/PPIB editing would be effective 

with 15fold less CAS13-ADAR plasmid.c) 

 

REPAIRv1: extremely high (>18 000 sites, even though 15fold 

less Cas13-ADAR was transfected then in almost all other 

experiments)  

 

Unique property 

1) Chemically stabilized guideRNAs enable 

perfect specificity inside gRNA/mRNA duplex 

2) low expression of editase enables high 

editing yields with reduced global off-target 

editing  

1) Fashionable 

there are at least two other RNA editing systems that apply 

encodable guideRNAs which encounter the same specificity 

problems as Cas13-ADAR does (local off-target editing in the 

guideRNA/mRNA duplex, global off-target editing due to 
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2) clearly proven, covalent RNA targeting 

3) very short guideRNA/mRNA duplex, unlikely 

to interfere with endogenous ADARs or 

translation 

4) simple co-transfection of guideRNAs enables 

concurrent editing 

overexpression, in particular with hyperactive ADAR 

deaminases, low editing yields with wildtype or less active 

ADAR domains like version2) 

 

a) It remains to be determined to which extent the RNA-targeting via the 35 nt DR-helix in the Cas13-
guideRNAs and dCas13b interaction contributes to Cas13-ADAR editing, in particular under overexpression 
conditions on reporter constructs. From previous control experiments we know that under overexpression 
conditions editing can be obtained even in absence of any RNA targeting mechanism by self-targeting of the 
ADAR, in particular for long RNA duplexes (like >30 bp). When carefully reading the Cox et al. paper, the 
evidence is lacking that the dCAS13/guideRNA RNP assembly is strictly required for editing; the respective 
important control for this (Figure S8 in the Cox et al. paper) is flawed: it shows that overexpression of the 
ADAR2 deaminase lacking Cas13 doesn´t give editing, but the guideRNA is missing too. There is also no 
proof that the ADAR deaminase domain they express is giving stable, catalytically functional protein. On one 
hand, they claim that the free-floating deaminase is giving rise to off-target editing. On the other hand, their 
control ADAR deaminase alone (ADAR2DD) gives much less off-targets compared to REPAIRv1 (Figure S8, 
C) indicating that the truncation is less functional per se. The proper control would have been to mutate the 
guideRNA (at the DR domain or leave the DR domain away). We tested the Cas13 guideRNAs and found 
them similarly active (editing yields around 25%) when overexpressing them together with either wildtype 
ADAR2 or SNAP-ADAR2Q, independent of the DR domain (see Supplementary Figure 11, and further 
Supplementary Notes 1 and 2 below). This shows that any overexpressed highly active ADAR fusion can 
edit 50 bp guideRNA/mRNA duplexes independent of a targeting mechanism to similar yields under the 
conditions reported by Cox et al. (their Figure 2-4).  

b) Cox et al. suggest that 34 disease-relevant editings have been achieved (Figure 4E). This is somewhat 
misleading, in particular the suggestive Figure 4G that pretends that the data from the codon screen can be 
transferred to thousands of clinical variants. As the 34 disease-relevant transcripts are only small pieces of 
cDNA (ca. 200 bp) that have been overexpressed within a reporter cassette it is unlikely that one will be able 
to edit the respective real transcripts with the suggested editing yields in a relevant cell with the current Cas-
ADAR versions (in particular version2) and the current delivery methods. It is also unclear if any of the 
mutations (all selected for simple-to-edit 5´-UAG codons) is really relevant for human disease (incidence, 
penetrance), and what editing yield might be required for therapy. Anyway, only hyperactive, off-target-prone 
REPAIRv1 has been used, the more precise REPAIRv2, which has a lower editing activity (similar or lower 
than wildtype ADAR2, see Supplementary Fig. 10), has not been characterized in this respect. Similar 
experiments with disease-relevant, and overexpressed cDNAs like CFTR, and PINK1 have anyway already 
been described before by others, however, additionally including a relevant phenotypic change. 

c) Cox et al. use very high amounts of plasmids (150 ng/96 well Cas-ADAR, 300 ng/96 well guideRNA 
plasmid) for the editings. However, for the deep sequencing analysis they transfect only 10 ng/96 well Cas-
ADAR plasmid (if understood correctly from their manuscript). One can expect that 15fold less plasmid will 
strongly reduce the transfection efficiency, thus the background of many untransfected cells will clearly 
reduce global off-target editing, while editing on a co-transfected reporter transcript (Cluc) is less affected by 
lowering Cas-ADAR (Cox et al. Fig S15). Nevertheless, one can expect that editing of an endogenous target 
(like KRAS, PPIB) will strongly suffer if less cells are transfected. If we understand the paper correctly, the 
editing on endogenous targets was not shown with low plasmid transfection. For the SNAP-ADAR system, 
however, we can much better and more homogenously control the enzyme expression levels (by doxycycline 
induction) and we did show to what extent the reduction of SNAP-ADAR does change the editing at 
endogenous targets and at selected off-targets (see our Supplementary Figure 9). 
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Supplementary Table 3. Comparison SNAP-ADAR and 4λN-DD / BoxB system (Vallecillo-Viejo et al. RNA 

Biol 2018 & Sinnamon et al. PNAS 2017)a) 

 SNAP-ADAR (SA) system 4λN-DD / BoxB system 

Targeting System 

SNAP-tag – gRNA covalent bond 

SNAP-tag: human, < 200 aa 

gRNA: ca. 22 nt, chemically stabilized 

 

λN / BoxB RNA peptide interaction 

λN (typically 4 copies): bacteriophage, ca. 100 aa 

optional 3x NLS: ca. 30 aa 

gRNA: ~84 nt, genetically encoded 

 

Deaminase tested 
4 enzymes fully tested: ADAR1 and ADAR2 

each wildtype and E488Q  

several versions, all based on ADAR2 deaminase domain, 

either wt or E488Q in combination with 1-4 copies λN peptide, 

with and without NLS 

4 copies λN increase efficiency; 3xNLS can reduce off-target 

editing by ca. 50% 

Delivery 

SNAP-ADAR: single genomic copy, inducible 

gRNA: lipofection of chemically stabilized gRNA 

(22 nt) 

Enzyme: currently massive overexpression via plasmid 

lipofection (or AAV) 

guideRNA: massive overexpression via plasmid lipofection (or 

AAV) 

Editing of endogenous 

targets 
ACTB, GAPDH, GUSB, SA, KRAS, STAT1 

This system has mainly been characterized with reporter 

constructs, in particular GFP and CFTR; to my knowledge only 

a single example of an endogenous target has been described 

(MeCP2); the targeting of endogenous transcripts has not yet 

been tested systematically  

Concurrent editing 

3 sites or 4 endogenous housekeeping 

transcripts, no loss in efficiency 

2 sites or 2 endogenous signaling transcripts 

(KRAS, STAT1), no loss in efficiency  

Not shown; it is unclear if several different guideRNAs can 

ever be co-expressed as very high amounts of U6-guideRNA 

plasmids are currently used already for a single target (like 4-

15fold more than the editase plasmid) 

Editing range for the best 

editable codon (UAG) on 

endogenous targets 

wild-type SA: 15 - 90%, (12 sites on 6 targets, 

ORF & UTRs) 

SAQ variants: 46 - 90%, (13 sites on 6 targets, 

ORF & UTRs) 

With the E488Q variant editing levels of 70-80% have been 

observed on reporter transcripts GFP and CFTR; with the 

wildtype enzyme editing levels typically stay below (more like 

40-60%); so far only a few preferred codons have been 

targeted, mostly UAG and mostly in reporter transcripts   

 

Codon scope 
all 16 codons tested on an endogenous target 

with SA1Q and SA2Q 
There is no systematic test on the full codon scope published 

Applications in the 

manuscript 

Manipulation of signaling transcripts, KRAS and 

STAT1, recoding of phosporylation switch 

Tyr701 in STAT1 

The system has been explored for the repair of CFTR (cDNA) 

and endogenous MeCP2 

Editing duration stable over several days Nothing shown yet 

Off-targets in 

gRNA/substrate duplex 

the guideRNA/mRNA duplex is small (19 bp), 

chemical modification of guideRNA blocks off-

target editing almost entirely even in A-rich 

codons 

General: the guideRNA/mRNA duplex is large (50 bp, twice 

interrupted by the two 17 nt BoxB hairpins) 

The system suffers from major off-target editing inside the 

gRNA/mRNA duplex (e.g. PNAS 2017), even though 

endogenous MeCP2 was repaired in primary cells to ca. 75% 

yield, this came along with 5 off-target editings in the duplex 

(10-50% yield). 

The system also elicits strong guideRNA dependent off-target 

editing in the target transcript but outside the gRNA/mRNA 

duplex due to a proximity effect; e.g. RNA Biol 2018, 

depending on the enzyme 5-14 off-target editings (10-55%) 

have been found along the CFTR transcript  
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Global off-target editing 

Wild-type SA: almost absent  

SAQ variants: moderate (≈1000 sites, 

decreased by lowering SAQ expression) 

The E488Q version of Vallecillo-Viejo et al. was also tested by 

Cox et al. (Supporting Figure S9 in their paper) and showed 

massive global off-editing at rates very similar to Cas13-ADAR 

repairV1. We performed a re-analysis of Vallecillo-Viejo et al.’s 

NGS analysis with our pipeline (see Supplementary Figure 8). 

The wildtype enzymes elicit several hundred-fold more off-

target edits compared to the wt SA. The wt Vallecillo-Viejo et 

al. enzymes are even more off-target-prone than our 

hyperactive SA1Q/SA2Q mutants. The hyperactive Vallecillo-

Viejo et al. enzymes seem extremely off-target-prone. 

Unique property 

1) Chemically stabilized guideRNAs enable 

proper specificity inside gRNA/mRNA duplex 

2) low expression of editase enables high 

editing yields with reduced global off-target 

editing  

2) clearly proven, covalent RNA targeting 

3) very short guideRNA/mRNA duplex, unlikely 

to interfere with endogenous ADARs or 

translation 

4) simple co-transfection of guideRNAs enables 

concurrent editing 

1) the system is fully genetically encoded 

2) the entire system (editase + 6 copies guideRNA) has been 

delivered as a single AAV  

 

a) This system has already undergone several rounds of refinement. We focused on the results reported in 
the two most recent papers.   
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Supplementary Table 4. Sequences of gRNAs applied in this study. BG-conjugated gRNAs were 
synthesized and PAGE-purified from commercially acquired oligonucleotides containing a 5’-amino-C6 
linker (BioSpring, Germany) as described by Hanswillemenke et al. (J. Am. Chem. Soc. 2015, 137, 15875-
15881). Nucleotides highlighted in bold are unmodified and are placed opposite the triplet with the target 
adenosine in the middle. Nucleotides highlighted in italic are modified with 2’-O-methylation, those 
highlighted in red are 2’-fluorinated nucleotides. The backbone contains terminal phosphorothioate 
linkages as indicated by “s”. The first three nucleotides at the 5’-end are not complementary to the mRNA 
substrate, but serve as linker sequence between gRNA and SNAP-tag.  

target gRNA sequence applied gRNA amounta) 

editing of various endogenous transcripts 
5’-UTR SNAP-ADAR 5’-UsCsAUUAAACG CCA GAGUCsCsGsGsA-3’ 5 pmol 
5’-UTR GAPDH isoform 2 5’-UsCsUGAAUAAU CCA GGAAAsAsGsCsA-3’ 5 pmol 
ORF #1 GAPDH 5’-UsAsUAGGGGUG CCA AGCAGsUsUsGsG-3’ 5 pmol 
ORF #2 GAPDHb) 5’-UsAsUGGUUUUU CCA GACGGsCsAsGsG-3’ 5 pmol 
ORF #1 GUSB 5’-GsGsUGCAGAUU CCA GGUGGsGsAsCsG-3’ 5 pmol 
ORF #2 GUSB 5’-AsCsAGACUUGG CCA CUGAGsUsGsGsG-3’ 5 pmol 
3’-UTR SNAP-ADAR 5’-UsAsUGUGUCGG CCA CGGAAsCsAsGsG-3’ 5 pmol 
3’-UTR GAPDHc) 5’-AsAsUAAGGGGU CCA CAUGGsCsAsAsC-3’ 5 pmol 
3’-UTR ACTB 5’-UsCsGAGCAAUG CCA UCACCsUsCsCsC-3’ 5 pmol 
3’-UTR GUSB 5’-UsAsUUUCCCUG CCA GAAUAsGsAsUsG-3’ 5 pmol 
KRAS target A/1 5’-GsAsUGCUCCAA CCA CCACAsAsGsUsU-3’ SA1: 40 pmol , SA1Q: 10 pmol  

KRAS target 2 5’-CsGsUCUCUUGC CCA CGCCAsCsCsAsG-3’ 20 pmol 

STAT1 Y701 5’-GsUsCUCUUGAU ACA UCCAGsUsUsCsC-3’ 20 pmol 
editing of all 16 adenosine-containing triplets in GAPDH isoform 1 

5’-GAA 5’-CsAsCAUGGGAU UCC CAUUGsAsUsGsA-3’ 5 pmol 
5’-GAU 5’-UsAsUCGACCAA ACC CGUUGsAsCsUsC-3’ 5 pmol 
5’-GAC 5’-CsAsCGUCAUGA GCC CUUCCsAsCsGsA-3’ 5 pmol 
5’-GAG 5’-AsAsCGAGGGAU CCC GCUCCsUsGsGsA-3’ 5 pmol 
5’-CAA 5’-GsAsAGAGGCUG UCG UCAUAsCsUsUsC-3’ 5 pmol 
5’-CAU 5’-CsAsAGAGGUCA ACG AAGGGsGsUsCsA-3’ 5 pmol 
5’-CAC 5’-AsAsCGCCAGGG GCG CUAAGsCsAsGsU-3’ 5 pmol 
5’-CAG 5’-UsAsCGCAUGGA CCG UGGUCsAsUsGsA-3’ 5 pmol 
5’-AAA 5’-UsAsCAUGACCC UCU UGGCUsCsCsCsC-3’ 5 pmol 
5’-AAU 5’-GsAsCUAGCCAA ACU CGUUGsUsCsAsU-3’ 5 pmol 
5’-AAC 5’-AsGsUCGCCACA GCU UCCCGsGsAsGsG-3’ 5 pmol 
5’-AAG 5’-UsGsUAUAUCCA CCU UACCAsGsAsGsU-3’ 5 pmol 
5’-UAA 5’-AsGsGAGGGGUC UCA CUCCUsUsGsGsA-3’ 5 pmol 
5’-UAU 5’-CsUsAGGCAACA ACA UCCACsUsUsUsA-3’ 5 pmol 
5’-UAC 5’-CsCsGAGCGCCA GCA GAGGCsAsGsGsG-3’ 5 pmol 
5’-UAG 5’-UsAsUGGUUUUU CCA GACGGsCsAsGsG-3’ 5 pmol 

avoiding off-target editing of neighboring adenosine 
5’-CAA methoxy 5’-GsAsAGAGGCUGU CG UCAUAsCsUsUsC-3’ 5 pmol 
5’-CAA fluoro 5’-GsAsAGAGGCUGU CG UCAUAsCsUsUsC-3’ 5 pmol 
5’-AAA methoxy 5’-UsAsCAUGACCCU  CU UGGCUsCsCsCsC-3’ 5 pmol 
5’-AAA fluoro 5’-UsAsCAUGACCCU  CU UGGCUsCsCsCsC-3’ 5 pmol 
5’-AAC methoxy 5’-AsGsUCGCCACA GC UUCCCGsGsAsGsG-3’ 5 pmol 
5’-AAC fluoro 5’-AsGsUCGCCACA GC UUCCCGsGsAsGsG-3’ 5 pmol 
5’-UAA methoxy 5’-AsGsGAGGGGUCU CA CUCCUsUsGsGsA-3’ 5 pmol 
5’-UAA fluoro 5’-AsGsGAGGGGUCU CA CUCCUsUsGsGsA-3’ 5 pmol 

a) The indicated gRNA amounts were used for single and concurrent editings. 
b) This gRNA was additionally applied to test the dose dependency of RNA editing (Fig. 1c) 
c) This gRNA was additionally applied to test the time dependency of RNA editing (Fig. 1b) 
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Editing of two sites in endogenous KRAS as previously reported by Cox et al. with Cas13b-ADAR 
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Supplementary Note 1. Editing of KRAS target #1, #2, and STAT1 with SNAP-ADARs. Editing of KRAS 
target #1/A gives very high yields with SA1Q and absolutely no off-target editing at the sites reported for 
Cas13b-ADAR (*). Note also the large mRNA/gRNA duplexes applied for Cas13b-ADAR guideRNAs (50 bp, 
blue lines) versus the short ones applied for SNAP-ADAR (green lines). For target #1/A, the long Cas13 
guideRNA even overlaps with the translation start site (boxed ATG) of the KRAS transcript (translation 
inhibition?). Also note the strong dependency of the SNAP-ADAR on the targeting mechanism. The same 
guideRNA lacking the BG modification (NH2-guideRNA) cannot form the covalent bond with the deaminase 
and is incapable of editing the target at all (a-c). Panel a), the editing yield is significantly larger (50-65%) 
compared to off-target prone Cas13b-ADAR version 1 (ca. 25%). The precise wildtype SA1 edits target #1/A 
better than the precise Cas13-ADAR version 2 (20% versus ca. 12%). Target #2 (panel c) is also better edited 
by SA1Q than Cas13b version 1 (50% compared to 32%). Finally, we show efficient concurrent editing of 
KRAS site #1 + site #2, with yields of 50% both (d). And we show concurrent editing of KRAS site #1 with the 
most important phosphorylation site of STAT1 (Y701) with very good yields (50% and 78%, panel e). a-e) 
N=3 independent experiments were performed with similar results. 
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Supplementary Note 2. Lacking specificity of overexpressed Cas13-guideRNAs. Cox et al. repeatedly claim 
a unique Cas-dependent targeting mechanism which is the reason for the claimed higher effectiveness of 
“repair” compared to other editing systems, the reason for the lacking codon preference they find, and the 
reason for the lack of a PFS dependency. However, all those claims are built on co-overexpression 
experiments of Cas-ADAR together with a guideRNA and reporter constructs. Here, we show that the Cas13-
guideRNAs, they apply, are able to elicit editing with ADAR2 but also with SNAP-ADAR2Q in yields 
comparable to Cas-ADAR repair1, demonstrating that the applied guideRNAs under the applied conditions 
are not specific for Cas-ADAR and that many of the findings, in particular under overexpression / reporter 
conditions could be partly flawed by self-targeting of the deaminase (domain) itself. Unfortunately, Cox et al. 
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did not properly address this question in their paper (e.g. control experiments with guideRNAs lacking the 
DR domain are completely missing).  

For this, we designed a Cas13 guideRNA according to Cox et al. containing a 50 nt part antisense to our 
GFP reporter (W58amber), putting the targeted A into mismatch with C. Mismatch position was 34. We 
constructed guideRNAs with the 3´-terminal DR hairpin for Cas-targeting but also lacking the DR motif (the 
DR motif is a 34 nt hairpin that has the function to recruit Cas13). The guideRNAs were expressed from a U6 
promotor (pSilencer plasmid), as applied by Cox et al. Co-transfection was carried out as described by Cox 
et al.: 150 ng editing enzyme, 300 ng guideRNA vector, 40 ng GFP reporter plasmid in a coated 96 well into 
293T cells. As enzymes, we co-transfected either full length human ADAR2 (wildtype), or the respective 
hyperactive SNAP-ADAR2Q, or Cas13-ADAR repairV1 (containing the same mutated deaminase domain of 
ADAR2 E488Q as SA2Q). guideRNA (antisense part: capital letters; DR domain: small 
letters):GCGTCACTAGTGTCGGCCACGGAACAGGCAGTTTGCCAGTAGTGCAGATGAgttgtggaaggtccagtt
ttgaggggctattacaac. In panel b), the position and length of the gRNA is indicated as a blue line under the 
sequence, the on-target site is marked by a red arrow, main off-target sites are marked by red asterisks.  

a) shows that the Cas13-guideRNA can also recruit human ADAR2 or SNAP-ADAR2Q to elicit editing yields 
similar to Cas13-ADAR. The average editing levels (25-30%) are very similar to those described by Cox et 
al. for various similar overexpression / reporter experiments in their Figures 2-4 (15-30%). As expected the 
recruitment of ADAR2 and SNAP-ADAR2Q is independent of the DR motif. In contrast, we have shown in 
the past that short chemically stabilized (BG)-guideRNAs (as we apply) are unable to recruit ADAR2 (see 
NAR 2016, gkw911, Figure S9A); and as we have shown repeatedly in our manuscript that SNAP-ADARs 
are only recruited by short chemically stabilized guideRNAs when the BG moiety is present, clearly 
demonstrating the SNAP-tag-dependent targeting mechanism. The editing control with Cas13-ADAR shows 
several interesting things. First, editing is to some extent depending on the DR motif, but second, editing also 
occurs without a guideRNA and also with a guideRNA lacking the DR motif, even though with reduced editing 
yields; this indicates that the editing yields reported by Cox et al. are composed of an unknown Cas-
dependent and an unknown Cas-independent (self-targeting) part, probably differing for each respective 
target and condition; third, the editing yield with Cas13-ADAR with the ideal guideRNA (30%) was not notably 
better than that with other deaminases (25-30%); d) the off-target editing of Cas13-ADAR was higher than 
that of ADAR2 but lower than that of SA2Q. Finally, we want to mention that editing yields are strongly varying 
under co-overexpression conditions as seen in the error bars of N=3 independent experiments (Data are 
shown with the mean±SD, black dots represent individual data points). This is in agreement with our earlier 
experience. 

b-d) show selected Sanger sequencing traces (always the trace with the highest on-target editing yield was 
chosen) to give an idea of off-target editing. While ADAR2 (b) gives decent on-target editing (25%) there was 
only very little off-target editing seen and on-target editing was fully dependent on the presence of the 
guideRNA, even though not on the DR motif in the guideRNA. The respective single off-target editing site 
was described before by us (NAR 2017). Co-transfection with hyperactive SA2Q (c) largely shows the misery 
of overexpressing hyperactive deaminases (like Cas13-ADAR repairV1 too): even in absence of the 
guideRNA, there is massive off-target editing all over the transcript (only few sites are picked here). On-target 
editing was achieved with 10% yield if though no gRNA was transfected. With the Cas13-guideRNA, on-
target editing increased to 25%, independent of the DR-motif. With respect to off-target editing, the 
experiment with Cas13-ADAR overexpression (d) shows results similar to the overexpression of SA2Q, which 
contains the same ADAR deaminase mutant (E488Q). Off-target editing is found all over the transcript, on-
target editing is already found prior to the expression of the guideRNA. However, such off-target yields are 
roughly half that strong as found for SA1Q, which might be due to lower expression levels. After adding the 
guideRNA, editing levels increase and there is a targeting effect, however, there is also a notable increase 
in editing yield with the guideRNA lacking the DR domain. N=3 independent experiments were performed 
with similar results.  

Together, panels a-d) suggest that the conditions (overexpression & reporters) under which Cas13-ADAR 
has mostly been characterized today are not sufficient to support the general claims made by Cox et al. 
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Determination of intracellular SNAP-ADAR localization by fluorescence microscopy 
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Supplementary Note 3. Protein expression was induced by doxycycline (dox) for 24 h. Cells were 
incubated with BG-FITC to stain SNAP-ADARs (green) and with Hoechst 33342 to stain nuclei (blue). 
Microscopy was performed with a Zeiss CellObserverZ1 under 630x total magnification. The scale bar 
represents 40 µm. FITC-BG/SNAP-tag labeling was done as described before (Vogel et al., ACS Synth. 
Biol. 2017, doi: 10.1021/acssynbio.7b00113). N=3 independent experiments were performed with similar 
results. 
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Appendix (NGS quality data, SNAP-ADAR gene sequences, target sites on 
endogenous transcripts) 

Additional NGS quality data 

 Replicate 1 Replicate 2 
pcDNA5 + Lipo 

  
SA1 + gRNA 

  
SA2 + gRNA 

  
SA1Q + Lipo 

  
SA2Q + Lipo 

  
SA1Q + gRNA 

  
SA2Q + gRNA 

  
 

Detected editing sites ranked by coverage for each experiment. For testing significant editing differences, a 
coverage cut-off of 50 (red line) for the sum of each experiment with its replicate was applied. This typically 
yielded around 50.000 sites / experiment to be analyzed.  
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Scatter plots of editing levels of all called editing sites of replicate 1 against replicate 2 for the indicated editing 
experiments show good replicability with correlation ranging from 0.932-0.960. 

 

 

 

 

Number of transcript covered in RNA sequencing was performed with two replicates of each sample. Shown 
are number of detected transcripts with a FPKM value ≥ 2 for both replicates combined (light blue bars) or 
separated (pink dots). 
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Sequences of editing enzymes and editing targets 

                  10        20        30        40        50        60 
1         ATGGGGAAGGTGAAGGTCGGAGTCAACGGATTTGGTCGTATTGGGCGCCTGGTCACCAGG 
1          M  G  K  V  K  V  G  V  N  G  F  G  R  I  G  R  L  V  T  R  
                  70        80        90       100       110       120 
61        GCTGCTTTTAACTCTGGTAAAGTGGATATTGTTGCCATCAATGACCCCTTCATTGACCTC 
21         A  A  F  N  S  G  K  V  D  I  V  A  I  N  D  P  F  I  D  L   
                 130       140       150       160       170       180 
121       AACTACATGGTTTACATGTTCCAATATGATTCCACCCATGGCAAATTCCATGGCACCGTC 
41         N  Y  M  V  Y  M  F  Q  Y  D  S  T  H  G  K  F  H  G  T  V   
                 190       200       210       220       230       240 
181       AAGGCTGAGAACGGGAAGCTTGTCATCAATGGAAATCCCATCACCATCTTCCAGGAGCGA 
61         K  A  E  N  G  K  L  V  I  N  G  N  P  I  T  I  F  Q  E  R   
                 250       260       270       280       290       300 
241       GATCCCTCCAAAATCAAGTGGGGCGATGCTGGCGCTGAGTACGTCGTGGAGTCCACTGGC 
81         D  P  S  K  I  K  W  G  D  A  G  A  E  Y  V  V  E  S  T  G   
                 310       320       330       340       350       360 
301       GTCTTCACCACCATGGAGAAGGCTGGGGCTCATTTGCAGGGGGGAGCCAAAAGGGTCATC 
101        V  F  T  T  M  E  K  A  G  A  H  L  Q  G  G  A  K  R  V  I   
                 370       380       390       400       410       420 
361       ATCTCTGCCCCCTCTGCTGATGCCCCCATGTTCGTCATGGGTGTGAACCATGAGAAGTAT 
121        I  S  A  P  S  A  D  A  P  M  F  V  M  G  V  N  H  E  K  Y   
                 430       440       450       460       470       480 
421       GACAACAGCCTCAAGATCATCAGCAATGCCTCCTGCACCACCAACTGCTTAGCACCCCTG 
141        D  N  S  L  K  I  I  S  N  A  S  C  T  T  N  C  L  A  P  L   
                 490       500       510       520       530       540 
481       GCCAAGGTCATCCATGACAACTTTGGTATCGTGGAAGGACTCATGACCACAGTCCATGCC 
161        A  K  V  I  H  D  N  F  G  I  V  E  G  L  M  T  T  V  H  A   
                 550       560       570       580       590       600 
541       ATCACTGCCACCCAGAAGACTGTGGATGGCCCCTCCGGGAAACTGTGGCGTGATGGCCGC 
181        I  T  A  T  Q  K  T  V  D  G  P  S  G  K  L  W  R  D  G  R   
                 610       620       630       640       650       660 
601       GGGGCTCTCCAGAACATCATCCCTGCCTCTACTGGCGCTGCCAAGGCTGTGGGCAAGGTC 
201        G  A  L  Q  N  I  I  P  A  S  T  G  A  A  K  A  V  G  K  V   
                 670       680       690       700       710       720 
661       ATCCCTGAGCTGAACGGGAAGCTCACTGGCATGGCCTTCCGTGTCCCCACTGCCAACGTG 
221        I  P  E  L  N  G  K  L  T  G  M  A  F  R  V  P  T  A  N  V   
                 730       740       750       760       770       780 
721       TCAGTGGTGGACCTGACCTGCCGTCTAGAAAAACCTGCCAAATATGATGACATCAAGAAG 
241        S  V  V  D  L  T  C  R  L  E  K  P  A  K  Y  D  D  I  K  K   
                 790       800       810       820       830       840 
781       GTGGTGAAGCAGGCGTCGGAGGGCCCCCTCAAGGGCATCCTGGGCTACACTGAGCACCAG 
261        V  V  K  Q  A  S  E  G  P  L  K  G  I  L  G  Y  T  E  H  Q   
                 850       860       870       880       890       900 
841       GTGGTCTCCTCTGACTTCAACAGCGACACCCACTCCTCCACCTTTGACGCTGGGGCTGGC 
281        V  V  S  S  D  F  N  S  D  T  H  S  S  T  F  D  A  G  A  G   
                 910       920       930       940       950       960 
901       ATTGCCCTCAACGACCACTTTGTCAAGCTCATTTCCTGGTATGACAACGAATTTGGCTAC 
301        I  A  L  N  D  H  F  V  K  L  I  S  W  Y  D  N  E  F  G  Y   
                 970       980       990      1000 
961       AGCAACAGGGTGGTGGACCTCATGGCCCACATGGCCTCCAAGGAGTAA 
321        S  N  R  V  V  D  L  M  A  H  M  A  S  K  E  *   

Open reading frame of GAPDH transcript isoform 1 (NM_002046.5). All 16 adenosine-containing triplets 
(yellow and cyan) were tested for editing. Most of the triplets (yellow), sites could be chosen with no resulting 
amino acid change. Only for 4 triplets (cyan), editing of the corresponding site lead to amino acid change. 
However, these changes happen in the variable region of the protein and thus, are supposed not to disturb 
protein activity.   
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               10        20        30        40        50        60 
1         GGAGACGCCATCCACGCTGTTTTGACCTCCATAGAAGACACCGGGACCGATCCAGCCTCC 
1            R  R  H  P  R  C  F  D  L  H  R  R  H  R  D  R  S  S  L   
                  70        80        90       100       110       120 
61        GGACTCTAGCGTTTAAACTTAAGCTTGGTACCGAGCTCGGATCCACCATGGACAAAGACT 
20        R  T  L  A  F  K  L  K  L  G  T  E  L  G  S  T  M  D  K  D    
                 130       140       150       160       170       180 
121       GCGAAATGAAGCGCACCACCCTGGATAGCCCTCTGGGCAAGCTGGAACTGTCTGGGTGCG 
40        C  E  M  K  R  T  T  L  D  S  P  L  G  K  L  E  L  S  G  C    
                 190       200       210       220       230       240 
181       AACAGGGCCTGCACCGTATCATCTTCCTGGGCAAAGGAACATCTGCCGCCGACGCCGTGG 
60        E  Q  G  L  H  R  I  I  F  L  G  K  G  T  S  A  A  D  A  V    
                 250       260       270       280       290       300 
241       AAGTGCCTGCCCCAGCCGCCGTGCTGGGCGGACCAGAGCCACTGATGCAGGCCACCGCCT 
80        E  V  P  A  P  A  A  V  L  G  G  P  E  P  L  M  Q  A  T  A    
                 310       320       330       340       350       360 
301       GGCTCAACGCCTACTTTCACCAGCCTGAGGCCATCGAGGAGTTCCCTGTGCCAGCCCTGC 
100       W  L  N  A  Y  F  H  Q  P  E  A  I  E  E  F  P  V  P  A  L    
                 370       380       390       400       410       420 
361       ACCACCCAGTGTTCCAGCAGGAGAGCTTTACCCGCCAGGTGCTGTGGAAACTGCTGAAAG 
120       H  H  P  V  F  Q  Q  E  S  F  T  R  Q  V  L  W  K  L  L  K    
                 430       440       450       460       470       480 
421       TGGTGAAGTTCGGAGAGGTCATCAGCTACAGCCACCTGGCCGCCCTGGCCGGCAATCCCG 
140       V  V  K  F  G  E  V  I  S  Y  S  H  L  A  A  L  A  G  N  P    
                 490       500       510       520       530       540 
481       CCGCCACCGCCGCCGTGAAAACCGCCCTGAGCGGAAATCCCGTGCCCATTCTGATCCCCT 
160       A  A  T  A  A  V  K  T  A  L  S  G  N  P  V  P  I  L  I  P    
                 550       560       570       580       590       600 
541       GCCACCGGGTGGTGCAGGGCGACCTGGACGTGGGGGGCTACGAGGGCGGGCTCGCCGTGA 
180       C  H  R  V  V  Q  G  D  L  D  V  G  G  Y  E  G  G  L  A  V    
                 610       620       630       640       650       660 
601       AAGAGTGGCTGCTGGCCCACGAGGGCCACAGACTGGGCAAGCCTGGGCTGGGTCCTGCAG 
200       K  E  W  L  L  A  H  E  G  H  R  L  G  K  P  G  L  G  P  A    
                 670       680       690       700       710       720 
661       GCGGAGGCGCGCCAGGGTCTGGCGGCGGCAGTAAGGCAGAACGCATGGGTTTCACAGAGG 
220       G  G  G  A  P  G  S  G  G  G  S  K  A  E  R  M  G  F  T  E    
                 730       740       750       760       770       780 
721       TAACCCCAGTGACAGGGGCCAGTCTCAGAAGAACTATGCTCCTCCTCTCAAGGTCCCCAG 
240       V  T  P  V  T  G  A  S  L  R  R  T  M  L  L  L  S  R  S  P    
                 790       800       810       820       830       840 
781       AAGCACAGCCAAAGACACTCCCTCTCACTGGCAGCACCTTCCATGACCAGATAGCCATGC 
260       E  A  Q  P  K  T  L  P  L  T  G  S  T  F  H  D  Q  I  A  M    
                 850       860       870       880       890       900 
841       TGAGCCACCGGTGCTTCAACACTCTGACTAACAGCTTCCAGCCCTCCTTGCTCGGCCGCA 
280       L  S  H  R  C  F  N  T  L  T  N  S  F  Q  P  S  L  L  G  R    
                 910       920       930       940       950       960 
901       AGATTCTGGCCGCCATCATTATGAAAAAAGACTCTGAGGACATGGGTGTCGTCGTCAGCT 
300       K  I  L  A  A  I  I  M  K  K  D  S  E  D  M  G  V  V  V  S    
                 970       980       990      1000      1010      1020 
961       TGGGAACAGGGAATCGCTGTGTAAAAGGAGATTCTCTCAGCCTAAAAGGAGAAACTGTCA 
320       L  G  T  G  N  R  C  V  K  G  D  S  L  S  L  K  G  E  T  V    
                1030      1040      1050      1060      1070      1080 
1021      ATGACTGCCATGCAGAAATAATCTCCCGGAGAGGCTTCATCAGGTTTCTCTACAGTGAGT 
340       N  D  C  H  A  E  I  I  S  R  R  G  F  I  R  F  L  Y  S  E    
                1090      1100      1110      1120      1130      1140 
1081      TAATGAAATACAACTCCCAGACTGCGAAGGATAGTATATTTGAACCTGCTAAGGGAGGAG 
360       L  M  K  Y  N  S  Q  T  A  K  D  S  I  F  E  P  A  K  G  G    
                1150      1160      1170      1180      1190      1200 
1141      AAAAGCTCCAAATAAAAAAGACTGTGTCATTCCATCTGTATATCAGCACTGCTCCGTGTG 
380       E  K  L  Q  I  K  K  T  V  S  F  H  L  Y  I  S  T  A  P  C    
                1210      1220      1230      1240      1250      1260 
1201      GAGATGGCGCCCTCTTTGACAAGTCCTGCAGCGACCGTGCTATGGAAAGCACAGAATCCC 
400       G  D  G  A  L  F  D  K  S  C  S  D  R  A  M  E  S  T  E  S    
                1270      1280      1290      1300      1310      1320 
1261      GCCACTACCCTGTCTTCGAGAATCCCAAACAAGGAAAGCTCCGCACCAAGGTGGAGAACG 
420       R  H  Y  P  V  F  E  N  P  K  Q  G  K  L  R  T  K  V  E  N    
                1330      1340      1350      1360      1370      1380 
1321      GAGAAGGCACAATCCCTGTGGAATCCAGTGACATTGTGCCTACGTGGGATGGCATTCGGC 
440       G  E  G  T  I  P  V  E  S  S  D  I  V  P  T  W  D  G  I  R    
                1390      1400      1410      1420      1430      1440 
1381      TCGGGGAGAGACTCCGTACCATGTCCTGTAGTGACAAAATCCTACGCTGGAACGTGCTGG 
460       L  G  E  R  L  R  T  M  S  C  S  D  K  I  L  R  W  N  V  L    
                1450      1460      1470      1480      1490      1500 
1441      GCCTGCAAGGGGCACTGTTGACCCACTTCCTGCAGCCCATTTATCTCAAATCTGTCACAT 
480       G  L  Q  G  A  L  L  T  H  F  L  Q  P  I  Y  L  K  S  V  T    
                1510      1520      1530      1540      1550      1560 
1501      TGGGTTACCTTTTCAGCCAAGGGCATCTGACCCGTGCTATTTGCTGTCGTGTGACAAGAG 
500       L  G  Y  L  F  S  Q  G  H  L  T  R  A  I  C  C  R  V  T  R    
                1570      1580      1590      1600      1610      1620 
1561      ATGGGAGTGCATTTGAGGATGGACTACGACATCCCTTTATTGTCAACCACCCCAAGGTTG 
520       D  G  S  A  F  E  D  G  L  R  H  P  F  I  V  N  H  P  K  V    
                1630      1640      1650      1660      1670      1680 
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1621      GCAGAGTCAGCATATATGATTCCAAAAGGCAATCCGGGAAGACTAAGGAGACAAGCGTCA 
540       G  R  V  S  I  Y  D  S  K  R  Q  S  G  K  T  K  E  T  S  V    
                1690      1700      1710      1720      1730      1740 
1681      ACTGGTGTCTGGCTGATGGCTATGACCTGGAGATCCTGGACGGTACCAGAGGCACTGTGG 
560       N  W  C  L  A  D  G  Y  D  L  E  I  L  D  G  T  R  G  T  V    
                1750      1760      1770      1780      1790      1800 
1741      ATGGGCCACGGAATGAATTGTCCCGGGTCTCCAAAAAGAACATTTTTCTTCTATTTAAGA 
580       D  G  P  R  N  E  L  S  R  V  S  K  K  N  I  F  L  L  F  K    
                1810      1820      1830      1840      1850      1860 
1801      AGCTCTGCTCCTTCCGTTACCGCAGGGATCTACTGAGACTCTCCTATGGTGAGGCCAAGA 
600       K  L  C  S  F  R  Y  R  R  D  L  L  R  L  S  Y  G  E  A  K    
                1870      1880      1890      1900      1910      1920 
1861      AAGCTGCCCGTGACTACGAGACGGCCAAGAACTACTTCAAAAAAGGCCTGAAGGATATGG 
620       K  A  A  R  D  Y  E  T  A  K  N  Y  F  K  K  G  L  K  D  M    
                1930      1940      1950      1960      1970      1980 
1921      GCTATGGGAACTGGATTAGCAAACCCCAGGAGGAAAAGAACTTTTATCTCTGCCCAGTAT 
640       G  Y  G  N  W  I  S  K  P  Q  E  E  K  N  F  Y  L  C  P  V    
                1990      2000      2010      2020      2030      2040 
1981      CTAGATGACTGCCTGTTCCGTAGCCGACACGGGCCCGTTTAAACCCGCTGATCAGCCTCG 
660       S  R  *  L  P  V  P  *  P  T  R  A  R  L  N  P  L  I  S  L    
                2050      2060      2070      2080      2090      2100 
2041      ACTGTGCCTTCTAGTTGCCAGCCATCTGTTGTTTGCCCCTCCCCCGTGCCTTCCTTGACC 
680       D  C  A  F  *  L  P  A  I  C  C  L  P  L  P  R  A  F  L  D    

 

Sequence of SNAP-ADAR1 as expressed from the 293 genome with chosen editing sites (yellow). 
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                10        20        30        40        50        60 
1         GGAGACGCCATCCACGCTGTTTTGACCTCCATAGAAGACACCGGGACCGATCCAGCCTCC 
1            R  R  H  P  R  C  F  D  L  H  R  R  H  R  D  R  S  S  L   
                  70        80        90       100       110       120 
61        GGACTCTAGCGTTTAAACTTAAGCTTGGTACCGAGCTCGGATCCACCATGGACAAAGACT 
20        R  T  L  A  F  K  L  K  L  G  T  E  L  G  S  T  M  D  K  D    
                 130       140       150       160       170       180 
121       GCGAAATGAAGCGCACCACCCTGGATAGCCCTCTGGGCAAGCTGGAACTGTCTGGGTGCG 
40        C  E  M  K  R  T  T  L  D  S  P  L  G  K  L  E  L  S  G  C    
                 190       200       210       220       230       240 
181       AACAGGGCCTGCACCGTATCATCTTCCTGGGCAAAGGAACATCTGCCGCCGACGCCGTGG 
60        E  Q  G  L  H  R  I  I  F  L  G  K  G  T  S  A  A  D  A  V    
                 250       260       270       280       290       300 
241       AAGTGCCTGCCCCAGCCGCCGTGCTGGGCGGACCAGAGCCACTGATGCAGGCCACCGCCT 
80        E  V  P  A  P  A  A  V  L  G  G  P  E  P  L  M  Q  A  T  A    
                 310       320       330       340       350       360 
301       GGCTCAACGCCTACTTTCACCAGCCTGAGGCCATCGAGGAGTTCCCTGTGCCAGCCCTGC 
100       W  L  N  A  Y  F  H  Q  P  E  A  I  E  E  F  P  V  P  A  L    
                 370       380       390       400       410       420 
361       ACCACCCAGTGTTCCAGCAGGAGAGCTTTACCCGCCAGGTGCTGTGGAAACTGCTGAAAG 
120       H  H  P  V  F  Q  Q  E  S  F  T  R  Q  V  L  W  K  L  L  K    
                 430       440       450       460       470       480 
421       TGGTGAAGTTCGGAGAGGTCATCAGCTACAGCCACCTGGCCGCCCTGGCCGGCAATCCCG 
140       V  V  K  F  G  E  V  I  S  Y  S  H  L  A  A  L  A  G  N  P    
                 490       500       510       520       530       540 
481       CCGCCACCGCCGCCGTGAAAACCGCCCTGAGCGGAAATCCCGTGCCCATTCTGATCCCCT 
160       A  A  T  A  A  V  K  T  A  L  S  G  N  P  V  P  I  L  I  P    
                 550       560       570       580       590       600 
541       GCCACCGGGTGGTGCAGGGCGACCTGGACGTGGGGGGCTACGAGGGCGGGCTCGCCGTGA 
180       C  H  R  V  V  Q  G  D  L  D  V  G  G  Y  E  G  G  L  A  V    
                 610       620       630       640       650       660 
601       AAGAGTGGCTGCTGGCCCACGAGGGCCACAGACTGGGCAAGCCTGGGCTGGGTCCTGCAG 
200       K  E  W  L  L  A  H  E  G  H  R  L  G  K  P  G  L  G  P  A    
                 670       680       690       700       710       720 
661       GCGGAGGCGCGCCAGGGTCTGGCGGCGGCAGTAAGAAGCTTGCCAAGGCCCGGGCTGCGC 
220       G  G  G  A  P  G  S  G  G  G  S  K  K  L  A  K  A  R  A  A    
                 730       740       750       760       770       780 
721       AGTCTGCCCTGGCCGCCATTTTTAACTTGCACTTGGATCAGACGCCATCTCGCCAGCCTA 
240       Q  S  A  L  A  A  I  F  N  L  H  L  D  Q  T  P  S  R  Q  P    
                 790       800       810       820       830       840 
781       TTCCCAGTGAGGGTCTTCAGCTGCATTTACCGCAGGTTTTAGCTGACGCTGTCTCACGCC 
260       I  P  S  E  G  L  Q  L  H  L  P  Q  V  L  A  D  A  V  S  R    
                 850       860       870       880       890       900 
841       TGGTCCTGGGTAAGTTTGGTGACCTGACCGACAACTTCTCCTCCCCTCACGCTCGCAGAA 
280       L  V  L  G  K  F  G  D  L  T  D  N  F  S  S  P  H  A  R  R    
                 910       920       930       940       950       960 
901       AAGTGCTGGCTGGAGTCGTCATGACAACAGGCACAGATGTTAAAGATGCCAAGGTGATAA 
300       K  V  L  A  G  V  V  M  T  T  G  T  D  V  K  D  A  K  V  I    
                 970       980       990      1000      1010      1020 
961       GTGTTTCTACAGGAACAAAATGTATTAATGGTGAATACATGAGTGATCGTGGCCTTGCAT 
320       S  V  S  T  G  T  K  C  I  N  G  E  Y  M  S  D  R  G  L  A    
                1030      1040      1050      1060      1070      1080 
1021      TAAATGACTGCCATGCAGAAATAATATCTCGGAGATCCTTGCTCAGATTTCTTTATACAC 
340       L  N  D  C  H  A  E  I  I  S  R  R  S  L  L  R  F  L  Y  T    
                1090      1100      1110      1120      1130      1140 
1081      AACTTGAGCTTTACTTAAATAACAAAGATGATCAAAAAAGATCCATCTTTCAGAAATCAG 
360       Q  L  E  L  Y  L  N  N  K  D  D  Q  K  R  S  I  F  Q  K  S    
                1150      1160      1170      1180      1190      1200 
1141      AGCGAGGGGGGTTTAGGCTGAAGGAGAATGTCCAGTTTCATCTGTACATCAGCACCTCTC 
380       E  R  G  G  F  R  L  K  E  N  V  Q  F  H  L  Y  I  S  T  S    
                1210      1220      1230      1240      1250      1260 
1201      CCTGTGGAGATGCCAGAATCTTCTCACCACATGAGCCAATCCTGGAAGAACCAGCAGATA 
400       P  C  G  D  A  R  I  F  S  P  H  E  P  I  L  E  E  P  A  D    
                1270      1280      1290      1300      1310      1320 
1261      GACACCCAAATCGTAAAGCAAGAGGACAGCTACGGACCAAAATAGAGTCTGGTGAGGGGA 
420       R  H  P  N  R  K  A  R  G  Q  L  R  T  K  I  E  S  G  E  G    
                1330      1340      1350      1360      1370      1380 
1321      CGATTCCAGTGCGCTCCAATGCGAGCATCCAAACGTGGGACGGGGTGCTGCAAGGGGAGC 
440       T  I  P  V  R  S  N  A  S  I  Q  T  W  D  G  V  L  Q  G  E    
                1390      1400      1410      1420      1430      1440 
1381      GGCTGCTCACCATGTCCTGCAGTGACAAGATTGCACGCTGGAACGTGGTGGGCATCCAGG 
460       R  L  L  T  M  S  C  S  D  K  I  A  R  W  N  V  V  G  I  Q    
                1450      1460      1470      1480      1490      1500 
1441      GATCCCTGCTCAGCATTTTCGTGGAGCCCATTTACTTCTCGAGCATCATCCTGGGCAGCC 
480       G  S  L  L  S  I  F  V  E  P  I  Y  F  S  S  I  I  L  G  S    
                1510      1520      1530      1540      1550      1560 
1501      TTTACCACGGGGACCACCTTTCCAGGGCCATGTACCAGCGGATCTCCAACATAGAGGACC 
500       L  Y  H  G  D  H  L  S  R  A  M  Y  Q  R  I  S  N  I  E  D    
                1570      1580      1590      1600      1610      1620 
1561      TGCCACCTCTCTACACCCTCAACAAGCCTTTGCTCAGTGGCATCAGCAATGCAGAAGCAC 
520       L  P  P  L  Y  T  L  N  K  P  L  L  S  G  I  S  N  A  E  A    
                1630      1640      1650      1660      1670      1680 
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1621      GGCAGCCAGGGAAGGCCCCCAACTTCAGTGTCAACTGGACGGTAGGCGACTCCGCTATTG 
540       R  Q  P  G  K  A  P  N  F  S  V  N  W  T  V  G  D  S  A  I    
                1690      1700      1710      1720      1730      1740 
1681      AGGTCATCAACGCCACGACTGGGAAGGATGAGCTGGGCCGCGCGTCCCGCCTGTGTAAGC 
560       E  V  I  N  A  T  T  G  K  D  E  L  G  R  A  S  R  L  C  K    
                1750      1760      1770      1780      1790      1800 
1741      ACGCGTTGTACTGTCGCTGGATGCGTGTGCACGGCAAGGTTCCCTCCCACTTACTACGCT 
580       H  A  L  Y  C  R  W  M  R  V  H  G  K  V  P  S  H  L  L  R    
                1810      1820      1830      1840      1850      1860 
1801      CCAAGATTACCAAGCCCAACGTGTACCATGAGTCCAAGCTGGCGGCAAAGGAGTACCAGG 
600       S  K  I  T  K  P  N  V  Y  H  E  S  K  L  A  A  K  E  Y  Q    
                1870      1880      1890      1900      1910      1920 
1861      CCGCCAAGGCGCGTCTGTTCACAGCCTTCATCAAGGCGGGGCTGGGGGCCTGGGTGGAGA 
620       A  A  K  A  R  L  F  T  A  F  I  K  A  G  L  G  A  W  V  E    
                1930      1940      1950      1960      1970      1980 
1921      AGCCCACCGAGCAGGACCAGTTCTCACTCACGCCCTCTAGATGACTGCCTGTTCCGTAGC 
640       K  P  T  E  Q  D  Q  F  S  L  T  P  S  R  *  L  P  V  P  *    
                1990      2000      2010      2020      2030      2040 
1981      CGACACGGGCCCGTTTAAACCCGCTGATCAGCCTCGACTGTGCCTTCTAGTTGCCAGCCA 
660       P  T  R  A  R  L  N  P  L  I  S  L  D  C  A  F  *  L  P  A    
 
Sequence of SNAP-ADAR2 as expressed from the 293 genome with chosen editing sites (yellow). 
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               10        20        30        40        50        60 
1         GGAGACGCCATCCACGCTGTTTTGACCTCCATAGAAGACACCGGGACCGATCCAGCCTCC 
1            R  R  H  P  R  C  F  D  L  H  R  R  H  R  D  R  S  S  L   
                  70        80        90       100       110       120 
61        GGACTCTAGCGTTTAAACTTAAGCTTGGTACCGAGCTCGGATCCACCATGGACAAAGACT 
20        R  T  L  A  F  K  L  K  L  G  T  E  L  G  S  T  M  D  K  D    
                 130       140       150       160       170       180 
121       GCGAAATGAAGCGCACCACCCTGGATAGCCCTCTGGGCAAGCTGGAACTGTCTGGGTGCG 
40        C  E  M  K  R  T  T  L  D  S  P  L  G  K  L  E  L  S  G  C    
                 190       200       210       220       230       240 
181       AACAGGGCCTGCACCGTATCATCTTCCTGGGCAAAGGAACATCTGCCGCCGACGCCGTGG 
60        E  Q  G  L  H  R  I  I  F  L  G  K  G  T  S  A  A  D  A  V    
                 250       260       270       280       290       300 
241       AAGTGCCTGCCCCAGCCGCCGTGCTGGGCGGACCAGAGCCACTGATGCAGGCCACCGCCT 
80        E  V  P  A  P  A  A  V  L  G  G  P  E  P  L  M  Q  A  T  A    
                 310       320       330       340       350       360 
301       GGCTCAACGCCTACTTTCACCAGCCTGAGGCCATCGAGGAGTTCCCTGTGCCAGCCCTGC 
100       W  L  N  A  Y  F  H  Q  P  E  A  I  E  E  F  P  V  P  A  L    
                 370       380       390       400       410       420 
361       ACCACCCAGTGTTCCAGCAGGAGAGCTTTACCCGCCAGGTGCTGTGGAAACTGCTGAAAG 
120       H  H  P  V  F  Q  Q  E  S  F  T  R  Q  V  L  W  K  L  L  K    
                 430       440       450       460       470       480 
421       TGGTGAAGTTCGGAGAGGTCATCAGCTACAGCCACCTGGCCGCCCTGGCCGGCAATCCCG 
140       V  V  K  F  G  E  V  I  S  Y  S  H  L  A  A  L  A  G  N  P    
                 490       500       510       520       530       540 
481       CCGCCACCGCCGCCGTGAAAACCGCCCTGAGCGGAAATCCCGTGCCCATTCTGATCCCCT 
160       A  A  T  A  A  V  K  T  A  L  S  G  N  P  V  P  I  L  I  P    
                 550       560       570       580       590       600 
541       GCCACCGGGTGGTGCAGGGCGACCTGGACGTGGGGGGCTACGAGGGCGGGCTCGCCGTGA 
180       C  H  R  V  V  Q  G  D  L  D  V  G  G  Y  E  G  G  L  A  V    
                 610       620       630       640       650       660 
601       AAGAGTGGCTGCTGGCCCACGAGGGCCACAGACTGGGCAAGCCTGGGCTGGGTCCTGCAG 
200       K  E  W  L  L  A  H  E  G  H  R  L  G  K  P  G  L  G  P  A    
                 670       680       690       700       710       720 
661       GCGGAGGCGCGCCAGGGTCTGGCGGCGGCAGTAAGGCAGAACGCATGGGTTTCACAGAGG 
220       G  G  G  A  P  G  S  G  G  G  S  K  A  E  R  M  G  F  T  E    
                 730       740       750       760       770       780 
721       TAACCCCAGTGACAGGGGCCAGTCTCAGAAGAACTATGCTCCTCCTCTCAAGGTCCCCAG 
240       V  T  P  V  T  G  A  S  L  R  R  T  M  L  L  L  S  R  S  P    
                 790       800       810       820       830       840 
781       AAGCACAGCCAAAGACACTCCCTCTCACTGGCAGCACCTTCCATGACCAGATAGCCATGC 
260       E  A  Q  P  K  T  L  P  L  T  G  S  T  F  H  D  Q  I  A  M    
                 850       860       870       880       890       900 
841       TGAGCCACCGGTGCTTCAACACTCTGACTAACAGCTTCCAGCCCTCCTTGCTCGGCCGCA 
280       L  S  H  R  C  F  N  T  L  T  N  S  F  Q  P  S  L  L  G  R    
                 910       920       930       940       950       960 
901       AGATTCTGGCCGCCATCATTATGAAAAAAGACTCTGAGGACATGGGTGTCGTCGTCAGCT 
300       K  I  L  A  A  I  I  M  K  K  D  S  E  D  M  G  V  V  V  S    
                 970       980       990      1000      1010      1020 
961       TGGGAACAGGGAATCGCTGTGTAAAAGGAGATTCTCTCAGCCTAAAAGGAGAAACTGTCA 
320       L  G  T  G  N  R  C  V  K  G  D  S  L  S  L  K  G  E  T  V    
                1030      1040      1050      1060      1070      1080 
1021      ATGACTGCCATGCAGAAATAATCTCCCGGAGAGGCTTCATCAGGTTTCTCTACAGTGAGT 
340       N  D  C  H  A  E  I  I  S  R  R  G  F  I  R  F  L  Y  S  E    
                1090      1100      1110      1120      1130      1140 
1081      TAATGAAATACAACTCCCAGACTGCGAAGGATAGTATATTTGAACCTGCTAAGGGAGGAG 
360       L  M  K  Y  N  S  Q  T  A  K  D  S  I  F  E  P  A  K  G  G    
                1150      1160      1170      1180      1190      1200 
1141      AAAAGCTCCAAATAAAAAAGACTGTGTCATTCCATCTGTATATCAGCACTGCTCCGTGTG 
380       E  K  L  Q  I  K  K  T  V  S  F  H  L  Y  I  S  T  A  P  C    
                1210      1220      1230      1240      1250      1260 
1201      GAGATGGCGCCCTCTTTGACAAGTCCTGCAGCGACCGTGCTATGGAAAGCACAGAATCCC 
400       G  D  G  A  L  F  D  K  S  C  S  D  R  A  M  E  S  T  E  S    
                1270      1280      1290      1300      1310      1320 
1261      GCCACTACCCTGTCTTCGAGAATCCCAAACAAGGAAAGCTCCGCACCAAGGTGGAGAACG 
420       R  H  Y  P  V  F  E  N  P  K  Q  G  K  L  R  T  K  V  E  N    
                1330      1340      1350      1360      1370      1380 
1321      GACAAGGCACAATCCCTGTGGAATCCAGTGACATTGTGCCTACGTGGGATGGCATTCGGC 
440       G  Q  G  T  I  P  V  E  S  S  D  I  V  P  T  W  D  G  I  R    
                1390      1400      1410      1420      1430      1440 
1381      TCGGGGAGAGACTCCGTACCATGTCCTGTAGTGACAAAATCCTACGCTGGAACGTGCTGG 
460       L  G  E  R  L  R  T  M  S  C  S  D  K  I  L  R  W  N  V  L    
                1450      1460      1470      1480      1490      1500 
1441      GCCTGCAAGGGGCACTGTTGACCCACTTCCTGCAGCCCATTTATCTCAAATCTGTCACAT 
480       G  L  Q  G  A  L  L  T  H  F  L  Q  P  I  Y  L  K  S  V  T    
                1510      1520      1530      1540      1550      1560 
1501      TGGGTTACCTTTTCAGCCAAGGGCATCTGACCCGTGCTATTTGCTGTCGTGTGACAAGAG 
500       L  G  Y  L  F  S  Q  G  H  L  T  R  A  I  C  C  R  V  T  R    
                1570      1580      1590      1600      1610      1620 
1561      ATGGGAGTGCATTTGAGGATGGACTACGACATCCCTTTATTGTCAACCACCCCAAGGTTG 
520       D  G  S  A  F  E  D  G  L  R  H  P  F  I  V  N  H  P  K  V    
                1630      1640      1650      1660      1670      1680 
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1621      GCAGAGTCAGCATATATGATTCCAAAAGGCAATCCGGGAAGACTAAGGAGACAAGCGTCA 
540       G  R  V  S  I  Y  D  S  K  R  Q  S  G  K  T  K  E  T  S  V    
                1690      1700      1710      1720      1730      1740 
1681      ACTGGTGTCTGGCTGATGGCTATGACCTGGAGATCCTGGACGGTACCAGAGGCACTGTGG 
560       N  W  C  L  A  D  G  Y  D  L  E  I  L  D  G  T  R  G  T  V    
                1750      1760      1770      1780      1790      1800 
1741      ATGGGCCACGGAATGAATTGTCCCGGGTCTCCAAAAAGAACATTTTTCTTCTATTTAAGA 
580       D  G  P  R  N  E  L  S  R  V  S  K  K  N  I  F  L  L  F  K    
                1810      1820      1830      1840      1850      1860 
1801      AGCTCTGCTCCTTCCGTTACCGCAGGGATCTACTGAGACTCTCCTATGGTGAGGCCAAGA 
600       K  L  C  S  F  R  Y  R  R  D  L  L  R  L  S  Y  G  E  A  K    
                1870      1880      1890      1900      1910      1920 
1861      AAGCTGCCCGTGACTACGAGACGGCCAAGAACTACTTCAAAAAAGGCCTGAAGGATATGG 
620       K  A  A  R  D  Y  E  T  A  K  N  Y  F  K  K  G  L  K  D  M    
                1930      1940      1950      1960      1970      1980 
1921      GCTATGGGAACTGGATTAGCAAACCCCAGGAGGAAAAGAACTTTTATCTCTGCCCAGTAT 
640       G  Y  G  N  W  I  S  K  P  Q  E  E  K  N  F  Y  L  C  P  V    
                1990      2000      2010      2020      2030      2040 
1981      CTAGATGACTGCCTGTTCCGTAGCCGACACGGGCCCGTTTAAACCCGCTGATCAGCCTCG 
660       S  R  *  L  P  V  P  *  P  T  R  A  R  L  N  P  L  I  S  L    
                2050      2060      2070      2080      2090      2100 
2041      ACTGTGCCTTCTAGTTGCCAGCCATCTGTTGTTTGCCCCTCCCCCGTGCCTTCCTTGACC 
680       D  C  A  F  *  L  P  A  I  C  C  L  P  L  P  R  A  F  L  D    

 

Sequence of SNAP-ADAR1Q as expressed from the 293 genome with chosen editing sites (yellow). E/Q site 
is highlighted in cyan. 
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                10        20        30        40        50        60 
1         GGAGACGCCATCCACGCTGTTTTGACCTCCATAGAAGACACCGGGACCGATCCAGCCTCC 
1            R  R  H  P  R  C  F  D  L  H  R  R  H  R  D  R  S  S  L   
                  70        80        90       100       110       120 
61        GGACTCTAGCGTTTAAACTTAAGCTTGGTACCGAGCTCGGATCCACCATGGACAAAGACT 
20        R  T  L  A  F  K  L  K  L  G  T  E  L  G  S  T  M  D  K  D    
                 130       140       150       160       170       180 
121       GCGAAATGAAGCGCACCACCCTGGATAGCCCTCTGGGCAAGCTGGAACTGTCTGGGTGCG 
40        C  E  M  K  R  T  T  L  D  S  P  L  G  K  L  E  L  S  G  C    
                 190       200       210       220       230       240 
181       AACAGGGCCTGCACCGTATCATCTTCCTGGGCAAAGGAACATCTGCCGCCGACGCCGTGG 
60        E  Q  G  L  H  R  I  I  F  L  G  K  G  T  S  A  A  D  A  V    
                 250       260       270       280       290       300 
241       AAGTGCCTGCCCCAGCCGCCGTGCTGGGCGGACCAGAGCCACTGATGCAGGCCACCGCCT 
80        E  V  P  A  P  A  A  V  L  G  G  P  E  P  L  M  Q  A  T  A    
                 310       320       330       340       350       360 
301       GGCTCAACGCCTACTTTCACCAGCCTGAGGCCATCGAGGAGTTCCCTGTGCCAGCCCTGC 
100       W  L  N  A  Y  F  H  Q  P  E  A  I  E  E  F  P  V  P  A  L    
                 370       380       390       400       410       420 
361       ACCACCCAGTGTTCCAGCAGGAGAGCTTTACCCGCCAGGTGCTGTGGAAACTGCTGAAAG 
120       H  H  P  V  F  Q  Q  E  S  F  T  R  Q  V  L  W  K  L  L  K    
                 430       440       450       460       470       480 
421       TGGTGAAGTTCGGAGAGGTCATCAGCTACAGCCACCTGGCCGCCCTGGCCGGCAATCCCG 
140       V  V  K  F  G  E  V  I  S  Y  S  H  L  A  A  L  A  G  N  P    
                 490       500       510       520       530       540 
481       CCGCCACCGCCGCCGTGAAAACCGCCCTGAGCGGAAATCCCGTGCCCATTCTGATCCCCT 
160       A  A  T  A  A  V  K  T  A  L  S  G  N  P  V  P  I  L  I  P    
                 550       560       570       580       590       600 
541       GCCACCGGGTGGTGCAGGGCGACCTGGACGTGGGGGGCTACGAGGGCGGGCTCGCCGTGA 
180       C  H  R  V  V  Q  G  D  L  D  V  G  G  Y  E  G  G  L  A  V    
                 610       620       630       640       650       660 
601       AAGAGTGGCTGCTGGCCCACGAGGGCCACAGACTGGGCAAGCCTGGGCTGGGTCCTGCAG 
200       K  E  W  L  L  A  H  E  G  H  R  L  G  K  P  G  L  G  P  A    
                 670       680       690       700       710       720 
661       GCGGAGGCGCGCCAGGGTCTGGCGGCGGCAGTAAGAAGCTTGCCAAGGCCCGGGCTGCGC 
220       G  G  G  A  P  G  S  G  G  G  S  K  K  L  A  K  A  R  A  A    
                 730       740       750       760       770       780 
721       AGTCTGCCCTGGCCGCCATTTTTAACTTGCACTTGGATCAGACGCCATCTCGCCAGCCTA 
240       Q  S  A  L  A  A  I  F  N  L  H  L  D  Q  T  P  S  R  Q  P    
                 790       800       810       820       830       840 
781       TTCCCAGTGAGGGTCTTCAGCTGCATTTACCGCAGGTTTTAGCTGACGCTGTCTCACGCC 
260       I  P  S  E  G  L  Q  L  H  L  P  Q  V  L  A  D  A  V  S  R    
                 850       860       870       880       890       900 
841       TGGTCCTGGGTAAGTTTGGTGACCTGACCGACAACTTCTCCTCCCCTCACGCTCGCAGAA 
280       L  V  L  G  K  F  G  D  L  T  D  N  F  S  S  P  H  A  R  R    
                 910       920       930       940       950       960 
901       AAGTGCTGGCTGGAGTCGTCATGACAACAGGCACAGATGTTAAAGATGCCAAGGTGATAA 
300       K  V  L  A  G  V  V  M  T  T  G  T  D  V  K  D  A  K  V  I    
                 970       980       990      1000      1010      1020 
961       GTGTTTCTACAGGAACAAAATGTATTAATGGTGAATACATGAGTGATCGTGGCCTTGCAT 
320       S  V  S  T  G  T  K  C  I  N  G  E  Y  M  S  D  R  G  L  A    
                1030      1040      1050      1060      1070      1080 
1021      TAAATGACTGCCATGCAGAAATAATATCTCGGAGATCCTTGCTCAGATTTCTTTATACAC 
340       L  N  D  C  H  A  E  I  I  S  R  R  S  L  L  R  F  L  Y  T    
                1090      1100      1110      1120      1130      1140 
1081      AACTTGAGCTTTACTTAAATAACAAAGATGATCAAAAAAGATCCATCTTTCAGAAATCAG 
360       Q  L  E  L  Y  L  N  N  K  D  D  Q  K  R  S  I  F  Q  K  S    
                1150      1160      1170      1180      1190      1200 
1141      AGCGAGGGGGGTTTAGGCTGAAGGAGAATGTCCAGTTTCATCTGTACATCAGCACCTCTC 
380       E  R  G  G  F  R  L  K  E  N  V  Q  F  H  L  Y  I  S  T  S    
                1210      1220      1230      1240      1250      1260 
1201      CCTGTGGAGATGCCAGAATCTTCTCACCACATGAGCCAATCCTGGAAGAACCAGCAGATA 
400       P  C  G  D  A  R  I  F  S  P  H  E  P  I  L  E  E  P  A  D    
                1270      1280      1290      1300      1310      1320 
1261      GACACCCAAATCGTAAAGCAAGAGGACAGCTACGGACCAAAATAGAGTCTGGTCAGGGGA 
420       R  H  P  N  R  K  A  R  G  Q  L  R  T  K  I  E  S  G  Q  G    
                1330      1340      1350      1360      1370      1380 
1321      CGATTCCAGTGCGCTCCAATGCGAGCATCCAAACGTGGGACGGGGTGCTGCAAGGGGAGC 
440       T  I  P  V  R  S  N  A  S  I  Q  T  W  D  G  V  L  Q  G  E    
                1390      1400      1410      1420      1430      1440 
1381      GGCTGCTCACCATGTCCTGCAGTGACAAGATTGCACGCTGGAACGTGGTGGGCATCCAGG 
460       R  L  L  T  M  S  C  S  D  K  I  A  R  W  N  V  V  G  I  Q    
                1450      1460      1470      1480      1490      1500 
1441      GATCCCTGCTCAGCATTTTCGTGGAGCCCATTTACTTCTCGAGCATCATCCTGGGCAGCC 
480       G  S  L  L  S  I  F  V  E  P  I  Y  F  S  S  I  I  L  G  S    
                1510      1520      1530      1540      1550      1560 
1501      TTTACCACGGGGACCACCTTTCCAGGGCCATGTACCAGCGGATCTCCAACATAGAGGACC 
500       L  Y  H  G  D  H  L  S  R  A  M  Y  Q  R  I  S  N  I  E  D    
                1570      1580      1590      1600      1610      1620 
1561      TGCCACCTCTCTACACCCTCAACAAGCCTTTGCTCAGTGGCATCAGCAATGCAGAAGCAC 
520       L  P  P  L  Y  T  L  N  K  P  L  L  S  G  I  S  N  A  E  A    
                1630      1640      1650      1660      1670      1680 
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1621      GGCAGCCAGGGAAGGCCCCCAACTTCAGTGTCAACTGGACGGTAGGCGACTCCGCTATTG 
540       R  Q  P  G  K  A  P  N  F  S  V  N  W  T  V  G  D  S  A  I    
                1690      1700      1710      1720      1730      1740 
1681      AGGTCATCAACGCCACGACTGGGAAGGATGAGCTGGGCCGCGCGTCCCGCCTGTGTAAGC 
560       E  V  I  N  A  T  T  G  K  D  E  L  G  R  A  S  R  L  C  K    
                1750      1760      1770      1780      1790      1800 
1741      ACGCGTTGTACTGTCGCTGGATGCGTGTGCACGGCAAGGTTCCCTCCCACTTACTACGCT 
580       H  A  L  Y  C  R  W  M  R  V  H  G  K  V  P  S  H  L  L  R    
                1810      1820      1830      1840      1850      1860 
1801      CCAAGATTACCAAGCCCAACGTGTACCATGAGTCCAAGCTGGCGGCAAAGGAGTACCAGG 
600       S  K  I  T  K  P  N  V  Y  H  E  S  K  L  A  A  K  E  Y  Q    
                1870      1880      1890      1900      1910      1920 
1861      CCGCCAAGGCGCGTCTGTTCACAGCCTTCATCAAGGCGGGGCTGGGGGCCTGGGTGGAGA 
620       A  A  K  A  R  L  F  T  A  F  I  K  A  G  L  G  A  W  V  E    
                1930      1940      1950      1960      1970      1980 
1921      AGCCCACCGAGCAGGACCAGTTCTCACTCACGCCCTCTAGATGACTGCCTGTTCCGTAGC 
640       K  P  T  E  Q  D  Q  F  S  L  T  P  S  R  *  L  P  V  P  *    
                1990      2000      2010      2020      2030      2040 
1981      CGACACGGGCCCGTTTAAACCCGCTGATCAGCCTCGACTGTGCCTTCTAGTTGCCAGCCA 
660       P  T  R  A   

Sequence of SNAP-ADAR2Q as expressed from the 293 genome with chosen editing sites (yellow). E/Q site 
is highlighted in cyan. 
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                10        20        30        40        50        60 
1         GGAGACGCCATCCACGCTGTTTTGACCTCCATAGAAGACACCGGGACCGATCCAGCCTCC 
1            R  R  H  P  R  C  F  D  L  H  R  R  H  R  D  R  S  S  L   
                  70        80        90       100       110       120 
61        GGACTCTAGCGTTTAAACTTAAGCTTGGTACCGAGCTCGGATCCACCATGGACAAAGACT 
20        R  T  L  A  F  K  L  K  L  G  T  E  L  G  S  T  M  D  K  D    
                 130       140       150       160       170       180 
121       GCGAAATGAAGCGCACCACCCTGGATAGCCCTCTGGGCAAGCTGGAACTGTCTGGGTGCG 
40        C  E  M  K  R  T  T  L  D  S  P  L  G  K  L  E  L  S  G  C    
                 190       200       210       220       230       240 
181       AACAGGGCCTGCACCGTATCATCTTCCTGGGCAAAGGAACATCTGCCGCCGACGCCGTGG 
60        E  Q  G  L  H  R  I  I  F  L  G  K  G  T  S  A  A  D  A  V    
                 250       260       270       280       290       300 
241       AAGTGCCTGCCCCAGCCGCCGTGCTGGGCGGACCAGAGCCACTGATGCAGGCCACCGCCT 
80        E  V  P  A  P  A  A  V  L  G  G  P  E  P  L  M  Q  A  T  A    
                 310       320       330       340       350       360 
301       GGCTCAACGCCTACTTTCACCAGCCTGAGGCCATCGAGGAGTTCCCTGTGCCAGCCCTGC 
100       W  L  N  A  Y  F  H  Q  P  E  A  I  E  E  F  P  V  P  A  L    
                 370       380       390       400       410       420 
361       ACCACCCAGTGTTCCAGCAGGAGAGCTTTACCCGCCAGGTGCTGTGGAAACTGCTGAAAG 
120       H  H  P  V  F  Q  Q  E  S  F  T  R  Q  V  L  W  K  L  L  K    
                 430       440       450       460       470       480 
421       TGGTGAAGTTCGGAGAGGTCATCAGCTACAGCCACCTGGCCGCCCTGGCCGGCAATCCCG 
140       V  V  K  F  G  E  V  I  S  Y  S  H  L  A  A  L  A  G  N  P    
                 490       500       510       520       530       540 
481       CCGCCACCGCCGCCGTGAAAACCGCCCTGAGCGGAAATCCCGTGCCCATTCTGATCCCCT 
160       A  A  T  A  A  V  K  T  A  L  S  G  N  P  V  P  I  L  I  P    
                 550       560       570       580       590       600 
541       GCCACCGGGTGGTGCAGGGCGACCTGGACGTGGGGGGCTACGAGGGCGGGCTCGCCGTGA 
180       C  H  R  V  V  Q  G  D  L  D  V  G  G  Y  E  G  G  L  A  V    
                 610       620       630       640       650       660 
601       AAGAGTGGCTGCTGGCCCACGAGGGCCACAGACTGGGCAAGCCTGGGCTGGGTCCTGCAG 
200       K  E  W  L  L  A  H  E  G  H  R  L  G  K  P  G  L  G  P  A    
                 670       680       690       700       710       720 
661       GCGGAGGCGCGCCAGGGTCTGGCGGCGGCAGTAAGAAGCTTGCCAAGGCCCGGGCTGCGC 
220       G  G  G  A  P  G  S  G  G  G  S  K  K  L  A  K  A  R  A  A    
                 730       740       750       760       770       780 
721       AGTCTGCCCTGGCCGCCATTTTTAACTTGCACTTGGATCAGACGCCATCTCGCCAGCCTA 
240       Q  S  A  L  A  A  I  F  N  L  H  L  D  Q  T  P  S  R  Q  P    
                 790       800       810       820       830       840 
781       TTCCCAGTGAGGGTCTTCAGCTGCATTTACCGCAGGTTTTAGCTGACGCTGTCTCACGCC 
260       I  P  S  E  G  L  Q  L  H  L  P  Q  V  L  A  D  A  V  S  R    
                 850       860       870       880       890       900 
841       TGGTCCTGGGTAAGTTTGGTGACCTGACCGACAACTTCTCCTCCCCTCACGCTCGCAGAA 
280       L  V  L  G  K  F  G  D  L  T  D  N  F  S  S  P  H  A  R  R    
                 910       920       930       940       950       960 
901       AAGTGCTGGCTGGAGTCGTCATGACAACAGGCACAGATGTTAAAGATGCCAAGGTGATAA 
300       K  V  L  A  G  V  V  M  T  T  G  T  D  V  K  D  A  K  V  I    
                 970       980       990      1000      1010      1020 
961       GTGTTTCTACAGGAGGAAAATGTATTAATGGTGAATACATGAGTGATCGTGGCCTTGCAT 
320       S  V  S  T  G  G  K  C  I  N  G  E  Y  M  S  D  R  G  L  A    
                1030      1040      1050      1060      1070      1080 
1021      TAAATGACTGCCATGCAGAAATAATATCTCGGAGATCCTTGCTCAGATTTCTTTATACAC 
340       L  N  D  C  H  A  E  I  I  S  R  R  S  L  L  R  F  L  Y  T    
                1090      1100      1110      1120      1130      1140 
1081      AACTTGAGCTTTACTTAAATAACAAAGATGATCAAAAAAGATCCATCTTTCAGAAATCAG 
360       Q  L  E  L  Y  L  N  N  K  D  D  Q  K  R  S  I  F  Q  K  S    
                1150      1160      1170      1180      1190      1200 
1141      AGCGAGGGGGGTTTAGGCTGAAGGAGAATGTCCAGTTTCATCTGTACATCAGCACCTCTC 
380       E  R  G  G  F  R  L  K  E  N  V  Q  F  H  L  Y  I  S  T  S    
                1210      1220      1230      1240      1250      1260 
1201      CCTGTGGAGATGCCAGAATCTTCTCACCACATGAGCCAATCCTGGAAGAACCAGCAGATA 
400       P  C  G  D  A  R  I  F  S  P  H  E  P  I  L  E  E  P  A  D    
                1270      1280      1290      1300      1310      1320 
1261      GACACCCAAATCGTAAAGCAAGAGGACAGCTACGGACCAAAATAGAGTCTGGTCAGGGGA 
420       R  H  P  N  R  K  A  R  G  Q  L  R  T  K  I  E  S  G  Q  G    
                1330      1340      1350      1360      1370      1380 
1321      CGATTCCAGTGCGCTCCAATGCGAGCATCCAAACGTGGGACGGGGTGCTGCAAGGGGAGC 
440       T  I  P  V  R  S  N  A  S  I  Q  T  W  D  G  V  L  Q  G  E    
                1390      1400      1410      1420      1430      1440 
1381      GGCTGCTCACCATGTCCTGCAGTGACAAGATTGCACGCTGGAACGTGGTGGGCATCCAGG 
460       R  L  L  T  M  S  C  S  D  K  I  A  R  W  N  V  V  G  I  Q    
                1450      1460      1470      1480      1490      1500 
1441      GATCCCTGCTCAGCATTTTCGTGGAGCCCATTTACTTCTCGAGCATCATCCTGGGCAGCC 
480       G  S  L  L  S  I  F  V  E  P  I  Y  F  S  S  I  I  L  G  S    
                1510      1520      1530      1540      1550      1560 
1501      TTTACCACGGGGACCACCTTTCCAGGGCCATGTACCAGCGGATCTCCAACATAGAGGACC 
500       L  Y  H  G  D  H  L  S  R  A  M  Y  Q  R  I  S  N  I  E  D    
                1570      1580      1590      1600      1610      1620 
1561      TGCCACCTCTCTACACCCTCAACAAGCCTTTGCTCAGTGGCATCAGCAATGCAGAAGCAC 
520       L  P  P  L  Y  T  L  N  K  P  L  L  S  G  I  S  N  A  E  A    
                1630      1640      1650      1660      1670      1680 
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1621      GGCAGCCAGGGAAGGCCCCCAACTTCAGTGTCAACTGGACGGTAGGCGACTCCGCTATTG 
540       R  Q  P  G  K  A  P  N  F  S  V  N  W  T  V  G  D  S  A  I    
                1690      1700      1710      1720      1730      1740 
1681      AGGTCATCAACGCCACGACTGGGAAGGATGAGCTGGGCCGCGCGTCCCGCCTGTGTAAGC 
560       E  V  I  N  A  T  T  G  K  D  E  L  G  R  A  S  R  L  C  K    
                1750      1760      1770      1780      1790      1800 
1741      ACGCGTTGTACTGTCGCTGGATGCGTGTGCACGGCAAGGTTCCCTCCCACTTACTACGCT 
580       H  A  L  Y  C  R  W  M  R  V  H  G  K  V  P  S  H  L  L  R    
                1810      1820      1830      1840      1850      1860 
1801      CCAAGATTACCAAGCCCAACGTGTACCATGAGTCCAAGCTGGCGGCAAAGGAGTACCAGG 
600       S  K  I  T  K  P  N  V  Y  H  E  S  K  L  A  A  K  E  Y  Q    
                1870      1880      1890      1900      1910      1920 
1861      CCGCCAAGGCGCGTCTGTTCACAGCCTTCATCAAGGCGGGGCTGGGGGCCTGGGTGGAGA 
620       A  A  K  A  R  L  F  T  A  F  I  K  A  G  L  G  A  W  V  E    
                1930      1940      1950      1960      1970      1980 
1921      AGCCCACCGAGCAGGACCAGTTCTCACTCACGCCCTCTAGATGACTGCCTGTTCCGTAGC 
640       K  P  T  E  Q  D  Q  F  S  L  T  P  S  R  *  L  P  V  P  *    
                1990      2000      2010      2020      2030      2040 
1981      CGACACGGGCCCGTTTAAACCCGCTGATCAGCCTCGACTGTGCCTTCTAGTTGCCAGCCA 
660       P  T  R  A   

Sequence of SNAP-ADAR2QG as expressed from the 293 genome with chosen editing sites (yellow). E/Q 
and T/G sites are highlighted in cyan. 
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                  10        20        30        40        50        60 
1         GGCACCGCAGGCCCCGGGATGCTAGTGCGCAGCGGGTGCATCCCTGTCCGGATGCTGCGC 
1          G  T  A  G  P  G  M  L  V  R  S  G  C  I  P  V  R  M  L  R  
                  70        80        90       100       110       120 
61        CTGCGGTAGAGCGGCCGCCATGTTGCAACCGGGAAGGAAATGAATGGGCAGCCGTTAGGA 
21         L  R  *  S  G  R  H  V  A  T  G  K  E  M  N  G  Q  P  L  G   
                 130       140       150       160       170       180 
121       AAGCCTGCCGGTGACTAACCCTGCGCTCCTGCCTCGATGGGTGGAGTCGCGTGTGGCGGG 
41         K  P  A  G  D  *  P  C  A  P  A  S  M  G  G  V  A  C  G  G   
                 190       200       210       220       230       240 
181       GAAGTCAGGTGGAGCGAGGCTAGCTGGCCCGATTTCTCCTCCGGGTGATGCTTTTCCTAG 
61         E  V  R  W  S  E  A  S  W  P  D  F  S  S  G  *  C  F  S  *   
                 250       260       270       280       290       300 
241       ATTATTCTCTGATTTGGTCGTATTGGGCGCCTGGTCACCAGGGCTGCTTTTAACTCTGGT 
81         I  I  L  *  F  G  R  I  G  R  L  V  T  R  A  A  F  N  S  G   
                 310       320       330       340       350       360 
301       AAAGTGGATATTGTTGCCATCAATGACCCCTTCATTGACCTCAACTACATGGTTTACATG 
101        K  V  D  I  V  A  I  N  D  P  F  I  D  L  N  Y  M  V  Y  M   
                 370       380       390       400       410       420 
361       TTCCAATATGATTCCACCCATGGCAAATTCCATGGCACCGTCAAGGCTGAGAACGGGAAG 
121        F  Q  Y  D  S  T  H  G  K  F  H  G  T  V  K  A  E  N  G  K   
                 430       440       450       460       470       480 
421       CTTGTCATCAATGGAAATCCCATCACCATCTTCCAGGAGCGAGATCCCTCCAAAATCAAG 
141        L  V  I  N  G  N  P  I  T  I  F  Q  E  R  D  P  S  K  I  K   
                 490       500       510       520       530       540 
481       TGGGGCGATGCTGGCGCTGAGTACGTCGTGGAGTCCACTGGCGTCTTCACCACCATGGAG 
161        W  G  D  A  G  A  E  Y  V  V  E  S  T  G  V  F  T  T  M  E   
                 550       560       570       580       590       600 
541       AAGGCTGGGGCTCATTTGCAGGGGGGAGCCAAAAGGGTCATCATCTCTGCCCCCTCTGCT 
181        K  A  G  A  H  L  Q  G  G  A  K  R  V  I  I  S  A  P  S  A   
                 610       620       630       640       650       660 
601       GATGCCCCCATGTTCGTCATGGGTGTGAACCATGAGAAGTATGACAACAGCCTCAAGATC 
201        D  A  P  M  F  V  M  G  V  N  H  E  K  Y  D  N  S  L  K  I   
                 670       680       690  #1   700       710       720 
661       ATCAGCAATGCCTCCTGCACCACCAACTGCTTAGCACCCCTGGCCAAGGTCATCCATGAC 
221        I  S  N  A  S  C  T  T  N  C  L  A  P  L  A  K  V  I  H  D   
                 730       740       750       760       770       780 
721       AACTTTGGTATCGTGGAAGGACTCATGACCACAGTCCATGCCATCACTGCCACCCAGAAG 
241        N  F  G  I  V  E  G  L  M  T  T  V  H  A  I  T  A  T  Q  K   
                 790       800       810       820       830       840 
781       ACTGTGGATGGCCCCTCCGGGAAACTGTGGCGTGATGGCCGCGGGGCTCTCCAGAACATC 
261        T  V  D  G  P  S  G  K  L  W  R  D  G  R  G  A  L  Q  N  I   
                 850       860       870       880       890       900 
841       ATCCCTGCCTCTACTGGCGCTGCCAAGGCTGTGGGCAAGGTCATCCCTGAGCTGAACGGG 
281        I  P  A  S  T  G  A  A  K  A  V  G  K  V  I  P  E  L  N  G   
                 910       920       930       940       950       960 
901       AAGCTCACTGGCATGGCCTTCCGTGTCCCCACTGCCAACGTGTCAGTGGTGGACCTGACC 
301        K  L  T  G  M  A  F  R  V  P  T  A  N  V  S  V  V  D  L  T   
                  #2       980       990      1000      1010      1020 
961       TGCCGTCTAGAAAAACCTGCCAAATATGATGACATCAAGAAGGTGGTGAAGCAGGCGTCG 
321        C  R  L  E  K  P  A  K  Y  D  D  I  K  K  V  V  K  Q  A  S   
                1030      1040      1050      1060      1070      1080 
1021      GAGGGCCCCCTCAAGGGCATCCTGGGCTACACTGAGCACCAGGTGGTCTCCTCTGACTTC 
341        E  G  P  L  K  G  I  L  G  Y  T  E  H  Q  V  V  S  S  D  F   
                1090      1100      1110      1120      1130      1140 
1081      AACAGCGACACCCACTCCTCCACCTTTGACGCTGGGGCTGGCATTGCCCTCAACGACCAC 
361        N  S  D  T  H  S  S  T  F  D  A  G  A  G  I  A  L  N  D  H   
                1150      1160      1170      1180      1190      1200 
1141      TTTGTCAAGCTCATTTCCTGGTATGACAACGAATTTGGCTACAGCAACAGGGTGGTGGAC 
381        F  V  K  L  I  S  W  Y  D  N  E  F  G  Y  S  N  R  V  V  D   
                1210      1220      1230      1240      1250      1260 
1201      CTCATGGCCCACATGGCCTCCAAGGAGTAAGACCCCTGGACCACCAGCCCCAGCAAGAGC 
401        L  M  A  H  M  A  S  K  E  *  D  P  W  T  T  S  P  S  K  S   
                1270      1280      1290      1300      1310      1320 
1261      ACAAGAGGAAGAGAGAGACCCTCACTGCTGGGGAGTCCCTGCCACACTCAGTCCCCCACC 
421        T  R  G  R  E  R  P  S  L  L  G  S  P  C  H  T  Q  S  P  T   
                1330      1340      1350      1360      1370      1380 
1321      ACACTGAATCTCCCCTCCTCACAGTTGCCATGTAGACCCCTTGAAGAGGGGAGGGGCCTA 
441        T  L  N  L  P  S  S  Q  L  P  C  R  P  L  E  E  G  R  G  L   
                1390      1400      1410      1420      1430      1440 
1381      GGGAGCCGCACCTTGTCATGTACCATCAATAAAGTACCCTGTGCTCAACCAGTTAAAAAA 
461        G  S  R  T  L  S  C  T  I  N  K  V  P  C  A  Q  P  V  K  K   
                1450 
1441      AAAAAAAAAAAAAAA 
481        K  K  K  K  K      

Sequence of GAPDH mRNA isoform 2 (NM_001256799.2) with chosen editing sites (yellow). 
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                 10        20        30        40        50        60 
1         GCCTCAAGACCTTGGGCTGGGACTGGCTGAGCCTGGCGGGAGGCGGGGTCCGAGTCACCG 
1            L  K  T  L  G  W  D  W  L  S  L  A  G  G  G  V  R  V  T   
                  70        80        90       100       110       120 
61        CCTGCCGCCGCGCCCCCGGTTTCTATAAATTGAGCCCGCAGCCTCCCGCTTCGCTCTCTG 
20        A  C  R  R  A  P  G  F  Y  K  L  S  P  Q  P  P  A  S  L  S    
                 130       140       150       160       170       180 
121       CTCCTCCTGTTCGACAGTCAGCCGCATCTTCTTTTGCGTCGCCAGCCGAGCCACATCGCT 
40        A  P  P  V  R  Q  S  A  A  S  S  F  A  S  P  A  E  P  H  R    
                 190       200       210       220       230       240 
181       CAGACACCATGGGGAAGGTGAAGGTCGGAGTCAACGGATTTGGTCGTATTGGGCGCCTGG 
60        S  D  T  M  G  K  V  K  V  G  V  N  G  F  G  R  I  G  R  L    
                 250       260       270       280       290       300 
241       TCACCAGGGCTGCTTTTAACTCTGGTAAAGTGGATATTGTTGCCATCAATGACCCCTTCA 
80        V  T  R  A  A  F  N  S  G  K  V  D  I  V  A  I  N  D  P  F    
                 310       320       330       340       350       360 
301       TTGACCTCAACTACATGGTTTACATGTTCCAATATGATTCCACCCATGGCAAATTCCATG 
100       I  D  L  N  Y  M  V  Y  M  F  Q  Y  D  S  T  H  G  K  F  H    
                 370       380       390       400       410       420 
361       GCACCGTCAAGGCTGAGAACGGGAAGCTTGTCATCAATGGAAATCCCATCACCATCTTCC 
120       G  T  V  K  A  E  N  G  K  L  V  I  N  G  N  P  I  T  I  F    
                 430       440       450       460       470       480 
421       AGGAGCGAGATCCCTCCAAAATCAAGTGGGGCGATGCTGGCGCTGAGTACGTCGTGGAGT 
140       Q  E  R  D  P  S  K  I  K  W  G  D  A  G  A  E  Y  V  V  E    
                 490       500       510       520       530       540 
481       CCACTGGCGTCTTCACCACCATGGAGAAGGCTGGGGCTCATTTGCAGGGGGGAGCCAAAA 
160       S  T  G  V  F  T  T  M  E  K  A  G  A  H  L  Q  G  G  A  K    
                 550       560       570       580       590       600 
541       GGGTCATCATCTCTGCCCCCTCTGCTGATGCCCCCATGTTCGTCATGGGTGTGAACCATG 
180       R  V  I  I  S  A  P  S  A  D  A  P  M  F  V  M  G  V  N  H    
                 610       620       630       640       650        #1 
601       AGAAGTATGACAACAGCCTCAAGATCATCAGCAATGCCTCCTGCACCACCAACTGCTTAG 
200       E  K  Y  D  N  S  L  K  I  I  S  N  A  S  C  T  T  N  C  L    
                 670       680       690       700       710       720 
661       CACCCCTGGCCAAGGTCATCCATGACAACTTTGGTATCGTGGAAGGACTCATGACCACAG 
220       A  P  L  A  K  V  I  H  D  N  F  G  I  V  E  G  L  M  T  T    
                 730       740       750       760       770       780 
721       TCCATGCCATCACTGCCACCCAGAAGACTGTGGATGGCCCCTCCGGGAAACTGTGGCGTG 
240       V  H  A  I  T  A  T  Q  K  T  V  D  G  P  S  G  K  L  W  R    
                 790       800       810       820       830       840 
781       ATGGCCGCGGGGCTCTCCAGAACATCATCCCTGCCTCTACTGGCGCTGCCAAGGCTGTGG 
260       D  G  R  G  A  L  Q  N  I  I  P  A  S  T  G  A  A  K  A  V    
                 850       860       870       880       890       900 
841       GCAAGGTCATCCCTGAGCTGAACGGGAAGCTCACTGGCATGGCCTTCCGTGTCCCCACTG 
280       G  K  V  I  P  E  L  N  G  K  L  T  G  M  A  F  R  V  P  T    
                 910       920       930   #2  940       950       960 
901       CCAACGTGTCAGTGGTGGACCTGACCTGCCGTCTAGAAAAACCTGCCAAATATGATGACA 
300       A  N  V  S  V  V  D  L  T  C  R  L  E  K  P  A  K  Y  D  D    
                 970       980       990      1000      1010      1020 
961       TCAAGAAGGTGGTGAAGCAGGCGTCGGAGGGCCCCCTCAAGGGCATCCTGGGCTACACTG 
320       I  K  K  V  V  K  Q  A  S  E  G  P  L  K  G  I  L  G  Y  T    
                1030      1040      1050      1060      1070      1080 
1021      AGCACCAGGTGGTCTCCTCTGACTTCAACAGCGACACCCACTCCTCCACCTTTGACGCTG 
340       E  H  Q  V  V  S  S  D  F  N  S  D  T  H  S  S  T  F  D  A    
                1090      1100      1110      1120      1130      1140 
1081      GGGCTGGCATTGCCCTCAACGACCACTTTGTCAAGCTCATTTCCTGGTATGACAACGAAT 
360       G  A  G  I  A  L  N  D  H  F  V  K  L  I  S  W  Y  D  N  E    
                1150      1160      1170      1180      1190      1200 
1141      TTGGCTACAGCAACAGGGTGGTGGACCTCATGGCCCACATGGCCTCCAAGGAGTAAGACC 
380       F  G  Y  S  N  R  V  V  D  L  M  A  H  M  A  S  K  E  *  D    
                1210      1220      1230      1240      1250      1260 
1201      CCTGGACCACCAGCCCCAGCAAGAGCACAAGAGGAAGAGAGAGACCCTCACTGCTGGGGA 
400       P  W  T  T  S  P  S  K  S  T  R  G  R  E  R  P  S  L  L  G    
                1270      1280      1290      1300      1310      1320 
1261      GTCCCTGCCACACTCAGTCCCCCACCACACTGAATCTCCCCTCCTCACAGTTGCCATGTA 
420       S  P  C  H  T  Q  S  P  T  T  L  N  L  P  S  S  Q  L  P  C    
                1330      1340      1350      1360      1370      1380 
1321      GACCCCTTGAAGAGGGGAGGGGCCTAGGGAGCCGCACCTTGTCATGTACCATCAATAAAG 
440       R  P  L  E  E  G  R  G  L  G  S  R  T  L  S  C  T  I  N  K    
                1390      1400      1410      1420 
1381      TACCCTGTGCTCAACCAGTTAAAAAAAAAAAAAAAAAAAAA 
460       V  P  C  A  Q  P  V  K  K  K  K  K  K        

Sequence of GAPDH mRNA isoform 1 (NM_002046.5) with chosen editing sites (yellow). 
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                  10        20        30        40        50        60 
1         ACCGCCGAGACCGCGTCCGCCCCGCGAGCACAGAGCCTCGCCTTTGCCGATCCGCCGCCC 
1          T  A  E  T  A  S  A  P  R  A  Q  S  L  A  F  A  D  P  P  P  
                  70        80        90       100       110       120 
61        GTCCACACCCGCCGCCAGCTCACCATGGATGATGATATCGCCGCGCTCGTCGTCGACAAC 
21         V  H  T  R  R  Q  L  T  M  D  D  D  I  A  A  L  V  V  D  N   
                 130       140       150       160       170       180 
121       GGCTCCGGCATGTGCAAGGCCGGCTTCGCGGGCGACGATGCCCCCCGGGCCGTCTTCCCC 
41         G  S  G  M  C  K  A  G  F  A  G  D  D  A  P  R  A  V  F  P   
                 190       200       210       220       230       240 
181       TCCATCGTGGGGCGCCCCAGGCACCAGGGCGTGATGGTGGGCATGGGTCAGAAGGATTCC 
61         S  I  V  G  R  P  R  H  Q  G  V  M  V  G  M  G  Q  K  D  S   
                 250       260       270       280       290       300 
241       TATGTGGGCGACGAGGCCCAGAGCAAGAGAGGCATCCTCACCCTGAAGTACCCCATCGAG 
81         Y  V  G  D  E  A  Q  S  K  R  G  I  L  T  L  K  Y  P  I  E   
                 310       320       330       340       350       360 
301       CACGGCATCGTCACCAACTGGGACGACATGGAGAAAATCTGGCACCACACCTTCTACAAT 
101        H  G  I  V  T  N  W  D  D  M  E  K  I  W  H  H  T  F  Y  N   
                 370       380       390       400       410       420 
361       GAGCTGCGTGTGGCTCCCGAGGAGCACCCCGTGCTGCTGACCGAGGCCCCCCTGAACCCC 
121        E  L  R  V  A  P  E  E  H  P  V  L  L  T  E  A  P  L  N  P   
                 430       440       450       460       470       480 
421       AAGGCCAACCGCGAGAAGATGACCCAGATCATGTTTGAGACCTTCAACACCCCAGCCATG 
141        K  A  N  R  E  K  M  T  Q  I  M  F  E  T  F  N  T  P  A  M   
                 490       500       510       520       530       540 
481       TACGTTGCTATCCAGGCTGTGCTATCCCTGTACGCCTCTGGCCGTACCACTGGCATCGTG 
161        Y  V  A  I  Q  A  V  L  S  L  Y  A  S  G  R  T  T  G  I  V   
                 550       560       570       580       590       600 
541       ATGGACTCCGGTGACGGGGTCACCCACACTGTGCCCATCTACGAGGGGTATGCCCTCCCC 
181        M  D  S  G  D  G  V  T  H  T  V  P  I  Y  E  G  Y  A  L  P   
                 610       620       630       640       650       660 
601       CATGCCATCCTGCGTCTGGACCTGGCTGGCCGGGACCTGACTGACTACCTCATGAAGATC 
201        H  A  I  L  R  L  D  L  A  G  R  D  L  T  D  Y  L  M  K  I   
                 670       680       690       700       710       720 
661       CTCACCGAGCGCGGCTACAGCTTCACCACCACGGCCGAGCGGGAAATCGTGCGTGACATT 
221        L  T  E  R  G  Y  S  F  T  T  T  A  E  R  E  I  V  R  D  I   
                 730       740       750       760       770       780 
721       AAGGAGAAGCTGTGCTACGTCGCCCTGGACTTCGAGCAAGAGATGGCCACGGCTGCTTCC 
241        K  E  K  L  C  Y  V  A  L  D  F  E  Q  E  M  A  T  A  A  S   
                 790       800       810       820       830       840 
781       AGCTCCTCCCTGGAGAAGAGCTACGAGCTGCCTGACGGCCAGGTCATCACCATTGGCAAT 
261        S  S  S  L  E  K  S  Y  E  L  P  D  G  Q  V  I  T  I  G  N   
                 850       860       870       880       890       900 
841       GAGCGGTTCCGCTGCCCTGAGGCACTCTTCCAGCCTTCCTTCCTGGGCATGGAGTCCTGT 
281        E  R  F  R  C  P  E  A  L  F  Q  P  S  F  L  G  M  E  S  C   
                 910       920       930       940       950       960 
901       GGCATCCACGAAACTACCTTCAACTCCATCATGAAGTGTGACGTGGACATCCGCAAAGAC 
301        G  I  H  E  T  T  F  N  S  I  M  K  C  D  V  D  I  R  K  D   
                 970       980       990      1000      1010      1020 
961       CTGTACGCCAACACAGTGCTGTCTGGCGGCACCACCATGTACCCTGGCATTGCCGACAGG 
321        L  Y  A  N  T  V  L  S  G  G  T  T  M  Y  P  G  I  A  D  R   
                1030      1040      1050      1060      1070      1080 
1021      ATGCAGAAGGAGATCACTGCCCTGGCACCCAGCACAATGAAGATCAAGATCATTGCTCCT 
341        M  Q  K  E  I  T  A  L  A  P  S  T  M  K  I  K  I  I  A  P   
                1090      1100      1110      1120      1130      1140 
1081      CCTGAGCGCAAGTACTCCGTGTGGATCGGCGGCTCCATCCTGGCCTCGCTGTCCACCTTC 
361        P  E  R  K  Y  S  V  W  I  G  G  S  I  L  A  S  L  S  T  F   
                1150      1160      1170      1180      1190      1200 
1141      CAGCAGATGTGGATCAGCAAGCAGGAGTATGACGAGTCCGGCCCCTCCATCGTCCACCGC 
381        Q  Q  M  W  I  S  K  Q  E  Y  D  E  S  G  P  S  I  V  H  R   
                1210      1220      1230      1240      1250      1260 
1201      AAATGCTTCTAGGCGGACTATGACTTAGTTGCGTTACACCCTTTCTTGACAAAACCTAAC 
401        K  C  F  *  A  D  Y  D  L  V  A  L  H  P  F  L  T  K  P  N   
                1270      1280      1290      1300      1310      1320 
1261      TTGCGCAGAAAACAAGATGAGATTGGCATGGCTTTATTTGTTTTTTTTGTTTTGTTTTGG 
421        L  R  R  K  Q  D  E  I  G  M  A  L  F  V  F  F  V  L  F  W   
                1330      1340      1350      1360      1370      1380 
1321      TTTTTTTTTTTTTTTTGGCTTGACTCAGGATTTAAAAACTGGAACGGTGAAGGTGACAGC 
441        F  F  F  F  F  W  L  D  S  G  F  K  N  W  N  G  E  G  D  S   
                1390      1400      1410      1420      1430      1440 
1381      AGTCGGTTGGAGCGAGCATCCCCCAAAGTTCACAATGTGGCCGAGGACTTTGATTGCACA 
461        S  R  L  E  R  A  S  P  K  V  H  N  V  A  E  D  F  D  C  T   
                1450      1460      1470      1480      1490      1500 
1441      TTGTTGTTTTTTTAATAGTCATTCCAAATATGAGATGCGTTGTTACAGGAAGTCCCTTGC 
481        L  L  F  F  *  *  S  F  Q  I  *  D  A  L  L  Q  E  V  P  C   
                1510      1520      1530      1540      1550      1560 
1501      CATCCTAAAAGCCACCCCACTTCTCTCTAAGGAGAATGGCCCAGTCCTCTCCCAAGTCCA 
501        H  P  K  S  H  P  T  S  L  *  G  E  W  P  S  P  L  P  S  P   
                1570      1580      1590      1600      1610      1620 
1561      CACAGGGGAGGTGATAGCATTGCTTTCGTGTAAATTATGTAATGCAAAATTTTTTTAATC 
521        H  R  G  G  D  S  I  A  F  V  *  I  M  *  C  K  I  F  L  I   
                1630      1640      1650      1660      1670      1680 
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1621      TTCGCCTTAATACTTTTTTATTTTGTTTTATTTTGAATGATGAGCCTTCGTGCCCCCCCT 
541        F  A  L  I  L  F  Y  F  V  L  F  *  M  M  S  L  R  A  P  P   
                1690      1700      1710      1720      1730      1740 
1681      TCCCCCTTTTTTGTCCCCCAACTTGAGATGTATGAAGGCTTTTGGTCTCCCTGGGAGTGG 
561        S  P  F  F  V  P  Q  L  E  M  Y  E  G  F  W  S  P  W  E  W   
                1750      1760      1770      1780      1790      1800 
1741      GTGGAGGCAGCCAGGGCTTACCTGTACACTGACTTGAGACCAGTTGAATAAAAGTGCACA 
581        V  E  A  A  R  A  Y  L  Y  T  D  L  R  P  V  E  *  K  C  T   
                1810      1820      1830      1840      1850 
1801      CCTTAAAAATGAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA 
601        P  *  K  *  K  K  K  K  K  K  K  K  K  K  K  K  K            

 

Sequence of ACTB mRNA (NM_001101.3) with chosen editing site (yellow). 
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                 10        20        30        40        50        60 
1         GTCCTCAACCAAGATGGCGCGGATGGCTTCAGGCGCATCACGACACCGGCGCGTCACGCG 
1            P  Q  P  R  W  R  G  W  L  Q  A  H  H  D  T  G  A  S  R   
                  70        80        90       100       110       120 
61        ACCCGCCCTACGGGCACCTCCCGCGCTTTTCTTAGCGCCGCAGACGGTGGCCGAGCGGGG 
20        D  P  P  Y  G  H  L  P  R  F  S  *  R  R  R  R  W  P  S  G    
                 130       140       150       160       170       180 
121       GACCGGGAAGCATGGCCCGGGGGTCGGCGGTTGCCTGGGCGGCGCTCGGGCCGTTGTTGT 
40        G  P  G  S  M  A  R  G  S  A  V  A  W  A  A  L  G  P  L  L    
                 190       200       210       220       230       240 
181       GGGGCTGCGCGCTGGGGCTGCAGGGCGGGATGCTGTACCCCCAGGAGAGCCCGTCGCGGG 
60        W  G  C  A  L  G  L  Q  G  G  M  L  Y  P  Q  E  S  P  S  R    
                 250       260       270       280       290       300 
241       AGTGCAAGGAGCTGGACGGCCTCTGGAGCTTCCGCGCCGACTTCTCTGACAACCGACGCC 
80        E  C  K  E  L  D  G  L  W  S  F  R  A  D  F  S  D  N  R  R    
                 310       320       330       340       350       360 
301       GGGGCTTCGAGGAGCAGTGGTACCGGCGGCCGCTGTGGGAGTCAGGCCCCACCGTGGACA 
100       R  G  F  E  E  Q  W  Y  R  R  P  L  W  E  S  G  P  T  V  D    
                 370       380       390       400       410       420 
361       TGCCAGTTCCCTCCAGCTTCAATGACATCAGCCAGGACTGGCGTCTGCGGCATTTTGTCG 
120       M  P  V  P  S  S  F  N  D  I  S  Q  D  W  R  L  R  H  F  V    
                 430       440       450       460       470       480 
421       GCTGGGTGTGGTACGAACGGGAGGTGATCCTGCCGGAGCGATGGACCCAGGACCTGCGCA 
140       G  W  V  W  Y  E  R  E  V  I  L  P  E  R  W  T  Q  D  L  R    
                 490       500       510       520       530       540 
481       CAAGAGTGGTGCTGAGGATTGGCAGTGCCCATTCCTATGCCATCGTGTGGGTGAATGGGG 
160       T  R  V  V  L  R  I  G  S  A  H  S  Y  A  I  V  W  V  N  G    
                 550       560       570       580       590       600 
541       TCGACACGCTAGAGCATGAGGGGGGCTACCTCCCCTTCGAGGCCGACATCAGCAACCTGG 
180       V  D  T  L  E  H  E  G  G  Y  L  P  F  E  A  D  I  S  N  L    
                 610       620       630       640       650       660 
601       TCCAGGTGGGGCCCCTGCCCTCCCGGCTCCGAATCACTATCGCCATCAACAACACACTCA 
200       V  Q  V  G  P  L  P  S  R  L  R  I  T  I  A  I  N  N  T  L    
                 670       680       690       700       710       720 
661       CCCCCACCACCCTGCCACCAGGGACCATCCAATACCTGACTGACACCTCCAAGTATCCCA 
220       T  P  T  T  L  P  P  G  T  I  Q  Y  L  T  D  T  S  K  Y  P    
                 730       740       750       760       770       780 
721       AGGGTTACTTTGTCCAGAACACATATTTTGACTTTTTCAACTACGCTGGACTGCAGCGGT 
240       K  G  Y  F  V  Q  N  T  Y  F  D  F  F  N  Y  A  G  L  Q  R    
                 790       800       810       820       830       840 
781       CTGTACTTCTGTACACGACACCCACCACCTACATCGATGACATCACCGTCACCACCAGCG 
260       S  V  L  L  Y  T  T  P  T  T  Y  I  D  D  I  T  V  T  T  S    
                 850       860       870       880       890       900 
841       TGGAGCAAGACAGTGGGCTGGTGAATTACCAGATCTCTGTCAAGGGCAGTAACCTGTTCA 
280       V  E  Q  D  S  G  L  V  N  Y  Q  I  S  V  K  G  S  N  L  F    
                 910       920       930       940       950       960 
901       AGTTGGAAGTGCGTCTTTTGGATGCAGAAAACAAAGTCGTGGCGAATGGGACTGGGACCC 
300       K  L  E  V  R  L  L  D  A  E  N  K  V  V  A  N  G  T  G  T    
                 970       980       990      1000      1010      1020 
961       AGGGCCAACTTAAGGTGCCAGGTGTCAGCCTCTGGTGGCCGTACCTGATGCACGAACGCC 
320       Q  G  Q  L  K  V  P  G  V  S  L  W  W  P  Y  L  M  H  E  R    
                1030      1040      1050      1060      1070      1080 
1021      CTGCCTATCTGTATTCATTGGAGGTGCAGCTGACTGCACAGACGTCACTGGGGCCTGTGT 
340       P  A  Y  L  Y  S  L  E  V  Q  L  T  A  Q  T  S  L  G  P  V    
                1090      1100      1110      1120      1130      1140 
1081      CTGACTTCTACACACTCCCTGTGGGGATCCGCACTGTGGCTGTCACCAAGAGCCAGTTCC 
360       S  D  F  Y  T  L  P  V  G  I  R  T  V  A  V  T  K  S  Q  F    
                1150      1160      1170      1180      1190      1200 
1141      TCATCAATGGGAAACCTTTCTATTTCCACGGTGTCAACAAGCATGAGGATGCGGACATCC 
380       L  I  N  G  K  P  F  Y  F  H  G  V  N  K  H  E  D  A  D  I    
                1210      1220      1230      1240      1250      1260 
1201      GAGGGAAGGGCTTCGACTGGCCGCTGCTGGTGAAGGACTTCAACCTGCTTCGCTGGCTTG 
400       R  G  K  G  F  D  W  P  L  L  V  K  D  F  N  L  L  R  W  L    
                1270      1280      1290      1300      1310      1320 
1261      GTGCCAACGCTTTCCGTACCAGCCACTACCCCTATGCAGAGGAAGTGATGCAGATGTGTG 
420       G  A  N  A  F  R  T  S  H  Y  P  Y  A  E  E  V  M  Q  M  C    
                1330      1340      1350      1360      1370      1380 
1321      ACCGCTATGGGATTGTGGTCATCGATGAGTGTCCCGGCGTGGGCCTGGCGCTGCCGCAGT 
440       D  R  Y  G  I  V  V  I  D  E  C  P  G  V  G  L  A  L  P  Q    
                1390      1400      1410      1420      1430      1440 
1381      TCTTCAACAACGTTTCTCTGCATCACCACATGCAGGTGATGGAAGAAGTGGTGCGTAGGG 
460       F  F  N  N  V  S  L  H  H  H  M  Q  V  M  E  E  V  V  R  R    
                1450      1460      1470      1480      1490        #1 
1441      ACAAGAACCACCCCGCGGTCGTGATGTGGTCTGTGGCCAACGAGCCTGCGTCCCACCTAG 
480       D  K  N  H  P  A  V  V  M  W  S  V  A  N  E  P  A  S  H  L    
                1510      1520      1530      1540      1550      1560 
1501      AATCTGCTGGCTACTACTTGAAGATGGTGATCGCTCACACCAAATCCTTGGACCCCTCCC 
500       E  S  A  G  Y  Y  L  K  M  V  I  A  H  T  K  S  L  D  P  S    
                1570      1580      1590      1600      1610      1620 
1561      GGCCTGTGACCTTTGTGAGCAACTCTAACTATGCAGCAGACAAGGGGGCTCCGTATGTGG 
520       R  P  V  T  F  V  S  N  S  N  Y  A  A  D  K  G  A  P  Y  V    
                1630      1640      1650      1660      1670      1680 
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1621      ATGTGATCTGTTTGAACAGCTACTACTCTTGGTATCACGACTACGGGCACCTGGAGTTGA 
540       D  V  I  C  L  N  S  Y  Y  S  W  Y  H  D  Y  G  H  L  E  L    
                1690      1700      1710      1720      1730      1740 
1681      TTCAGCTGCAGCTGGCCACCCAGTTTGAGAACTGGTATAAGAAGTATCAGAAGCCCATTA 
560       I  Q  L  Q  L  A  T  Q  F  E  N  W  Y  K  K  Y  Q  K  P  I    
                1750      1760      1770      1780      1790      1800 
1741      TTCAGAGCGAGTATGGAGCAGAAACGATTGCAGGGTTTCACCAGGATCCACCTCTGATGT 
580       I  Q  S  E  Y  G  A  E  T  I  A  G  F  H  Q  D  P  P  L  M    
                1810      1820      1830      1840      1850      1860 
1801      TCACTGAAGAGTACCAGAAAAGTCTGCTAGAGCAGTACCATCTGGGTCTGGATCAAAAAC 
600       F  T  E  E  Y  Q  K  S  L  L  E  Q  Y  H  L  G  L  D  Q  K    
                1870      1880      1890      1900      1910      1920 
1861      GCAGAAAATACGTGGTTGGAGAGCTCATTTGGAATTTTGCCGATTTCATGACTGAACAGT 
620       R  R  K  Y  V  V  G  E  L  I  W  N  F  A  D  F  M  T  E  Q    
                1930      1940      1950      1960      1970      1980 
1921      CACCGACGAGAGTGCTGGGGAATAAAAAGGGGATCTTCACTCGGCAGAGACAACCAAAAA 
640       S  P  T  R  V  L  G  N  K  K  G  I  F  T  R  Q  R  Q  P  K    
                1990      2000      2010      2020      2030      2040 
1981      GTGCAGCGTTCCTTTTGCGAGAGAGATACTGGAAGATTGCCAATGAAACCAGGTATCCCC 
660       S  A  A  F  L  L  R  E  R  Y  W  K  I  A  N  E  T  R  Y  P    
                 #2       2060      2070      2080      2090      2100 
2041      ACTCAGTAGCCAAGTCACAATGTTTGGAAAACAGCCTGTTTACTTGAGCAAGACTGATAC 
680       H  S  V  A  K  S  Q  C  L  E  N  S  L  F  T  *  A  R  L  I    
                2110      2120      2130      2140      2150      2160 
2101      CACCTGCGTGTCCCTTCCTCCCCGAGTCAGGGCGACTTCCACAGCAGCAGAACAAGTGCC 
700       P  P  A  C  P  F  L  P  E  S  G  R  L  P  Q  Q  Q  N  K  C    
                2170      2180      2190      2200      2210      2220 
2161      TCCTGGACTGTTCACGGCAGACCAGAACGTTTCTGGCCTGGGTTTTGTGGTCATCTATTC 
720       L  L  D  C  S  R  Q  T  R  T  F  L  A  W  V  L  W  S  S  I    
                2230      2240      2250      2260      2270      2280 
2221      TAGCAGGGAACACTAAAGGTGGAAATAAAAGATTTTCTATTATGGAAATAAAGAGTTGGC 
740       L  A  G  N  T  K  G  G  N  K  R  F  S  I  M  E  I  K  S  W    
                2290      2300      2310      2320 
2281      ATGAAAGTGGCTACTGAAAAAAAAAAAAAAAAAAAAAAAAA 
760       H  E  S  G  Y  *  K  K  K  K  K  K  K      

Sequence of GUSB mRNA (NM_000181.3) with chosen editing sites (yellow). 
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                  10        20        30        40        50        60 
1         TCCTAGGCGGCGGCCGCGGCGGCGGAGGCAGCAGCGGCGGCGGCAGTGGCGGCGGCGAAG 
1          S  *  A  A  A  A  A  A  E  A  A  A  A  A  A  V  A  A  A  K  
                  70        80        90       100       110       120 
61        GTGGCGGCGGCTCGGCCAGTACTCCCGGCCCCCGCCATTTCGGACTGGGAGCGAGCGCGG 
21         V  A  A  A  R  P  V  L  P  A  P  A  I  S  D  W  E  R  A  R   
                 130       140       150       160       170       180 
121       CGCAGGCACTGAAGGCGGCGGCGGGGCCAGAGGCTCAGCGGCTCCCAGGTGCGGGAGAGA 
41         R  R  H  *  R  R  R  R  G  Q  R  L  S  G  S  Q  V  R  E  R   
                 190       200       210  target A/1         target 2      
181       GGCCTGCTGAAAATGACTGAATATAAACTTGTGGTAGTTGGAGCTGGTGGCGTAGGCAAG 
61         G  L  L  K  M  T  E  Y  K  L  V  V  V  G  A  G  G  V  G  K   
                 250       260       270       280       290       300 
241       AGTGCCTTGACGATACAGCTAATTCAGAATCATTTTGTGGACGAATATGATCCAACAATA 
81         S  A  L  T  I  Q  L  I  Q  N  H  F  V  D  E  Y  D  P  T  I   
                 310       320       330       340       350       360 
301       GAGGATTCCTACAGGAAGCAAGTAGTAATTGATGGAGAAACCTGTCTCTTGGATATTCTC 
101        E  D  S  Y  R  K  Q  V  V  I  D  G  E  T  C  L  L  D  I  L   
                 370       380       390       400       410       420 
361       GACACAGCAGGTCAAGAGGAGTACAGTGCAATGAGGGACCAGTACATGAGGACTGGGGAG 
121        D  T  A  G  Q  E  E  Y  S  A  M  R  D  Q  Y  M  R  T  G  E   
                 430       440       450       460       470       480 
421       GGCTTTCTTTGTGTATTTGCCATAAATAATACTAAATCATTTGAAGATATTCACCATTAT 
141        G  F  L  C  V  F  A  I  N  N  T  K  S  F  E  D  I  H  H  Y   
                 490       500       510       520       530       540 
481       AGAGAACAAATTAAAAGAGTTAAGGACTCTGAAGATGTACCTATGGTCCTAGTAGGAAAT 
161        R  E  Q  I  K  R  V  K  D  S  E  D  V  P  M  V  L  V  G  N   
                 550       560       570       580       590       600 
541       AAATGTGATTTGCCTTCTAGAACAGTAGACACAAAACAGGCTCAGGACTTAGCAAGAAGT 
181        K  C  D  L  P  S  R  T  V  D  T  K  Q  A  Q  D  L  A  R  S   
                 610       620       630       640       650       660 
601       TATGGAATTCCTTTTATTGAAACATCAGCAAAGACAAGACAGGGTGTTGATGATGCCTTC 
201        Y  G  I  P  F  I  E  T  S  A  K  T  R  Q  G  V  D  D  A  F   
                 670       680       690       700       710       720 
661       TATACATTAGTTCGAGAAATTCGAAAACATAAAGAAAAGATGAGCAAAGATGGTAAAAAG 
221        Y  T  L  V  R  E  I  R  K  H  K  E  K  M  S  K  D  G  K  K   
                 730       740       750       760       770       780 
721       AAGAAAAAGAAGTCAAAGACAAAGTGTGTAATTATGTAAATACAATTTGTACTTTTTTCT 
241        K  K  K  K  S  K  T  K  C  V  I  M  *  I  Q  F  V  L  F  S   
                 790       800       810       820       830       840 
781       TAAGGCATACTAGTACAAGTGGTAATTTTTGTACATTACACTAAATTATTAGCATTTGTT 
261        *  G  I  L  V  Q  V  V  I  F  V  H  Y  T  K  L  L  A  F  V   

 

Sequence of KRAS mRNA (NM_004985.4) with chosen editing sites (yellow).  
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                10        20        30        40        50        60 
1         GCTGAGCGCGGAGCCGCCCGGTGATTGGTGGGGGCGGAAGGGGGCCGGGCGCCAGCGCTG 
1           L  S  A  E  P  P  G  D  W  W  G  R  K  G  A  G  R  Q  R  C 
                  70        80        90       100       110       120 
61        CCTTTTCTCCTGCCGGGTAGTTTCGCTTTCCTGCGCAGAGTCTGCGGAGGGGCTCGGCTG 
21          L  F  S  C  R  V  V  S  L  S  C  A  E  S  A  E  G  L  G  C  
                 130       140       150       160       170       180 
121       CACCGGGGGGATCGCGCCTGGCAGACCCCAGACCGAGCAGAGGCGACCCAGCGCGCTCGG 
41          T  G  G  I  A  P  G  R  P  Q  T  E  Q  R  R  P  S  A  L  G  
                 190       200       210       220       230       240 
181       GAGAGGCTGCACCGCCGCGCCCCCGCCTAGCCCTTCCGGATCCTGCGCGCAGAAAAGTTT 
61          R  G  C  T  A  A  P  P  P  S  P  S  G  S  C  A  Q  K  S  F  
                 250       260       270       280       290       300 
241       CATTTGCTGTATGCCATCCTCGAGAGCTGTCTAGGTTAACGTTCGCACTCTGTGTATATA 
81          I  C  C  M  P  S  S  R  A  V  *  V  N  V  R  T  L  C  I  *  
                 310       320       330       340       350       360 
301       ACCTCGACAGTCTTGGCACCTAACGTGCTGTGCGTAGCTGCTCCTTTGGTTGAATCCCCA 
101         P  R  Q  S  W  H  L  T  C  C  A  *  L  L  L  W  L  N  P  Q  
                 370       380       390       400       410       420 
361       GGCCCTTGTTGGGGCACAAGGTGGCAGGATGTCTCAGTGGTACGAACTTCAGCAGCTTGA 
121         A  L  V  G  A  Q  G  G  R  M  S  Q  W  Y  E  L  Q  Q  L  D  
                 430       440       450       460       470       480 
421       CTCAAAATTCCTGGAGCAGGTTCACCAGCTTTATGATGACAGTTTTCCCATGGAAATCAG 
141         S  K  F  L  E  Q  V  H  Q  L  Y  D  D  S  F  P  M  E  I  R  
                 490       500       510       520       530       540 
481       ACAGTACCTGGCACAGTGGTTAGAAAAGCAAGACTGGGAGCACGCTGCCAATGATGTTTC 
161         Q  Y  L  A  Q  W  L  E  K  Q  D  W  E  H  A  A  N  D  V  S  
                 550       560       570       580       590       600 
541       ATTTGCCACCATCCGTTTTCATGACCTCCTGTCACAGCTGGATGATCAATATAGTCGCTT 
181         F  A  T  I  R  F  H  D  L  L  S  Q  L  D  D  Q  Y  S  R  F  
                 610       620       630       640       650       660 
601       TTCTTTGGAGAATAACTTCTTGCTACAGCATAACATAAGGAAAAGCAAGCGTAATCTTCA 
201         S  L  E  N  N  F  L  L  Q  H  N  I  R  K  S  K  R  N  L  Q  
                 670       680       690       700       710       720 
661       GGATAATTTTCAGGAAGACCCAATCCAGATGTCTATGATCATTTACAGCTGTCTGAAGGA 
221         D  N  F  Q  E  D  P  I  Q  M  S  M  I  I  Y  S  C  L  K  E  
                 730       740       750       760       770       780 
721       AGAAAGGAAAATTCTGGAAAACGCCCAGAGATTTAATCAGGCTCAGTCGGGGAATATTCA 
241         E  R  K  I  L  E  N  A  Q  R  F  N  Q  A  Q  S  G  N  I  Q  
                 790       800       810       820       830       840 
781       GAGCACAGTGATGTTAGACAAACAGAAAGAGCTTGACAGTAAAGTCAGAAATGTGAAGGA 
261         S  T  V  M  L  D  K  Q  K  E  L  D  S  K  V  R  N  V  K  D  
                 850       860       870       880       890       900 
841       CAAGGTTATGTGTATAGAGCATGAAATCAAGAGCCTGGAAGATTTACAAGATGAATATGA 
281         K  V  M  C  I  E  H  E  I  K  S  L  E  D  L  Q  D  E  Y  D  
                 910       920       930       940       950       960 
901       CTTCAAATGCAAAACCTTGCAGAACAGAGAACACGAGACCAATGGTGTGGCAAAGAGTGA 
301         F  K  C  K  T  L  Q  N  R  E  H  E  T  N  G  V  A  K  S  D  
                 970       980       990      1000      1010      1020 
961       TCAGAAACAAGAACAGCTGTTACTCAAGAAGATGTATTTAATGCTTGACAATAAGAGAAA 
321         Q  K  Q  E  Q  L  L  L  K  K  M  Y  L  M  L  D  N  K  R  K  
                1030      1040      1050      1060      1070      1080 
1021      GGAAGTAGTTCACAAAATAATAGAGTTGCTGAATGTCACTGAACTTACCCAGAATGCCCT 
341         E  V  V  H  K  I  I  E  L  L  N  V  T  E  L  T  Q  N  A  L  
                1090      1100      1110      1120      1130      1140 
1081      GATTAATGATGAACTAGTGGAGTGGAAGCGGAGACAGCAGAGCGCCTGTATTGGGGGGCC 
361         I  N  D  E  L  V  E  W  K  R  R  Q  Q  S  A  C  I  G  G  P  
                1150      1160      1170      1180      1190      1200 
1141      GCCCAATGCTTGCTTGGATCAGCTGCAGAACTGGTTCACTATAGTTGCGGAGAGTCTGCA 
381         P  N  A  C  L  D  Q  L  Q  N  W  F  T  I  V  A  E  S  L  Q  
                1210      1220      1230      1240      1250      1260 
1201      GCAAGTTCGGCAGCAGCTTAAAAAGTTGGAGGAATTGGAACAGAAATACACCTACGAACA 
401         Q  V  R  Q  Q  L  K  K  L  E  E  L  E  Q  K  Y  T  Y  E  H  
                1270      1280      1290      1300      1310      1320 
1261      TGACCCTATCACAAAAAACAAACAAGTGTTATGGGACCGCACCTTCAGTCTTTTCCAGCA 
421         D  P  I  T  K  N  K  Q  V  L  W  D  R  T  F  S  L  F  Q  Q  
                1330      1340      1350      1360      1370      1380 
1321      GCTCATTCAGAGCTCGTTTGTGGTGGAAAGACAGCCCTGCATGCCAACGCACCCTCAGAG 
441         L  I  Q  S  S  F  V  V  E  R  Q  P  C  M  P  T  H  P  Q  R  
                1390      1400      1410      1420      1430      1440 
1381      GCCGCTGGTCTTGAAGACAGGGGTCCAGTTCACTGTGAAGTTGAGACTGTTGGTGAAATT 
461         P  L  V  L  K  T  G  V  Q  F  T  V  K  L  R  L  L  V  K  L  
                1450      1460      1470      1480      1490      1500 
1441      GCAAGAGCTGAATTATAATTTGAAAGTCAAAGTCTTATTTGATAAAGATGTGAATGAGAG 
481         Q  E  L  N  Y  N  L  K  V  K  V  L  F  D  K  D  V  N  E  R  
                1510      1520      1530      1540      1550      1560 
1501      AAATACAGTAAAAGGATTTAGGAAGTTCAACATTTTGGGCACGCACACAAAAGTGATGAA 
501         N  T  V  K  G  F  R  K  F  N  I  L  G  T  H  T  K  V  M  N  
                1570      1580      1590      1600      1610      1620 
1561      CATGGAGGAGTCCACCAATGGCAGTCTGGCGGCTGAATTTCGGCACCTGCAATTGAAAGA 
521         M  E  E  S  T  N  G  S  L  A  A  E  F  R  H  L  Q  L  K  E  
                1630      1640      1650      1660      1670      1680 
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1621      ACAGAAAAATGCTGGCACCAGAACGAATGAGGGTCCTCTCATCGTTACTGAAGAGCTTCA 
541         Q  K  N  A  G  T  R  T  N  E  G  P  L  I  V  T  E  E  L  H  
                1690      1700      1710      1720      1730      1740 
1681      CTCCCTTAGTTTTGAAACCCAATTGTGCCAGCCTGGTTTGGTAATTGACCTCGAGACGAC 
561         S  L  S  F  E  T  Q  L  C  Q  P  G  L  V  I  D  L  E  T  T  
                1750      1760      1770      1780      1790      1800 
1741      CTCTCTGCCCGTTGTGGTGATCTCCAACGTCAGCCAGCTCCCGAGCGGTTGGGCCTCCAT 
581         S  L  P  V  V  V  I  S  N  V  S  Q  L  P  S  G  W  A  S  I  
                1810      1820      1830      1840      1850      1860 
1801      CCTTTGGTACAACATGCTGGTGGCGGAACCCAGGAATCTGTCCTTCTTCCTGACTCCACC 
601         L  W  Y  N  M  L  V  A  E  P  R  N  L  S  F  F  L  T  P  P  
                1870      1880      1890      1900      1910      1920 
1861      ATGTGCACGATGGGCTCAGCTTTCAGAAGTGCTGAGTTGGCAGTTTTCTTCTGTCACCAA 
621         C  A  R  W  A  Q  L  S  E  V  L  S  W  Q  F  S  S  V  T  K  
                1930      1940      1950      1960      1970      1980 
1921      AAGAGGTCTCAATGTGGACCAGCTGAACATGTTGGGAGAGAAGCTTCTTGGTCCTAACGC 
641         R  G  L  N  V  D  Q  L  N  M  L  G  E  K  L  L  G  P  N  A  
                1990      2000      2010      2020      2030      2040 
1981      CAGCCCCGATGGTCTCATTCCGTGGACGAGGTTTTGTAAGGAAAATATAAATGATAAAAA 
661         S  P  D  G  L  I  P  W  T  R  F  C  K  E  N  I  N  D  K  N  
                2050      2060      2070      2080      2090      2100 
2041      TTTTCCCTTCTGGCTTTGGATTGAAAGCATCCTAGAACTCATTAAAAAACACCTGCTCCC 
681         F  P  F  W  L  W  I  E  S  I  L  E  L  I  K  K  H  L  L  P  
                2110      2120      2130      2140      2150      2160 
2101      TCTCTGGAATGATGGGTGCATCATGGGCTTCATCAGCAAGGAGCGAGAGCGTGCCCTGTT 
701         L  W  N  D  G  C  I  M  G  F  I  S  K  E  R  E  R  A  L  L  
                2170      2180      2190      2200      2210      2220 
2161      GAAGGACCAGCAGCCGGGGACCTTCCTGCTGCGGTTCAGTGAGAGCTCCCGGGAAGGGGC 
721         K  D  Q  Q  P  G  T  F  L  L  R  F  S  E  S  S  R  E  G  A  
                2230      2240      2250      2260      2270      2280 
2221      CATCACATTCACATGGGTGGAGCGGTCCCAGAACGGAGGCGAACCTGACTTCCATGCGGT 
741         I  T  F  T  W  V  E  R  S  Q  N  G  G  E  P  D  F  H  A  V  
                2290      2300      2310      2320      2330      2340 
2281      TGAACCCTACACGAAGAAAGAACTTTCTGCTGTTACTTTCCCTGACATCATTCGCAATTA 
761         E  P  Y  T  K  K  E  L  S  A  V  T  F  P  D  I  I  R  N  Y  
                2350      2360      2370      2380      2390      2400 
2341      CAAAGTCATGGCTGCTGAGAATATTCCTGAGAATCCCCTGAAGTATCTGTATCCAAATAT 
781         K  V  M  A  A  E  N  I  P  E  N  P  L  K  Y  L  Y  P  N  I  
                2410      2420      2430      2440      2450      2460 
2401      TGACAAAGACCATGCCTTTGGAAAGTATTACTCCAGGCCAAAGGAAGCACCAGAGCCAAT 
801         D  K  D  H  A  F  G  K  Y  Y  S  R  P  K  E  A  P  E  P  M  
                2470      2480      2490      2500      2510      2520 
2461      GGAACTTGATGGCCCTAAAGGAACTGGATATATCAAGACTGAGTTGATTTCTGTGTCTGA 
821         E  L  D  G  P  K  G  T  G  Y  I  K  T  E  L  I  S  V  S  E  
                2530      2540      2550      2560      2570      2580 
2521      AGTTCACCCTTCTAGACTTCAGACCACAGACAACCTGCTCCCCATGTCTCCTGAGGAGTT 
841         V  H  P  S  R  L  Q  T  T  D  N  L  L  P  M  S  P  E  E  F  
                2590      2600      2610      2620      2630      2640 
2581      TGACGAGGTGTCTCGGATAGTGGGCTCTGTAGAATTCGACAGTATGATGAACACAGTATA 
861         D  E  V  S  R  I  V  G  S  V  E  F  D  S  M  M  N  T  V  *  
                2650      2660      2670      2680      2690      2700 
2641      GAGCATGAATTTTTTTCATCTTCTCTGGCGACAGTTTTCCTTCTCATCTGTGATTCCCTC 
881         S  M  N  F  F  H  L  L  W  R  Q  F  S  F  S  S  V  I  P  S  
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