NFAT5 up-regulates expression of the kidney-specific ubiquitin ligase gene *Rnf183* under hypertonic conditions in inner-medullary collecting duct cells

Yujiro Maeoka^{‡§}, Yan Wu[‡], Takumi Okamoto[‡], Soshi Kanemoto^{‡¶}, Xiao Peng Guo[‡], Atsushi Saito[†], Rie Asada^{‡**}, Koji Matsuhisa[†], Takao Masaki[§], Kazunori Imaizumi^{‡1}, and Masayuki Kaneko^{‡2}

Supporting Information

- 1. Table S1
- 2. Figures S1–S6

Mus musculus							Rattus norvegicu	IS					
Transcription	JASPAR	Relative	644	F . J	6 4	Predicted site	Transcription	JASPAR	Relative	S 4	F . J	64	Predicted site
factor	Score	Score	Start	End	strand	sequence	factor	Score	Score	start	End	strand	sequence
STAT5	15.281	98.1%	-3466	-3456	1	CTTTCCCAGAA	STAT 5	14.146	96.7%	-1978	-1968	1	CCTTCCCAGAA
STAT1	17.040	99.3%	-3465	-3455	-1	TTTCTGGGAAA	Atohl	12.065	97.0%	-1972	-1965	1	CAGAAGGC
STAT3	16.483	99.7%	-3465	-3455	-1	TTTCTGGGAAA	NFIC ^a	8.520	96.1%	-1935	-1930	1	TTGGCT
SP 1	13.428	95.0%	-3438	-3428	1	CCCCCGCCCCG	ZNF354C ^a	8.723	99.2%	-1926	-1921	1	CTCCAC
KLF5	13.577	97.6%	-3438	-3429	1	CCCCCGCCCC	NFE2L1-MafG [*]	^a 8.812	100.0%	-1913	-1908	1	CATGAC
Mafb	9.499	100.0%	-3430	-3423	-1	GCTGACGG	NFAT ^a	11.360	100.0%	-1866	-1860	1	TTTTCCA
SP 1	13.428	95.0%	-3423	-3413	1	CCCCCGCCCCG	Atoh1 ^a	13.740	99.6%	-1861	-1854	1	CAGCT GGC
KLF5	13.577	97.6%	-3423	-3414	1	CCCCCGCCCC	MZF1_1-4	9.085	100.0%	-1845	-1840	-1	T GGGGA
NFIC ^a	8.520	96.1%	-3407	-3402	1	T T GGCT	Prrx2 ^a	9.124	100.0%	-1826	-1822	1	AATTA
ZNF354C ^a	8.723	99.2%	-3398	-3393	1	CTCCAC	Prrx2	9.124	100.0%	-1823	-1819	-1	AATTA
NFE2L1-MafG ²	¹ 8.072	96.8%	-3385	-3380	1	TATGAC	HOXA5	8.661	95.8%	-1813	-1806	1	CTCAAATT
NFAT ^a	11.360	100.0%	-3338	-3332	1	TTTTCCA	MZF1_1-4	9.085	100.0%	-1797	-1792	-1	T GGGGA
Atoh1 ^a	13.740	99.6%	-3333	-3326	1	CAGCT GGC	GATA3	13.321	97.9%	-1769	-1762	1	AGATAAAA
MZF1_1-4	8.252	96.2%	-3317	-3312	-1	GGGGGA	FOXD1	11.362	96.1%	-1751	-1744	-1	GTAAACAG
Lhx3	16.202	96.3%	-3303	-3291	-1	AAATTAATTAGTT	FOXO3	12.142	100.0%	-1750	-1743	-1	TGTAAACA
Nobox	10.854	98.3%	-3302	-3295	-1	TAATTAGT	SOX10	8.910	100.0%	-1745	-1740	-1	CTTTGT
Pdx1	9.570	100.0%	-3301	-3296	1	CTAATT	NFE2L1-MafG	8.692	99.5%	-1687	-1682	1	GATGAC
Prrx2	9.124	100.0%	-3300	-3296	-1	AATTA	Homo saniens						
Prrx2 ^a	9.124	100.0%	-3299	-3295	1	ΛΛΤΤΛ	Transcription	JASPAR	Relative				Predicted site
Prrx2	9.124	100.0%	-3296	-3292	-1	AATTA	factor	Score	Score	Start	End	Strand	sequence
Stat6	15.738	95.5%	-3283	-3269	1	AAGTTCCTGAGAAGC	NFIC ^a	8 520	96.1%	-4322	-4317	1	TTGGCT
Klfl	14.517	95.7%	-3271	-3261	1	AGCCCCACCCT	ZNF354C a	8 723	99.2%	-4313	-4308	1	CTCCAC
KLF5	14.984	99.4%	-3270	-3261	1	GCCCCACCCT	NFE2L 1-MafG	1 8 812	100.0%	-4300	-4295	1	CATGAC
Klf4	15.246	99.6%	-3270	-3261	-1	AGGGT GGGGC	Hltf	7 794	95.6%	-4279	-4270	-1	TACCTTAGAC
GATA3	13.321	97.9%	-3242	-3235	1	AGATAAAA	NFAT a	11 360	100.0%	-4252	-4246	1	TTTTCCA
FOXD1	11.362	96.1%	-3223	-3216	-1	GTAAACAG	Atoh1 a	14 033	100.0%	-4232	-4240	1	CAGATGGC
FOXO3	11.549	98.0%	-3222	-3215	-1	GGTAAACA	Pdv 1	0 570	100.0%	-4208	-4203	-1	CTAATT
Mafb	8.818	97.0%	-3171	-3164	1	GCTGACTC	Prrv 2 a	9.124	100.0%	-4208	-4204	1	AATTA
NFE2L1-MafG	8.692	99.5%	-3159	-3154	1	GATGAC	NFAT	11 360	100.0%	-4200	-4145	-1	TTTTCCA
							BRCAI	7 447	05 7%	-4136	-4130	-1	CCAACAG
							NFIC	9.697	100.0%	-4133	-4128	1	TTGGCA
							HOXAS	9.854	100.0%	-4069	-4062	-1	CACTAATT
							Pdv 1	9.570	100.0%	-4069	-4064	-1	CTAATT
							Prrv2	9.124	100.0%	-4069	-4065	-1	AATTA
							NFAT	11.360	100.0%	-4058	-4052	-1	TTTTCCA

Table S1. Putative transcription factor binding sites in the RNF183 enhancer region.

Transcription factor-binding sites predicted using the JASPAR software are shown in the mammalian conserved region of *RNF183* genes (mouse, -3,466 to -3,136; rat, -1,978 to -1,664; human, -4,367 to -4,049). The potential binding sites with a >95% chance (relative score) of binding to any of the listed transcription factors. ^a Conserved binding sites among mouse, rat, and human. The conserved NFAT5 DNA binding site is indicated as *yellow background*.

GFP-RNF183 pcDNA

Figure S1. Subcellular localization of RNF183. The confocal images of immunofluorescence with GFP signals (*upper panels, green*) and various antibodies for organelle markers (Calnexin, GM130, transferrin receptor, and COX IV; *middle panels, red*) in HeLa cells transfected with GFP-RNF183. Bars, 10 µm. All images shown are representative of at least three replicates in independent observations.

Figure S2. RNF183 expression is not up-regulated under hypoxia. Effect of hypoxia on *Rnf183* expression. Mouse IMCD-3 cells were maintained in hypoxia (0.1% or 0.3% O₂) or normoxia (20% O₂) chambers for 12 h at 37°C and analyzed by qRT-PCR analysis. *Vegfa* was used as a hypoxia-induced positive control. Expression levels were compared with those in normoxia (n = 6). Data were analyzed by one-way ANOVA, followed by the *post hoc* tests using *t* tests with Bonferroni correction. Values represent mean \pm SD. **P < 0.01, ***P < 0.001 (versus normoxic control).

Figure S3. *Tnfa* **mRNA peaked after 3h of hypertonic stimulation.** Time-course analysis of *Tnfa* mRNA in response to hypertonic stress. Mouse IMCD-3 cells were treated with 75 mM NaCl-supplementation for indicated time and analyzed by qRT-PCR analysis. Expression levels were compared with those in isotonic control (n = 6). Data were analyzed by one-way ANOVA followed by the *post hoc* tests using *t* tests with Bonferroni correction. Values represent mean \pm S.D. *** *P* < 0.001 (versus isotonic control).

Figure S4. NFAT5 knockdown attenuates hypertonicity-induced RNF183 expression. A. Inhibition of NFAT5 expression using siRNA 2-mediated knockdown. Mouse IMCD-3 cells transfected with NFAT5 siRNA 1, NFAT5 siRNA 2, or negative control (NC) siRNA were analyzed by western blotting. The quantification of NFAT5 is summarized in the accompanying bar graph (n = 3). **B and C.** Effects of NFAT5 siRNA 2-mediated knockdown on (**B**) expression of RNF183 protein and (**C**) expression of *Rnf183 (left)* and *Akr1b1 (right)* mRNA (n = 4). mIMCD-3 cells transfected with NFAT5 siRNA 1, NFAT5 siRNA 2, or NC siRNA were treated with isotonic or 75 mM NaCl -supplemented medium for 12 h and analyzed using (**B**) western blot and (**C**) qRT-PCR. **D.** Effect of NFAT5 siRNA 2-mediated knockdown on hypertonicity-induced promoter activities. Cells co-transfected with 3.5 kbp-Luc and siRNA (NFAT5 1, NFAT5 2 or NC) were treated with isotonic or 75 mM NaCl- or sucrose-supplemented medium for 24 h (n = 4). Data were analyzed by one-way ANOVA, followed by the *post hoc* tests using *t* tests with Bonferroni correction. Values represent mean \pm SD. ****P* < 0.001 (versus NC).

Figure S5. Inhibition of NFAT5 expression using NFAT5 siRNA 3-mediated knockdown. Mouse IMCD-3 cells transfected with NFAT5 siRNA 3 or negative control (NC) siRNA were analyzed by western blotting. The quantification of NFAT5 is summarized in the accompanying bar graph (n = 3). Data were analyzed by *t* test. Values represent mean \pm SD. ***P < 0.001.

Figure S6. RNF183 expression did not protect against staurosporine-induced apoptosis

Cells transfected with the indicated siRNAs were treated with 200 nM staurosporine-supplemented medium for 12 h and analyzed using western blotting. The accompanying bar graph summarizes the quantification of relative amounts of cleaved caspase-3 (n = 4). Values represent mean \pm SD. N.S. P > 0.05 (versus NC).