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Leveraging Polygenic Functional Enrichment
to Improve GWAS Power

Gleb Kichaev,1,* Gaurav Bhatia,2 Po-Ru Loh,2,3 Steven Gazal,2,3 Kathryn Burch,1 Malika K. Freund,4

Armin Schoech,2,3 Bogdan Pasaniuc,1,4,5,7 and Alkes L. Price2,3,6,7,*

Functional genomics data has the potential to increase GWAS power by identifying SNPs that have a higher prior probability of associ-

ation. Here, we introduce a method that leverages polygenic functional enrichment to incorporate coding, conserved, regulatory, and

LD-related genomic annotations into association analyses. We show via simulations with real genotypes that the method, functionally

informed novel discovery of risk loci (FINDOR), correctly controls the false-positive rate at null loci and attains a 9%–38% increase in the

number of independent associations detected at causal loci, depending on trait polygenicity and sample size. We applied FINDOR to 27

independent complex traits and diseases from the interim UK Biobank release (average N ¼ 130K). Averaged across traits, we attained a

13% increase in genome-wide significant loci detected (including a 20% increase for disease traits) compared to unweighted raw p values

that do not use functional data.We replicated the additional loci in independent UK Biobank and non-UK Biobank data, yielding a high-

ly statistically significant replication slope (0.66–0.69) in each case. Finally, we applied FINDOR to the full UK Biobank release (average

N ¼ 416K), attaining smaller relative improvements (consistent with simulations) but larger absolute improvements, detecting an addi-

tional 583 GWAS loci. In conclusion, leveraging functional enrichment using our method robustly increases GWAS power.
Introduction

Genome-wide association studies (GWASs) are the prevail-

ing approach for identifying risk loci for common diseases

and complex traits.1,2 In this study design, millions of sin-

gle-nucleotide polymorphisms (SNPs) are assayed in a large

collection of individuals and marginally tested for associa-

tion to a trait under investigation. To safeguard against

false positive associations, practitioners must impose strin-

gent p value thresholds, which can limit power. Conse-

quently, only a small fraction of total SNP-heritability is ex-

plained by SNPs that are significant at genome-wide

thresholds (e.g., p% 53 10�8).3,4 For a fixed GWAS sample

size, power to detect significant associations is determined

by the effect size, minor allele frequency (MAF), and levels

of linkage disequilibrium (LD) at causal and non-causal

variants. These three parameters interact in non-trivial

ways in the context of complex traits; for example, it has

been reported that after adjusting for MAF, SNPs with

lower levels of LD have larger causal effects.5–8 These obser-

vations motivate the development of new strategies that

leverage polygenic signal to improve GWAS power.

Emerging functional genomics data have revealed

that certain categories of variants are enriched for disease

heritability.7,9–17 Thus, incorporating functional infor-

mation into association analyses has the potential to in-

crease GWAS power.18–26 However, previous integrative

methods for GWAS hypothesis testing either assume

sparse genetic architectures when estimating functional

enrichment,22,25 require knowledge or approximation of
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the true effect size distribution,18–20 or do not produce

p values for each SNP as output.22–24,26 In addition, gen-

eral-purpose methodologies for association testing that

can integrate prior information27–29 have not been thor-

oughly evaluated in the context of GWAS leveraging func-

tional genomics data.

In this work, we propose an approach that uses poly-

genic modeling to weight SNPs according to how well

they tag functional categories that are enriched for herita-

bility. Our procedure takes as input summary association

statistics along with pre-specified functional annotations

(which can be overlapping and/or continuous valued)

and outputs well-calibrated p values. We utilize a broad

set of 75 coding, conserved, regulatory, and LD-related an-

notations that have previously been shown to be enriched

for disease heritability.7,14 We incorporate the weights

computed by our method using the weighted-Bonferroni

procedure described by Roeder et al.,18 a theoretically

sound approach that ensures proper null calibration and

can improve power when employed with informative

weights. Through extensive simulations and analysis of

UK Biobank phenotypes,30–32 we demonstrate that our

approach reproducibly identifies additional GWAS loci

while controlling false positives.
Material and Methods

Overview of FINDOR Method
We build upon previous works7,14,18,21,28,33 to develop an integra-

tive GWAS framework for functionally informed novel discovery
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Figure 1. FINDOR Is Well Calibrated in Simulations of Null Loci
We report the average number of independent, genome-wide sig-
nificant (p < 53 10�8) associations on null chromosomes. Results
are averaged across 1,000 simulations. Error bars represent 95%
confidence intervals. Numerical results are reported in Table S3.
of risk loci (FINDOR). Our approach involves two steps. First, we

use stratified LD score regression14 to compute the expected c2 sta-

tistic of each SNP based on the functional annotations that it tags;

we make use of a broad set of coding, conserved, and regulatory

annotations14 as well LD-dependent annotations7 (conditional

on MAF, variants with lower LD have larger causal effect sizes).

Second, we stratify SNPs into bins of expected c2 and estimate

the proportion of null ðbp0Þ and alternative ðbp1Þ SNPs within

each bin using the Storey p0 estimator to obtain bin-specific

weights.21,28,33 We limit the number of bins to 100 and normalize

the weights to have mean 1, ensuring proper null calibration18

(see Details of FINDOR Method below). We then divide the

observed p values within each bin by these weights to produce

re-weighted p values for each SNP. Bins with larger values of bp1

will have larger weights, leading to more significant p values. We

have released open-source software implementing the method

(see Web Resources).

Details of FINDOR Method
The aim of our method is to re-weight SNPs according to howwell

they tag heritability enriched categories. This is accomplished in

two steps. First, we estimate a function that predicts the c2 statis-

tic (i.e., tagged variance) at each SNP using a comprehensive

assortment of functional annotations which include coding,

conserved, and regulatory annotations,14 as well as LD-depen-

dent annotations.7 The stratified LD score regression7,14 frame-

work is a natural choice for this task. In stratified LD score regres-

sion, the association statistic at SNP jmeasured (or imputed) in Nj

individuals is expressed in terms of its tagging of studied annota-

tions. Specifically,

E
�
c2
j

�
¼ Nj

X
C

tC[ ðj;CÞ þNjaþ 1; (Equation 1)

where a represents confounding biases,34 tC is the effect size on

per-SNP heritability of annotation C, and [ðj;CÞ is the LD score

that indicates the degree to which SNP j tags annotation C:

[ ðj;CÞ ¼
X
k

CðkÞr2k;j: (Equation 2)
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Here, C(k) is the value of annotation C at SNP k and r2k;j sig-

nifies the squared Pearson correlation coefficient between SNPs

k and j7,14 (computed from 503 European individuals of the

1000 Genomes (V3) reference panel35). In a typical analysis, the

quantity of interest is an estimate of tC ðctC Þ, which can be inter-

preted as the strength of enrichment (or depletion) of heritability

within annotation C. These values are obtained through a multi-

variate (weighted) regression of the observed c2 statistics at

HapMap3 SNPs against the corresponding values of [ðj; CÞ. In

this work, we use ctC to predict the expected c2 statistic at all

GWAS SNPs. For a given SNP j, we have:

cc2
j ¼ Nj

X
C

ctC[ ðj;CÞ þNjba þ 1:

The ctC parameters can either be global estimates that are learned

from the entire GWAS dataset (restricted to HapMap3 SNPs) or

chromosome-specific estimates that are learned from the remain-

ing off-chromosome data (e.g., ctC for chromosome 1 is learned

from chromosomes 2 through 22). Empirically, we find that using

the entire genome does not introduce false positives (see Figure 1).

Second, we stratify SNPs based on their expected c2 into

B distinct, evenly sized bins. In practice, to ensure a sufficiently

coarse partitioning of the data, we set B ¼ 100. For densely

imputed data such as the UK Biobank, this results in each bin b

containing z100K SNPs. We then estimate the proportion of

null ðbp0;bÞ and alternate ðbp1;bÞ SNPs by fitting a cubic spline to

the histogram of p values as proposed by Storey and Tibshir-

ani.33 Following Hu et al.,28 we weight each p value by dividing

the nominal p value by the ratio of bp1;b to bp0;b. Intuitively, bins

with higher proportion of true alternates will have their p value

weighted downward (i.e., mademore significant). However, unlike

Hu et al.,28 we normalize these weights to have mean 1:

bwb ¼
bp1;bbp0;b

1

B

PB
b¼1

bp1;bbp0;b

: (Equation 3)

Applying these weights while imposing a global p value

threshold of 5 3 10�8 yields the well-known ‘‘weighted-Bonfer-

roni’’ procedure first described in Genovese et al.36 With indepen-

dently derivedweights that average to 1, this procedure guarantees

control of type I error (see Appendix of Genovese et al.36). How-

ever, the weights ðbwbÞ used in our approach are data dependent.

Theory developed by Roeder et al.18 demonstrated that a weight-

ing scheme with weights that average to 1 preserves control of

type I error with high probability if the number of weights learned

(e.g., 100) is significantly less than number of hypothesis test per-

formed (e.g., 1 million), making the normalization step in Equa-

tion 3 critical.
S-FDR, GBH, IHW, and GenoWAP Methods
We adapted three previously proposed FDR-based methodologies

that leverage prior information to serve as comparators to our

approach: stratified false discovery rate (S-FDR),27 grouped Benja-

mani Hochberg (GBH),28 and independent hypothesis weighting

(IHW).29 Because these are FDR-controlling procedures, we cali-

brate the expected level of FDR control required to match the

more traditional criteria for genome-wide significance (p % 5 3

10�8). We refer to this level of genome-wide FDR control as qGW,

which we estimate as the maximum q-value33 among SNPs with

p values % 5 3 10�8. We implemented S-FDR by binning SNPs
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according to various criteria used in this study. We then computed

q-values for each bin and rejected any SNP within the bin whose

q-value was less than qGW. This stratified FDR strategy is similar

to Schork et al.21 GBH and IHW were implemented in the IHW

(v.1.1.3) and IHWpaper (v.1.0.2) packages,29 which we ran using

the default setting and specified the level of FDR control to be

qGW. GBH takes as input group labels that were identical to the

groupings used with FINDOR and S-FDR, while IHW handled

raw measurements of the auxiliary information (e.g., each SNP

had its own unique value of predicted tagged variance under base-

lineLD annotation model).

For completeness, we also adapted GenoWAP,23 a Bayesian

approach for prioritizing GWAS results that combines association

strength with functional data to produce a posterior probability

for each SNP. GenoWAPmakes use of functional scores (prior prob-

abilities) produced by the GenoCanyon annotation model37 (and

its extensions17,38), which lie between 0 and 1. (On the other

hand, the expected c2 statistics computed using the baseline-LD

model do not represent prior probabilities and do not lie between

0 and 1.) GenoWAP includes a key hyperparameter, the threshold

for the GenoCanyon functional score that distinguishes func-

tional from non-functional SNPs. Although this hyperparameter

is typically set to 0.1 for the GenoCanyon functional model, it

remains unclear what is an appropriate value for a different anno-

tation model (e.g., the baseline-LD model). To address these com-

plexities, we first downloaded GenoCanyon functional scores

(v.1.0.3; see Web Resources) and determined that 39% of the

SNPs in our SNP set have GenoCanyon functional score greater

than 0.1. We then categorized the top 39% of SNPs as ‘‘functional’’

using the various criteria explored in our study (baseLD, baseLD-

LOCO, LDscore, and random, see below). To ensure a fair compar-

ison to our approach, we ranked SNPs based on the resulting

posterior probability and counted the number of independent

GWAS loci in the top K SNPs, where K was the total number of

genome-wide significant SNPs reported by FINDOR for the corre-

sponding functional criteria.

Functional Annotations
We employed the 75 functional annotations of the baselineLD

model, which were previously demonstrated to be enriched for

heritability across a wide variety of complex traits7 (see Table

S1). For clarity, we provide a brief description of the model’s con-

tents below. This model is an extension of the 53 annotation

baseline model developed by Finucane et al.14 Briefly, the initial

baseline model consisted of 24 main annotations to which

500 bp flanking windows were added to create secondary anno-

tations. These include histone modifications H3K4me1,

H3K4me3, H3K4ac, H3K9ac, and H3K27ac that span multiple

cell types; genic elements describing coding, 30 UTR, 50 UTR,

promoter, and intronic regions; combined chromeHMM and

Segway segmentations (7 states); digital genomic footprint and

transcription factor binding sites; DNase hypersensitivity I sites;

super enhancers and FANTOM5 enhancers; and sites conserved

across mammals (see Finucane et al.14 and references therein).

The baseline model was augmented in Gazal et al.7 by adding

four more binary annotations based on super-enhancers and

typical enhancers, as well as two conserved annotations based

on GERPþþ scores. The baselineLD model was then created by

adding ten common MAF bin annotations and six LD-related

annotations (predicted allele age, LLD-AFR, recombination

rate, nucleotide diversity, background selection statistic, and

CpG content).
The Am
Simulations
Simulations were based on real imputed genotypes of British

ancestry individuals from the UK Biobank interim release. We

removed poorly imputed SNPs whose INFO score was less than

0.6, a standard threshold on a quality control metric that measures

the statistical information of an imputed SNP’s allele frequency.39

We then filtered out rare variants whose minor allele count was

less than five in European individuals of the 1000 Genomes and

additionally excluded the MHC region on chromosome 6. This re-

sulted in 9.6M SNPs for analysis. We randomly subsampled n indi-

viduals from this dataset (in our main simulations, n ¼ 100K) and

simulated continuous phenotypes under a polygenic model with

normally distributed causal effect sizes and a specified number of

causal variants. All causal variants were placed on odd chromo-

somes (the median MAF of causals variants was equal to 0.09 on

average). Genotypes were standardized so that each causal variant

explained an equal proportion of the phenotypic variance. We

simulated different values of SNP-heritability ðh2
g Þ and number of

causal variants, choosing relatively small values of SNP-heritability

(h2
g ¼ 0:1 and 0.2) in our main simulations to match the estimated

SNP-heritability values for real traits (see Table 1). We also per-

formed auxiliary simulations at h2
g ¼ 0:5. To induce functional

enrichment, we altered the prior probability that a SNP was

selected to be causal, setting this to be proportional to VarðbjÞ ¼P
C

CðjÞtC. Empirically estimated enrichment parameters (ts) were

obtained from a meta-analysis of the 31 traits reported by Gazal

et al.7 (see Table S1). This allowed our simulations to more closely

reflect the complex, multi-faceted genetic architectures observed

in real data. We note that functional enrichment was estimated

without knowledge of the true functional enrichment used to

simulate phenotypes. To obtain the baselineLD leave-one-chromo-

some-out (baseLD-LOCO) criteria, we estimated chromosome-spe-

cific ts using off-chromosome data. To evaluate how our method

performed with only a subset of SNPs, we simulated traits using

the full set of UK Biobank SNPs and then down-sampled to

HapMap3 SNPs. Finally, we used PLINK v.1.940 to compute associ-

ation statistics for each SNP. The primary metric of interest in both

real and simulated data was the number of independent GWAS loci

(at a level of p < 5 3 10�8) that the various methodologies identi-

fied. We conservatively define independent loci using PLINK’s LD-

clumping algorithm with a 5 Mb window and an r2 threshold of

0.01. When defining independent GWAS loci for FDR-based

methods, we transformed FDR values back to p values, such that

FDR-significant SNPs had their p values set below the threshold

used for LD-clumping. Reference LD for this procedure was based

on the same 113K British ancestry individuals for both simulations

and real data analysis. To avoid over-counting loci where allelic het-

erogeneity was likely present in real data, we collapsed independent

signals that were within 100 kb of one another into a single locus.
UK Biobank Dataset
While our simulations are intended to explore the potential of the

method, analyses of real traits are necessary to determine the value

of the method, as simulation assumptions may not always be

reflective of real traits. Thus, we chose to analyze data from the

UK Biobank, a large-scale prospective cohort study with a deep cat-

alog of phenotypic and genetic information.30,31 We used BOLT-

LMM32,41 to compute mixed model association statistics. A key

advantage of this approach is that it allowed us to retain related in-

dividuals in this dataset, thereby maximizing power and data

usage.32 We performed basic QC on each trait following standard
erican Journal of Human Genetics 104, 65–75, January 3, 2019 67



Table 1. FINDOR Increases Power across 27 UK Biobank Traits

Class Trait N h2
g

145K 459K

Unweighted FINDOR %Improve Unweighted FINDOR %Improve

Anthropometric balding type I 68K/208K 0.21 96 100 4.2% 334 346 3.6%

body mass index 145K/458K 0.28 117 132 12.8% 908 950 4.6%

heel T score 141K/446K 0.33 300 308 2.7% 1,130 1149 1.7%

height 145K/458K 0.64 674 690 2.4% 2,395 2402 0.3%

waist-hip ratio 145K/458K 0.17 98 104 6.1% 460 506 10.0%

Blood Cell eosinophil count 140K/440K 0.21 187 200 7.0% 699 731 4.6%

mean corpular hemoglobin 141K/443K 0.22 237 248 4.6% 765 791 3.4%

red blood cell (RBC) count 141K/445K 0.25 192 206 7.3% 840 885 5.4%

RBC distribution width 141K/445K 0.20 198 212 7.1% 652 674 3.4%

white blood cell count 131K/444K 0.21 148 165 11.5% 713 750 5.2%

Disease auto immune traits 145K/459K 0.04 14 18 28.6% 75 86 14.7%

cardiovascular diseases 145K/459K 0.12 38 49 28.9% 285 314 10.2%

eczema 145K/459K 0.08 35 46 31.4% 181 198 9.4%

hypothyroidism 145K/459K 0.05 27 30 11.1% 139 153 10.1%

respiratory diseases 145K/459K 0.06 24 29 20.8% 104 109 4.8%

type 2 diabetes 145K/459K 0.05 14 14 0.0% 76 86 13.2%

Other age at menarche 75K/242K 0.25 52 56 7.7% 318 338 6.3%

age at menopause 44K/143K 0.11 18 18 0.0% 85 91 7.1%

FEV1-FVC ratio 124K/370K 0.27 174 185 6.3% 684 714 4.4%

forced vital capacity (FVC) 124K/372K 0.23 90 99 10.0% 544 565 3.9%

hair color 143K/452K 0.14 140 143 2.1% 428 436 1.9%

morning person 130K/410K 0.11 14 14 0.0% 156 165 5.8%

neuroticism 124K/372K 0.11 11 16 45.5% 128 149 16.4%

smoking status 145K/458K 0.10 18 24 33.3% 154 178 15.6%

sunburn occasion 109K/344K 0.07 23 25 8.7% 78 82 5.1%

systolic blood pressure 134K/422K 0.22 98 106 8.2% 666 703 5.6%

years of education 144K/455K 0.14 17 24 41.2% 286 315 10.1%

overall 145K/459K NA 3,054 3,261 6.8% 13,283 13866 4.4%

average per-trait 130K/409K 0.18 113 120 13% 491 513 6.9%

For each trait, we report the number of independent, genome-wide significant loci identified by the unweighted approach and by FINDOR in the 145K and 459K
UK Biobank releases. Complete results are reported in Table S7.
GWAS practices (see Loh et al.32 for details). For each phenotype,

we generated three sets of summary statistics based on individuals’

self-reported European ancestry. The first set of summary statistics

consisted of 145K individuals from the interim UK Biobank

release.30,41 This served as our ‘‘discovery’’ dataset and had mean

sample size of z130K across 27 independent traits (see below).

We then created two additional sets of summary statistics derived

from the full UK Biobank release.31 Our ‘‘replication’’ dataset con-

sisted of 314K individuals in the final release that were not present

in the interim release (mean sample size ¼ 283K). This dataset was

used to verify findings in the discovery sample. Our ‘‘full’’ dataset

was the entire compendium of 459K individuals (average n ¼
416K). While we computed summary statistics at 20 million
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SNPs which passed filtering and QC thresholds (see Loh et al.32),

to ensure compatibility with simulations, we ran association ana-

lyses restricting to the same set of well-imputed z 9.6M biallelic

SNPs which, upon intersection, resulted in 9.6M SNPs for the

interim release and 8.9M in the full release.

To avoid over-representation of certain phenotypic classes in

our real data analysis, we constructed a set of 27 (roughly) inde-

pendent and heritable traits, retaining only traits that exhibited

a phenotypic correlation r2< 0.1.Wemade this choice for two rea-

sons. First, this prevents classes of phenotypes with many corre-

lated traits from dominating our overall results. Second, including

correlated traits might lead to double-counting of pleiotropic loci,

which could inflate the total number of GWAS loci that we report.
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To ensure adequate power to estimate functional enrichment, we

also required that the traits have a heritability Z-score > 6 in the

145K dataset to be included in our analysis.14 An overview of

the phenotypes analyzed in this work can be found in Table 1.
Independent Non-UK Biobank Data
To confirm the robustness of our findings, we sought to replicate

them in non-UK Biobank GWASs. We were able to obtain publicly

available GWAS summary statistics for nine GWAS traits that were

part of the 27 trait analysis (see Table S2). As SNP coverage was not

uniform, we intersected the datasets and examined only signifi-

cant findings that were present in both GWASs. When per-SNP

sample sizes were unavailable, we used the max n obtained from

the corresponding publication (see Table S2). External GWAS al-

leles were polarized to the UK Biobank and standardized effect

sizes were compared ðZ= ffiffiffiffi
N

p Þ.
Replication Analysis
We carried out replication analysis in independent UK Biobank (27

traits; 3,307 loci) and non-UK Biobank (9 traits; 446 loci) data. To

ensure compatibility across all traits and datasets, standardized ef-

fect sizes were computed by dividing Z-scores by the square root of

the study sample size. To quantify replication, we computed the

replication slope, defined as the slope resulting from a regression

of the standardized effect sizes in the replication data versus the

discovery data. We restricted our analysis to lead SNPs at indepen-

dent, genome-wide significant loci (lead SNP together with all of

its LD partners [r2 > 0.01] within 5 Mb) in the discovery data

that were also present in the replication data. We defined three

class of loci: those that were genome-wide significant using only

the unweighted approach, using only FINDOR p values (i.e.,

new discoveries), or using both methods (i.e., genome-wide signif-

icant with raw p values and genome-wide significant after re-

weighting). Since different SNPs at the same GWAS locus overlap

different annotations, it is possible that they fall within different

bins (and thus receive different weights). This could potentially

lead to different lead SNPs at the same GWAS locus for the

FINDOR-based p values and unweighted p values. We therefore

designated a locus as genome-wide significant using bothmethods

if the lead SNP discovered by unweighted p values had an r2> 0.01

with the lead SNP discovered by FINDOR. Finally, for each of these

three classes, we estimated replication slopes and standard errors

by regressing standardized effect sizes of lead SNPs in replication

data versus discovery data, across multiple traits.
Results

Simulations Assessing Calibration and Power

We assessed calibration and power via simulations using

real genotypes from the UK Biobank interim release30

(n ¼ 100K subsampled British-ancestry samples, M ¼
9.6M well-imputed SNPs; see Material and Methods). We

simulated polygenic traits with 10,000 or 20,000 causal

variants and SNP-heritability ðh2
g Þ equal to 0.1 or 0.2. All

causal variants were placed on odd chromosomes, with

functional enrichment based on a meta-analysis of 31

traits using the baselineLD model described in Gazal

et al.7 (Table S1; see Web Resources), and even chromo-

somes served as null data. Weights were computed by
The Am
running stratified LD score regression14 on association sta-

tistics computed from simulated phenotypes, without

knowledge of the true functional enrichment parameters

used to generate the phenotypes. We compared FINDOR

to three other methods that can incorporate auxiliary

information for each SNP: stratified false discovery rate

(S-FDR),27 grouped Benjamini Hochberg (GBH),28 and

independent hypothesis weighting (IHW).29 For complete-

ness, we also compared to GenoWAP,23 a Bayesian integra-

tive method for prioritizing GWAS results that produces

posterior probabilities for each SNP. For each of the five

methods, we considered four different criteria for strati-

fying SNPs into bins: predicted c2 statistics under the

baselineLD model (baseLD); predicted c2 statistic under

the baselineLD model trained using off-chromosome data

via a leave-one-chromosome-out approach (baseLD-

LOCO); total LD score of a SNP (LDscore), motivated by a

previous study reporting that simple LD information

can be used to improve GWAS power;19 and randomly cho-

sen bins (random). We also considered unweighted raw

p values (unweighted), a natural benchmark. For both

null (even) and causal (odd) chromosomes, the primary

metric was the number of independent genome-wide sig-

nificant associations identified. Throughout this work,

we define an independent association as a SNP that ex-

ceeds a significance threshold (e.g., 5 3 10�8), together

with all linked SNPs that have an r2 > 0.01 within 5 Mb.

We performed 1,000 simulations and averaged results

across simulations. Further details of the simulation frame-

work are provided in the Material and Methods section.

We first assessed calibration on null chromosomes. We

determined that FINDOR was well calibrated, producing

a similar number of false-positive (independent, genome-

wide significant) associations at null loci as the un-

weighted approach (see Figure 1 and Table S3). This re-

mains true whether we infer functional enrichment and

compute expected c2 statistics using all GWAS data

(baseLD) or using off-chromosome data (baseLD-LOCO),

motivating the use of the baseLD stratification criteria in

the remainder of this work. Similarly, FINDOR was well

calibrated at less stringent significance thresholds (see

Table S4) and in scenarios with high GWAS power (h2
g ¼

0:5, see Figure S1). Although FINDOR makes multiple

passes over the data, which in principle could overfit the

data and produce false positives, this does not occur in

practice, likely due to the small number of global parame-

ters estimated (hundred) relative to the large number of

hypothesis tests performed (millions). Furthermore,

when we restricted GWAS data to 1.2 million HapMap 3

SNPs, our approach produced similar findings (Figure S2),

such that we can recommend the use of 100 bins for a

wide range of SNP densities.

On the other hand, S-FDR, GBH, and IHW each ex-

hibited moderate to severe increases in false-positive asso-

ciations, particularly at parameter settings with lower po-

wer, i.e., higher polygenicity and lower SNP-heritability.

For example, at a polygenicity of 20,000 causal variants
erican Journal of Human Genetics 104, 65–75, January 3, 2019 69



Figure 2. FINDOR Increases Power in Simulations of Causal Loci
We report the average number of independent, genome-wide
significant (p < 5 3 10�8) associations on causal chromosomes.
Results are averaged across 1,000 simulations. Error bars represent
95% confidence intervals. Numerical results are reported in
Table S4.
and h2
g ¼ 0:1, we observe an average (SE) of 0.10 (0.02)

false positives per simulated GWAS using raw unweighted

p values and 0.06 (0.01) using FINDOR with baseLD

criteria, while S-FDR, GBH, and IHW with baseLD yield

1.6 (0.2), 1.6 (0.2), and 1.3 (0.2) false positives, respectively

(see Figure 1 and Table S3). This inflation is exacerbated at

smaller sample sizes (see Figure S3). We hypothesize that

this may be due to the fact that the theoretical guarantees

provided by these procedures are unlikely to be valid when

the auxiliary information incorporates the dependence

structure between hypothesis tests; this limitation was pre-

viously noted by Ignatiadis et al.29 and clearly affects both

baseLD and LDscore stratifying criteria. Furthermore,

while GBH and IHW were consistently well-calibrated un-

der random stratification (see Figure 1, purple bars), S-FDR

was not, perhaps because S-FDR requires additional

adjustments for the number of strata used.42 In contrast,

GenoWAP remained well calibrated under baseLD stratifi-

cation but was susceptible to false positives under random

stratification, suggesting that the method is not robust to

mis-specification of the prior. While our simulations were

directly based on the baselineLD model, it cannot guar-

antee that the true genetic architecture of real traits would

be perfectly captured by this model, thus meriting caution

in applying GenoWAP with baseLD to real traits.

We next evaluated power to detect true associations

on causal chromosomes. We primarily focused on the un-

weighted and FINDOR methods, as the other methods

were susceptible to false positives at parameter settings

with lower power (see Figure 1). Compared to the un-

weighted method, FINDOR attained an 8.6%–38% in-

crease in the number of true (independent, genome-wide

significant) associations, depending on polygenicity

(10,000 or 20,000 causal variants) and SNP-heritability

(0.1 or 0.2) (see Figure 2 and Table S5). The relative
70 The American Journal of Human Genetics 104, 65–75, January 3, 2
improvement was smaller at lower polygenicity and larger

SNP-heritability, each of which correspond to higher abso-

lute power. Our method has a fixed budget of weights that

it can allocate, and we hypothesize that when absolute

power is high it is more likely to allocate weights to SNPs

that are already genome-wide significant, explaining the

smaller relative improvement. In addition, the enrichment

estimates provided by stratified LD score regression are ex-

pected to be less precise at lower polygenicity. However,

the smaller relative improvement still translated into a

larger absolute improvement in settings with higher abso-

lute power. For completeness, we also report the power of

IHW, GBH, S-FDR, and GenoWAP methods in Figure S4;

these methods were generally at least as well-powered as

FINDOR (though susceptible to false positives at parameter

settings with lower power; see Figure 1). We also report the

power of four hybrid methods that first run FINDOR to

compute the number of SNPs rejected at p ¼ 5 3 10�8

and then run each other method (GBH, IHW, S-FDR,

GenoWAP) to output the same number of SNPs as FINDOR

rejects (FINDOR-GBH, FINDOR-IHW, FINDOR-S-FDR,

FINDOR-GenoWAP); the true positive rate for each hybrid

method was similar to FINDOR, although slightly lower

for FINDOR-GenoWAP (Figure S5). We do not recommend

the use of the hybrid methods (see Discussion).

Application to 27 UK Biobank Traits

We applied FINDOR to the interim UK Biobank release,30

which includes N ¼ 145K European-ancestry samples

and M ¼ 9.6M well-imputed SNPs. We analyzed 27 inde-

pendent, highly heritable traits (average N ¼ 130K; see

Table 1 and Material and Methods). We computed

summary association statistics using BOLT-LMM v.2.141

(unweighted approach). We applied FINDOR to these

summary statistics and compared the number of indepen-

dent, genome-wide significant associations identified

by FINDOR versus the unweighted approach. In total,

FINDOR identified 207 more associations (see Tables 1,

S6, and S7), a statistically significant improvement

(block-jacknife SE¼ 20.4, p< 13 10�20). This corresponds

to an average per-trait improvement of 13% (SE ¼ 2.5%)

and an aggregate improvement of 6.8%; FINDOR identi-

fied more associations than the unweighted approach for

24 out of 27 traits, and the same number of associations

for the remaining 3 traits. The aggregate improvement

was lower than the average per-trait improvement because

the relative improvement was smaller for traits with higher

power (i.e., more associations) (see Figure 3), consistent

with simulations. In particular, disease traits exhibited a

larger improvement (20% average per-trait, 22% aggregate,

see Table S8), consistent with smaller effective sample size

(i.e., smaller value of sample size * observed-scale SNP-her-

itability) due to the relatively small number of disease

cases. Qualitatively similar results were obtained at a

more stringent p value threshold of 5 3 10�9 (see Table

S9). We note that, compared to the 13% average per-trait

improvement of FINDOR with the baselineLD model,7
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Figure 3. Relative Improvement of FINDOR in Real UK Biobank
Phenotypes Decreases as a Function of Absolute Power
We plot the relative improvement in the number of independent
GWAS loci identified by FINDOR compared to unweighted
p values versus sample size times observed-scale SNP-heritability,
using log scales. The three circles at the bottom of plot correspond
to traits where the number of loci was identical for FINDOR
compared to unweighted p values (0% improvement). Numerical
results are reported in Tables 1, S6, S7, and S15.

Figure 4. Additional Loci Identified by FINDOR Replicate in In-
dependent Samples
We plot the standardized effect sizes ðZ= ffiffiffiffi

N
p Þ in the UK Biobank

replication sample (average n ¼ 283K, left panel) and non-UK Bio-
bank replications sample (average n ¼ 158K, right panel) versus
the UK Biobank discovery sample (average n ¼ 132K). For addi-
tional loci identified by FINDOR (blue triangles), the replication
slope was positive and highly significant in both cases (UK Bio-
bank ¼ 0.66, Non-UK Biobank ¼ 0.69). Numerical results are re-
ported in Tables S10 and S13.
FINDOR with the baseline model14 (which excludes LD-

related annotations) attained only a 7.1% average per-trait

improvement and 4.3% aggregate improvement (72 fewer

GWAS hits; jackknife SE on difference ¼ 13.3, p ¼ 6.3 3

10�8, see Table S6). This indicates that the LD-related an-

notations of the baselineLD model contain valuable infor-

mation for increasing association power; in particular,

these annotations avoid the phenomenon of strong LD be-

tween in-annotation and out-annotation SNPs that may

limit the potential of coding, conserved, and regulatory

annotations to increase association power despite their

strong enrichments for trait heritability.

Next, we carried out a UK Biobank-based replication

analysis for the 27 traits using non-overlapping samples

in the full UK Biobank release. Starting with the 459K

European-ancestry samples, we excluded the 145K samples

that were present in the interim release and computed

summary statistics using BOLT-LMM v.2.3, a highly

computationally efficient implementation for very large

datasets.32 This produced a well-powered replication data-

set (average N ¼ 283K). We evaluated strength of replica-

tion by computing the replication slope, defined as the

slope of a regression of estimated standardized effect sizes

in replication data versus discovery data, restricting to

lead SNPs at genome-wide significant loci from the discov-

ery data (we excluded lead SNPs that were not present in

the replication data). We computed replication slopes for

three classes of loci: those that were genome-wide signifi-

cant (1) using only the unweighted approach, (2) using

only FINDOR p values, or (3) using both methods. The

49 loci that were significant only using the unweighted

approach produced a replication slope of 0.57 (SE ¼
0.043). The 230 loci that were significant using only
The Am
FINDOR (i.e., discoveries) produced a slightly stronger

replication slope of 0.66 (SE ¼ 0.018); the difference was

not statistically significant based on the small number of

data points, particularly for unweighted only. We note

that the loci evaluated for these two classes were all

distinct, suggesting that the standard errors on the replica-

tion slopes are notmiscalibrated due to double-counting of

pleiotropic loci. As expected, the 2,766 loci that were sig-

nificant using both methods produced the strongest repli-

cation slope of 0.91 (SE ¼ 0.003), as this class of loci

included the most significant associations (see Figure 4

and Table S10). For completeness, we also applied IHW,

GBH, S-FDR, and GenoWAP to the interim UK Biobank

release and carried out a similar replication analysis

using non-overlapping samples from the full UK Biobank

release. We determined that the replication slopes of

these methods were comparable to FINDOR overall (see

Table S11). However, consistent with simulation results

(Figure 1), the replication slopes were severely attenuated

for traits with lower power (see Table S12), such that we

cannot recommend these methods for broad use.

We also performed a separate replication analysis for

nine traits for which summary statistics from independent,

non-UK Biobank GWAS were available (see Material and

Methods, Table S2). In this analysis, the 31 loci that were

significant only using FINDOR (i.e., discoveries) produced

a replication slope of 0.69 (SE ¼ 0.11) in non-UK Biobank

data, which did not differ significantly from the replication

slope for the 411 loci that were significant using both

methods (0.67, SE ¼ 0.012, see Figure 4 and Table S13).

Only a single locus was significant only using unweighted

p values in this analysis, so we do not report a replication

slope for this class. Compared to FINDOR, the IHW,
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GBH, S-FDR, and GenoWAP methods yield slightly

deflated, though not significantly different, replication

slopes in independent non-UK Biobank data (see Table

S14). Overall, these results confirm that the additional

loci identified by FINDOR robustly replicate in indepen-

dent samples.

Finally, we applied FINDOR to the 27 traits using the

full set of 459K European-ancestry samples (average N ¼
416K), analyzing summary statistics computed using

BOLT-LMM v.2.3.32 The unweighted approach identified

13,283 independent genome-wide significant associations

in this data. FINDOR identified 583 more associations (see

Table S15, jackknife SE ¼ 40.6, p < 13 10�20), correspond-

ing to an average per-trait improvement of 6.9% (SE ¼
0.66%) and an aggregate improvement of 4.1% (see

Table 1); FINDOR identifiedmore associations than the un-

weighted approach for all 27 traits. Once again, the relative

improvements decreased as a function of sample size times

observed-scale SNP-heritability (see Figure 3, Table 1), with

larger relative improvements for disease traits (10%

average per-trait, 10% aggregate) and smaller relative im-

provements in the 459K release versus the 145K release,

consistent with simulations. We further characterized un-

weighted-only and FINDOR-only loci by contrasting their

overlap with molecular QTL 95% causal sets.43 This anno-

tation class is not directly included in the baselineLD

model and thus provides an independent assessment of

whether new GWAS loci uncovered by our approach are

more amenable to biological interpretation. The lead

SNPs at FINDOR-only loci had substantial overlap with

molecular QTL 95% causal sets (and substantially larger

molecular QTL causal posterior probabilities on average),

compared to unweighted-only loci (see Table S16). This

arises because molecular QTL annotations have non-trivial

correlations to the baseline LD model (average jr jz0:05,

see Hormozdiari et al.43) and implies that loci identified

by FINDOR not only are more numerous but may poten-

tially provide deeper mechanistic insights. Overall, these

results indicate that FINDOR can provide a substantial in-

crease in power, particularly for studies with smaller effec-

tive sample sizes, such as studies of disease traits.
Discussion

We have introduced a p value weighting approach that le-

verages polygenic functional enrichment to improve asso-

ciation power. We demonstrated in simulations that our

FINDOR framework is properly calibrated under the null

and improves power to detect causal loci. We reproducibly

identified hundreds of new loci across a broad set of UK

Biobank traits, with increased prospects for biological inter-

pretation (see Table S16).We achieved this by using amulti-

faceted functional enrichmentmodel that includes coding,

conserved, regulatory, and LD-related annotations.7,14

Previous studies have leveraged functional enrichment

to achieve 3%–5% increases in association power.22,25 First,
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Pickrell22 reported a 5.0% increase in power (average n ¼
57K for 18 traits) using fgwas, a hierarchical Bayesian

model in which genomic blocks are re-weighted based on

relevant functional data. We were unable to compare

FINDOR to fgwas, both because fgwas outputs regional

posterior probabilities of association (for genomic blocks

spanning thousands of SNPs) instead of per-SNP p values,

and because the current fgwas software implementation

(v.0.3.6) does not support continuous annotations. Sec-

ond, Sveinbjornsson et al.25 employed a p value weighting

scheme with weights that were estimated across hundreds

of GWASs based on a sparse functional enrichment model

consisting of five variant effect predictor (VEP) annota-

tions.44 The authors reported a 2.7% overall increase in po-

wer (p < 1 3 10�8 median Neff ¼ 4=ð1=Ncase þ 1=NcontrolÞ ¼
6K for 123 binary traits, median n ¼ 23K for 96 quantita-

tive traits), and a 13.7% increase in the number of ‘‘unset-

tled’’ associations (13 10�10 < p< 13 10�8), a metric that

yields much larger relative improvements. Despite the sim-

ilarity between the methods, we were unable to compare

FINDOR to the method of Sveinbjornsson et al.,25 because

this method aggregates functional enrichment estimates

across hundreds of GWASs while our method is applied

in a trait-specific manner. (However, it could potentially

be fruitful to incorporate VEP annotations and/or weights

from Sveinbjornsson et al.,25 which more finely dissects

coding variants, into our functional model; indeed, our

initial efforts to incorporate weights for sub-categories of

coding variants from Sveinbjornsson et al.25 increased

the FINDOR improvement from 7% to 12% overall; see

Table S17.) Thus, we focused our comparisons on previous

methods that could incorporate information from our

polygenic functional enrichment model and produce

p value thresholds for hypothesis testing: stratified FDR

(S-FDR),27 grouped Benjamini Hochberg (GBH),28 and in-

dependent hypothesis weighting (IHW).29

Stratifying SNPs based on predicted (tagged) variance

was previously proposed by Schork et al.21 (incorporating

ten functional annotations), which made a key contribu-

tion to the literature by highlighting the potential of this

approach. The study demonstrated that this criteria

improved replication rates and also reported that it

increased power when applying S-FDR.27 However, S-FDR

did not achieve proper null calibration in our simulations,

even under random stratification (Figure 1), perhaps

because S-FDR requires additional adjustments for the

number of strata used.42 Furthermore, S-FDR, GBH, and

IHW were all unable to correctly control false positives

when LD-dependent stratification criteria (LDscore or

baseLD) were employed, particularly at parameter settings

with lower power (Figure 1); as noted above, theoretical

guarantees about false positives are unlikely to be valid

when the stratification criteria incorporate the dependence

structure between hypothesis tests.29 (In contrast, the

GenoWAP method was susceptible to false positives

under random stratification.) Interestingly, the loci identi-

fied by IHW, GBH, S-FDR, and GenoWAP attained overall
019



replication slopes similar to FINDOR in our analyses of UK

Biobank traits, which are generally well powered (see Table

S11); however, consistent with our simulations, the repli-

cation slopes for IHW, GBH, S-FDR, and GenoWAP were

severely attenuated for UK Biobank traits with lower power

(Table S12), such that we cannot recommend these

methods for broad use. We also do not recommend the

use of hybrid methods that first run FINDOR to compute

the number of SNPs rejected at p ¼ 5 3 10�8 and then

run each other method (GBH, IHW, S-FDR, GenoWAP)

to output the same number of SNPs as FINDOR rejects

(FINDOR-GBH, FINDOR-IHW, FINDOR-S-FDR, FINDOR-

GenoWAP) (Figure S5; the true positive rate for each hybrid

method was similar to FINDOR, although slightly lower for

FINDOR-GenoWAP), due to the considerable complexity

of these methods.

Our approach bears some similarity to the multi-

threshold association tests proposed by Eskin19 and Dar-

nell et al.20 which use knowledge of the true effect

size distribution to solve a convex optimization problem

to determine appropriate thresholds. Given knowledge

of the true effect size distribution, this approach is

theoretically optimal;18,19 however, this information is

rarely available in practice and must be fixed a priori or

approximated from the data.18–20 Finally, although we

employ a fundamentally different weighting strategy,

our method draws on insights from Roeder et al.,18

which established the theoretical basis for data-driven

p value weighting.

We conclude with several limitations of our work.

First, previous studies have demonstrated that complex

traits often exhibit cell-type-specific functional enrich-

ments,10–17,22,45,46 which we did not incorporate in this

study. Incorporating cell-type-specific functional enrich-

ments may further increase power, although care will be

required to avoid overfitting since identifying critical

cell types requires extensive model selection. Second,

our modeling of MAF-dependent architectures is limited;

while our baselineLD functional model includes MAF-

bin annotations for common SNPs (MAF > 5%), it does

not model MAF-dependent architectures for rare and

low-frequency variants. A possible future direction would

be to incorporate MAF-dependent annotations, e.g., via

the widely used ‘‘a model.’’5,47,48 Third, we cannot

formally rule out the possibility that there could exist

simulation settings in which FINDOR would fail to con-

trol type I error. However, FINDOR controlled type I error

in all of our simulations, including a range of realistic ge-

netic architectures and stratification criteria; in particular,

FINDOR controlled type I error when the prior was mis-

specified via random stratification. Fourth, we anticipate

that GWASs will grow larger and more powerful in the

years ahead, but the relative improvement of our method

decreases as a function of absolute power. However, we

anticipate that our method will continue to produce

large relative improvements for disease phenotypes (as

in Table 1), for which the ongoing challenge of recruiting
The Am
disease case subjects will continue to limit effective sam-

ple size. Fifth, our UK Biobank replication of loci from

the interim UK Biobank release could in principle be in-

flated by relatedness within the UK Biobank; however,

our non-UK Biobank replication produced a concordant

replication slope, suggesting that this effect is limited.

Sixth, replication slopes may be attenuated due to win-

ner’s curse,49 but we did not correct for winner’s curse

when estimating replication slopes. However, attenuation

due to winner’s curse would not impact the comparison

between replication slopes of GWAS loci identified only

using unweighted p values versus GWAS loci identified

only using FINDOR p values. Seventh, we evaluated our

method using only European-ancestry samples. Although

our previous work has provided evidence that functional

enrichment is consistent across populations,16,50 general-

izing our results to non-European samples is currently

an open question, as it is unclear whether functional en-

richments inferred in large European samples should be

incorporated. Despite these limitations, we anticipate

that FINDOR will be a valuable and practical tool for

leveraging polygenic functional enrichment to improve

GWAS power.
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BOLT-LMM association statistics (459K), http://data.

broadinstitute.org/alkesgroup/UKBB/

BOLT-LMM v2.3 software, http://data.broadinstitute.org/

alkesgroup/BOLT-LMM/

FINDOR software, https://github.com/gkichaev

GenoCanyon Annotations, http://genocanyon.med.yale.edu/

GenoCanyon_Downloads.html

LDscore regression software, https://github.com/bulik/ldsc

LDscores for baselineLD model: https://data.broadinstitute.org/

alkesgroup/LDSCORE/

UK Biobank, http://www.ukbiobank.ac.uk/
erican Journal of Human Genetics 104, 65–75, January 3, 2019 73

https://doi.org/10.1016/j.ajhg.2018.11.008
https://doi.org/10.1016/j.ajhg.2018.11.008
http://data.broadinstitute.org/alkesgroup/UKBB/
http://data.broadinstitute.org/alkesgroup/UKBB/
http://data.broadinstitute.org/alkesgroup/BOLT-LMM/
http://data.broadinstitute.org/alkesgroup/BOLT-LMM/
https://github.com/gkichaev
http://genocanyon.med.yale.edu/GenoCanyon_Downloads.html
http://genocanyon.med.yale.edu/GenoCanyon_Downloads.html
https://github.com/bulik/ldsc
https://data.broadinstitute.org/alkesgroup/LDSCORE/
https://data.broadinstitute.org/alkesgroup/LDSCORE/
http://www.ukbiobank.ac.uk/


References

1. Price, A.L., Spencer, C.C., and Donnelly, P. (2015). Progress

and promise in understanding the genetic basis of common

diseases. Proc. Biol. Sci. 282, 20151684.

2. Visscher, P.M., Wray, N.R., Zhang, Q., Sklar, P., McCarthy,

M.I., Brown, M.A., and Yang, J. (2017). 10 years of gwas dis-

covery: biology, function, and translation. Am. J. Hum.

Genet. 101, 5–22.

3. Manolio, T.A., Collins, F.S., Cox, N.J., Goldstein, D.B., Hin-

dorff, L.A., Hunter, D.J., McCarthy, M.I., Ramos, E.M., Cardon,

L.R., Chakravarti, A., et al. (2009). Finding the missing herita-

bility of complex diseases. Nature 461, 747–753.

4. Yang, J., Benyamin, B., McEvoy, B.P., Gordon, S., Henders,

A.K., Nyholt, D.R., Madden, P.A., Heath, A.C., Martin, N.G.,

Montgomery, G.W., et al. (2010). Common SNPs explain a

large proportion of the heritability for human height. Nat.

Genet. 42, 565–569.

5. Speed, D., Hemani, G., Johnson, M.R., and Balding, D.J.

(2012). Improved heritability estimation from genome-wide

SNPs. Am. J. Hum. Genet. 91, 1011–1021.

6. Yang, J., Bakshi, A., Zhu, Z., Hemani, G., Vinkhuyzen, A.A.,

Lee, S.H., Robinson, M.R., Perry, J.R., Nolte, I.M., van Vliet-Os-

taptchouk, J.V., et al.; LifeLines Cohort Study (2015). Genetic

variance estimation with imputed variants finds negligible

missing heritability for human height and body mass index.

Nat. Genet. 47, 1114–1120.

7. Gazal, S., Finucane, H.K., Furlotte, N.A., Loh, P.-R., Palamara,

P.F., Liu, X., Schoech, A., Bulik-Sullivan, B., Neale, B.M., Gusev,

A., and Price, A.L. (2017). Linkage disequilibrium-dependent

architecture of human complex traits shows action of negative

selection. Nat. Genet. 49, 1421–1427.

8. Speed, D., Cai, N., Johnson, M.R., Nejentsev, S., Balding, D.J.;

and UCLEB Consortium (2017). Reevaluation of snp heritabil-

ity in complex human traits. Nat. Genet. 49, 986–992.

9. ENCODE Project Consortium (2012). An integrated encyclo-

pedia of DNA elements in the human genome. Nature 489,

57–74.

10. Maurano, M.T., Humbert, R., Rynes, E., Thurman, R.E., Hau-

gen, E., Wang, H., Reynolds, A.P., Sandstrom, R., Qu, H.,

Brody, J., et al. (2012). Systematic localization of common dis-

ease-associated variation in regulatory DNA. Science 337,

1190–1195.

11. Trynka, G., Sandor, C., Han, B., Xu, H., Stranger, B.E., Liu, X.S.,

and Raychaudhuri, S. (2013). Chromatin marks identify crit-

ical cell types for fine mapping complex trait variants. Nat.

Genet. 45, 124–130.

12. Gusev, A., Lee, S.H., Trynka, G., Finucane, H., Vilhjálmsson,
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Figure S 1: Null calibration for simulations in high power scenario. We report the average number
of independent, genome-wide significant (p < 5 × 10−8) associations on null chromosomes in simulations
with h2g = 0.5 and 100K individuals. Results are averaged across 500 simulations. Error bars represent 95%
confidence intervals.
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Figure S 2: Top: Null calibration for different number of strata. Bottom: Percentage of
simulations where estimation of π̂0 failed. We report the average number of independent, genome-wide
significant (p < 5 × 10−8) associations on null chromosomes in simulations with 100K individuals using
different numbers of stratifying bins. The HM3 and UKB panels refer to an application of FINDOR to
Hapmap3 (1.2M) or UKBiobank (9.6M) SNP sets. Results are averaged across 500 simulations. In the top
figure, error bars represent 95% confidence intervals.
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Figure S 3: Null mis-calibration for GBH, IHW and S-FDR, and GenoWAP is worse at lower
effective sample size (50K). We report the average number of independent, genome-wide significant
(p < 5 × 10−8) associations on null chromosomes in simulations with 50K individuals (vs. 100K in Main
Figure 1). Results are averaged across 500 simulations. Error bars represent 95% confidence intervals.
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Figure S 4: Power of FINDOR, IHW, GBH , S-FDR, and GenoWAP in simulations of causal
loci. We report the average number of independent, genome-wide significant (p < 5× 10−8) associations on
causal chromosomes in simulations with 100K individuals for all four methods explored in this study using
the BaseLD criteria. Methods that are susceptible to false positives (IHW, GBH and S-FDR; see Figure 1)
are denoted using pink bars (BaseLD*). Results are averaged across 1000 simulations. Error bars represent
95% confidence intervals.
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Figure S 5: True positive rate of hybrid methods (FINDOR-GBH, FINDOR-IHW, FINDOR-
S-FDR, FINDOR-GenoWAP). Each hybrid method first runs FINDOR to compute the number of SNPs
rejected at P = 5 × 10−8 and then runs a second method (GBH, IHW, S-FDR, GenoWAP) to output the
same number of SNPs as FINDOR rejects. For GBH, IHW and S-FDR, SNPs were ranked using weighted-
FDR values. For GenoWAP, SNPs were ranked based on posterior probabilities. (Top) We report the true
positive rate, defined as the ratio of the average number of independent associations that are true positives
divided by th total number of independent associations. (Bottom-left) We report the average number of
independent associations that are true positives. (Bottom-right) We report the average total number of
independent associations that are false positives. Results are averaged across 1000 simulations. Error bars
represent 95% confidence intervals.
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Annotation Proportion of SNPs h2g Enrichment Tau

All SNPs 1 NaN -1.011
Coding 0.014 4.634 1.248

Coding + 500bp 0.064 1.523 -1.303
Conserved (GERP NS) - 1.801 0.3244

Conserved (GERP RS >= 4) 0 8 12.99 7.121
Conserved (Lindblad-Toh) 0.026 9.353 6.166

Conserved (Lindblad-Toh) + 500bp 0.33 1.669 -0.3263
CTCF 0.024 0.3465 -1.074

CTCF + 500bp 0.071 0.7298 -0.3127
DGF 0.136 2.062 0.1708

DGF + 500bp 0.538 1.367 0.05873
DHS Peaks 0.111 2.272 0.08154

DHS 0.166 2.017 -0.5108
DHS + 500bp 0.496 1.3 -0.1541

FANTOM5 Enhancer 0 4 1.296 -1.391
FANTOM5 Enhancer + 500bp 0.019 1.723 -0.3048

Enhancer 0.042 2.724 0.6413
Enhancer + 500bp 0.09 2.113 -0.1927

Fetal DHS 0.084 2.493 0.1489
Fetal DHS + 500bp 0.283 1.581 -0.1934

H3K27ac (Hnisz) 0.389 1.526 -0.4566
H3K27ac (Hnisz) + 500bp 0.42 1.534 0.5073

H3K27ac (PGC2) 0.269 1.716 -0.546
H3K27ac (PGC2) + 500bp 0.335 1.708 0.5095

H3K4me1 Peaks 0.17 2.254 0.5072
H3K4me1 0.424 1.71 0.5112

H3K4me1 + 500bp 0.606 1.338 -0.2583
H3K4me3 Peaks 0.042 2.936 0.3316

H3K4me3 0.133 2.378 0.3035
H3K4me3 + 500bp 0.255 1.756 -0.08552

H3K9ac Peaks 0.038 3.261 0.5507
H3K9ac 0.125 2.592 0.6866

H3K9ac + 500bp 0.23 1.915 -0.232
Intron 0.387 1.11 2.252

Intron + 500bp 0.397 1.177 -2.379
Promoter Flanking 0 8 1.797 -0.06156

Promoter Flanking + 500bp 0.033 1.373 -0.8093
Promoter 0.031 1.961 1.882

Promoter + 500bp 0.038 1.5 -2.017
Repressed 0.461 0.7185 0.05893

Repressed + 500bp 0.719 0.7835 0.1844
Super Enhancer (Vahedi) 0.021 2.076 2.19

Super Enhancer (Vahedi) + 500bp 0.021 2.017 -2.265
Super Enhancer (Hnisz) 0.167 1.814 -1.809

Super Enhancer (Hnisz) + 500bp 0.17 1.878 1.835
Typical Enhancer 0.022 1.698 0.995

Typical Enhancer + 500bp 0.026 1.653 -0.9213
TFBS 0.131 2.439 0.9492

TFBS + 500bp 0.341 1.499 -0.1196
Transcribed 0.346 1.173 0.309

Transcribed + 500bp 0.762 0.965 -0.09606
TSS 0.018 3.469 0.7095

TSS + 500bp 0.034 2.916 0.1618
3 UTR 0.011 2.905 0.3657

3 UTR + 500bp 0.026 1.991 -0.04583
5 UTR 0 5 3.271 0.6998

5 UTR + 500bp 0.027 1.581 -0.3904
Weak Enhancer 0.021 1.69 -0.4957

Weak Enhancer + 500bp 0.089 1.41 -0.4051
MAF bin 1 0.102 0.6522 0.5037
MAF bin 2 0.1 0.7087 0.5734
MAF bin 3 0.1 0.8438 0.7306
MAF bin 4 0.101 0.7483 0.6469
MAF bin 5 0.098 0.9875 0.9017
MAF bin 6 0.1 1.088 0.985
MAF bin 7 0.1 1.093 1.028
MAF bin 8 0.1 1.168 1.102
MAF bin 9 0.101 1.18 1.109
MAF bin 10 0.098 1.291 1.222

MAF-Adjusted Allele Age - NA -0.2584
LLD-AFR - NA -0.2012

Recombination Rate (10kb) - 0.891 -0.08077
Nucleotide Diversity (10kb) - 0.8324 -0.05295

Background Selection Statistic - 1.238 0.6152
CpG-Content (50kb) - 1.162 41.6

Table S 1: Generative τ values used to simulate BaseLD enrichment. Values are derived from a
meta-analysis of 31 traits (see ref. [1]).
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Phenotype Replication Study Discovery N Replication N (max)
BMI Locke et al. (Nature 2015) [2] 145,209 322,091

Height Wood et al. (Nature 2014) [3] 145,368 253,237
WHR adjusted BMI Shugin et al (Nature 2015) [4] 145,375 210,039

Edu Years Rietveld et al. (Science 2013) [5] 144,204 126,559
Eczema Paternoster et al. (Nature Genetics 2015) [6] 145,416 40,835

Type II Diabetes Morris et al. (Nature Genetics 2012) [7] 145,298 29,842
Ever Smoked Furberg et al. (Nature Genetics 2010) [8] 145,227 74,035

Age at Menarche Perry et al. (Nature 2014) [9] 74,944 182,416
Age at Menopause Day et al (Nature Genetics 2015) [10] 44,410 69,360

Table S 2: List of nine traits used for non-UK Biobank replication analysis. We report the
non-UK Biobank replication reference, UK Biobank discovery sample size and non-UK Biobank replication
sample size for each trait.

h2g # Causals Criteria Unweighted FINDOR S-FDR GBH IHW GenoWAP

0.1 10000

BaseLD NA 0.066 (0.0086) 0.47 (0.035) 0.4 (0.035) 0.38 (.031) 0.094 (0.01)
BaseLD-LOCO NA 0.073 (0.009) 0.48 (0.035) 0.37 (0.033) 0.36 (0.033) 0.13 (0.039)

LDscore NA 0.07 (0.0087) 0.4 (0.029) 0.29 (0.03) 0.29 (0.024) 0.032 (0.0057)
Random NA 0.11 (0.011) 0.37 (0.029) 0.072 (0.0088) 0.071 (0.0089) 0.5 (0.027)

Unweighted 0.091 (0.0099) NA NA NA NA NA

0.1 20000

BaseLD NA 0.061 (0.013) 1.7 (0.21) 1.6 (0.24) 1.3 (0.18) 0.094 (0.01)
BaseLD-LOCO NA 0.073 (0.014) 1.8 (0.23) 1.6 (0.25) 1.5 (0.22) 0.15 (0.04)

LDscore NA 0.066 (0.012) 1.4 (0.21) 1.2 (0.19) 1.1 (0.16) 0.049 (0.0074)
Random NA 0.1 (0.016) 1.2 (0.16) 0.086 (0.015) 0.076 (0.014) 0.46 (0.03)

Unweighted 0.1 (0.016) NA NA NA NA NA

0.2 10000

BaseLD NA 0.06 (0.008) 0.066 (0.0082) 0.067 (0.0084) 0.051 (0.0075) 0.059 (0.0079)
BaseLD-LOCO NA 0.058 (0.0079) 0.068 (0.0085) 0.062 (0.0081) 0.058 (0.0077) 0.055 (0.0076)

LDscore NA 0.064 (0.0081) 0.059 (0.0078) 0.055 (0.0078) 0.048 (0.0071) 0.027 (0.0053)
Random NA 0.093 (0.0099) 0.096 (0.01) 0.081 (0.0092) 0.081 (0.0092) 0.56 (0.026)

Unweighted 0.09 (0.0096) NA NA NA NA NA

0.2 20000

BaseLD NA 0.059 (0.0076) 0.09 (0.01) 0.081 (0.0093) 0.064 (0.0083) 0.072 (0.0084)
BaseLD-LOCO NA 0.063 (0.008) 0.093 (0.01) 0.081 (0.0091) 0.075 (0.0093) 0.069 (0.0083)

LDscore NA 0.055 (0.0073) 0.069 (0.0084) 0.061 (0.008) 0.042 (0.0065) 0.036 (0.0061)
Random NA 0.097 (0.0098) 0.12 (0.011) 0.087 (0.0092) 0.089 (0.0094) 0.52 (0.025)

Unweighted 0.098 (0.0098) NA NA NA NA NA

Table S 3: Numerical results for simulations of null loci (Figure 1). We report the average number
of independent, genome-wide significant (p < 5 × 10−8) associations on null chromosomes. Results are
averaged across 1000 simulations. Standard errors are reported in parentheses.
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h2g # Causals log10 BaseLD BaseLD (LOCO) LDscore Random Unweighted
threshold

0.1 10000

-8 1.07 (0.79) 0.96 (0.74) 0.89 (0.68) 0.52 (0.32) 0.51 (0.32)
-7 3.9 (1.14) 3.99 (1.05) 3.66 (1.03) 3.45 (0.8) 3.49 (0.82)
-6 27.77 (1.77) 28.27 (1.72) 25.91 (1.61) 26.16 (1.34) 26.27 (1.35)
-5 257.06 (4.68) 260.59 (4.47) 246.15 (4.18) 243.82 (2.94) 244.22 (2.98)
-4 2497.25 (16.01) 2534.26 (15.07) 2471.05 (15.68) 2425.97 (9.73) 2421.79 (9.93)

0.1 20000

-8 0.23 (0.08) 0.26 (0.08) 0.29 (0.09) 0.29 (0.08) 0.26 (0.07)
-7 2.22 (0.35) 2.12 (0.31) 2.02 (0.31) 2.48 (0.28) 2.45 (0.28)
-6 25.41 (1.73) 25.34 (1.67) 23.31 (1.43) 23.86 (1.07) 24.01 (1.1)
-5 253.37 (6.05) 258.33 (6) 239.84 (5.62) 241.9 (3.75) 241.82 (3.8)
-4 2505.8 (25.29) 2552.36 (24.37) 2450.59 (23.69) 2429.73 (15.65) 2424.49 (15.96)

0.2 10000

-8 0.57 (0.25) 0.59 (0.26) 0.51 (0.26) 0.33 (0.09) 0.31 (0.08)
-7 2.89 (0.4) 2.81 (0.4) 2.57 (0.39) 2.67 (0.35) 2.65 (0.35)
-6 27.3 (1.85) 27.16 (1.64) 26.69 (1.92) 24.99 (0.81) 25.05 (0.82)
-5 253.01 (4.7) 258.05 (4.63) 260.4 (5) 247.23 (2.89) 247.72 (2.93)
-4 2433.43 (14.02) 2485.62 (13.81) 2467.72 (14.75) 2444.87 (10.06) 2439.6 (10.15)

0.2 20000

-8 0.24 (0.06) 0.25 (0.06) 0.2 (0.06) 0.22 (0.05) 0.22 (0.05)
-7 2.13 (0.23) 2.25 (0.24) 2.15 (0.2) 2.29 (0.17) 2.31 (0.18)
-6 24.09 (1.01) 24.73 (0.99) 24.37 (1.03) 24.28 (0.69) 24.36 (0.71)
-5 241.74 (3.9) 249.05 (3.76) 246.46 (4.15) 245.44 (2.67) 246.35 (2.71)
-4 2414.67 (14.36) 2468.78 (13.93) 2468.45 (14.56) 2431.91 (9.74) 2426.62 (9.81)

Table S 4: FINDOR is well-calibrated at less stringent significance thresholds in simulations
of null loci. We report the average total number of associated SNPs on null chromosomes at various
significance thresholds. (In contrast to our main simulations, we do not report the average number of
independent associations, due to problems with clumping using PLINK at less significant thresholds.) Results
are averaged across 1000 simulations. Standard errors are reported in parentheses.
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h2g # Causals Criteria FINDOR Unweighted % Improve

0.1 10,000

Baseline 8.92 (0.1) NA 20.00
BaseLD 9.15 (0.1) NA 23.00
LDscore 7.95 (0.095) NA 6.90
Random 7.59 (0.092) NA 2.00

Unweighted NA 7.44 (0.092) 0

0.1 20,000

Baseline 5.28 (0.12) NA 34.00
BaseLD 5.45 (0.12) NA 38.00
LDscore 4.5 (0.11) NA 14.00
Random 4.02 (0.1) NA 2.00

Unweighted NA 3.94 (0.1) 0

0.2 10,000

Baseline 55.4 (0.23) NA 6.70
BaseLD 56.4 (0.23) NA 8.70
LDscore 52.2 (0.23) NA 0.58
Random 52.3 (0.23) NA 0.77

Unweighted NA 51.9 (0.23) 0

0.2 20,000

Baseline 31.5 (0.16) NA 16.00
BaseLD 32.3 (0.17) NA 19.00
LDscore 29.1 (0.16) NA 7.00
Random 27.4 (0.16) NA 0.74

Unweighted NA 27.2 (0.15) 0

Table S 5: Numerical results for simulations of causal loci (Figure 2). We report the average number
of independent, genome-wide significant (p < 5 × 10−8) associations on causal chromosomes. Results are
averaged across 1000 simulations. Standard errors are reported in parentheses.
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Trait Baseline BaseLD LDscore Random Unweighted
Eosinophil Count 198 200 189 188 187

Mean Corpular Hemoglobin 247 248 233 237 237
Red Blood Cell Distribution Width 205 212 201 199 198

Red Blood Cell Count 201 206 191 192 192
White Blood Cell Count 158 165 148 148 148

Heel T Score 308 308 295 302 300
Balding Type I 96 100 92 96 96

Body Mass Index 126 132 119 117 117
Height 685 690 668 675 674

Waist-hip Ratio 102 104 100 99 98
Systolic Blood Pressure 105 106 98 96 98

Years of Education 19 24 18 17 17
Smoking Status 22 24 21 19 18

Auto Immune Traits 15 18 14 14 14
Eczema 43 46 39 34 35

Cardiovascular Diseases 47 49 39 41 38
Hypothyroidism 27 30 27 27 27

Respiratory and Disease 26 29 24 25 24
Type 2 Diabetes 16 14 13 15 14
FEV1-FVC Ratio 178 185 172 174 174

Forced Vital Capacity (FVC) 99 99 94 91 90
Neuroticism 15 16 10 11 11

Morning Person 12 14 13 14 14
Hair Color 142 143 139 139 140

Sunburn Occasion 24 25 23 22 23
Age at Menarche 56 56 54 52 52

Age at Menopause 17 18 17 17 18
Total 3189 3261 3051 3061 3054

Difference 135 207 -3 7 0
Jacknife SE 17.22 20.41 14.56 5.88 0

Table S 6: Results for FINDOR with different stratification criteria in the 145K UK Biobank
release. For each trait, we report the number of independent, genome-wide significant loci identified by the
Unweighted approach and by FINDOR with various stratification criteria in the 145K UK Biobank release.

Table S 7: List of independent, genome-wide significant loci for all 27 traits in 145K and 460K
UK Biobank releases. We report independent, genome-wide significant loci for both Unweighted and
FINDOR. See Excel file.

145K 459K
# Loci # Loci Overall % Average % # Loci # Loci Overall %. Average %

Class Unweighted FINDOR Increase Increase Unweighted FINDOR Increase. Increase
Anthropometric 1285 1334 4% 6% 5227 5353 2% 4%

Blood Cell 962 1031 7% 8% 3669 3831 4% 4%
Disease 152 186 22% 20% 860 946 10% 10%
Other 655 710 8% 15% 3527 3736 6% 7%

Overall 3054 3261 7% 13% 13283 13866 4% 7%

Table S 8: Results for each phenotype class in 145K and 459K UK Biobank releases. For
each phenotype class, we report the number of independent, genome-wide significant loci identified by the
Unweighted approach and by FINDOR in the 145K and 459K UK Biobank releases.
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Trait Baseline BaseLD LDscore Random Unweighted
Eosinophil Count 166 164 157 159 159

Mean Corpular Hemoglobin 209 210 200 203 203
Red Blood Cell Distribution Width 165 170 159 160 160

Red Blood Cell Count 164 167 153 153 154
White Blood Cell Count 119 120 112 114 112

Heel T Score 244 250 238 240 239
Balding Type I 79 83 75 75 76

Body Mass Index 79 82 76 78 78
Height 563 568 539 538 538

Waist-hip Ratio 79 75 74 71 70
Systolic Blood Pressure 75 75 73 73 71

Years of Education 10 11 10 10 10
Smoking Status 11 13 8 7 7

Auto Immune Traits 11 11 10 9 10
Eczema 27 28 27 24 24

Cardiovascular Diseases 30 30 29 28 29
Hypothyroidism 22 23 23 23 24

Respiratory and Disease 21 22 18 20 19
Type 2 Diabetes 9 9 7 10 10
FEV1-FVC Ratio 135 138 131 134 134

Forced Vital Capacity (FVC) 62 63 58 57 57
Neuroticism 5 8 5 5 5

Morning Person 6 5 5 5 5
Hair Color 117 122 119 121 121

Sunburn Occasion 20 20 18 18 18
Age at Menarche 39 39 37 39 38

Age at Menopause 14 14 13 14 14
Total 2545 2582 2438 2452 2450

Difference 95 132 -12 2 0
Jacknife SE 15.83 16.72 10.14 5.28 0

Table S 9: Results for FINDOR with different stratification criteria with p-value threshold
of 5 × 10−9 in the 145K UK Biobank release. For each trait, we report the number of independent,
p < 5 × 10−9 loci identified by the Unweighted approach and by FINDOR with various stratification criteria
in the 145K UK Biobank release.

Locus class Rep Slope SE Num Loci
Both Methods 0.910 0.003 2766
FINDOR only 0.661 0.018 230

Unweighted only 0.572 0.043 49

Table S 10: : Numerical results for UK Biobank replication analysis of novel FINDOR loci
(Figure 4, left panel). For loci detected using Both Methods, FINDOR only, or Unweighted only, re-
spectively, we report results of a regression of standardized effect sizes ( Z√

N
) at lead SNPs in UK Biobank

replication data vs. UK Biobank discovery data.
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Locus class Rep Slope SE Num Loci
Both Methods 0.920 0.004 2418

IHW only 0.645 0.020 340
Unweighted only 0.790 0.016 373

Locus class Rep Slope SE Num Loci
Both Methods 0.913 0.004 2663

GBH only 0.666 0.0177 466
Unweighted only 0.721 0.029 128

Locus class Rep Slope SE Num Loci
Both Methods 0.915 0.004 2639
S-FDR only 0.687 0.014 535

Unweighted only 0.694 0.027 152

Locus class Rep Slope SE Num Loci
Both Methods 0.913 0.004 2659

GenoWAP only 0.657 0.013 511
Unweighted only 0.735 0.032 154

Table S 11: Numerical results for UK Biobank replication analysis of novel IHW, GBH , S-
FDR loci, and GenoWAP . For loci detected using Both Methods, IHW/GBH/S-FDR/GenoWAP only,
or Unweighted only, respectively, we report results of a regression of standardized effect sizes ( Z√

N
) at lead

SNPs in UK Biobank replication data vs. UK Biobank discovery data.
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Locus class Rep Slope SE Num Loci
Both Methods 0.702 0.046 94
FINDOR only 0.516 0.062 23

Unweighted only 0.568 0.200 3

Locus class Rep Slope SE Num Loci
Both Methods 0.748 0.044 71

IHW only 0.190 0.069 59
Unweighted only 0.520 0.116 26

Locus class Rep Slope SE Num Loci
Both Methods 0.721 0.047 84

GBH only 0.237 0.068 60
Unweighted only 0.499 0.130 13

Locus class Rep Slope SE Num Loci
Both Methods 0.723 0.048 85
S-FDR only 0.332 0.061 65

Unweighted only 0.460 0.128 12

Locus class Rep Slope SE Num Loci
Both Methods 0.737 0.044 85

GenoWAP only 0.409 0.051 53
Unweighted only 0.293 0.166 15

Table S 12: Numerical results for UK Biobank replication analysis of novel IHW, GBH ,
S-FDR loci, and GenoWAP restricted to traits with lower power. For loci detected using Both
Methods, FINDOR/IHW/GBH/S-FDR/GenoWAP only, or Unweighted only, respectively, we report results
of a regression of standardized effect sizes ( Z√

N
) at lead SNPs in UK Biobank replication data vs. UK

Biobank discovery data. Results are restricted to traits with lower power, defined as the five traits with <20
independent GWAS loci identified using the Unweighted method

Locus class Rep Slope SE Num Loci
Both Methods 0.672 0.012 411
FINDOR only 0.682 0.111 31

Unweighted only NA NA 1

Table S 13: : Numerical results for independent non-UK Biobank replication analysis of
novel FINDOR loci (Figure 4, right panel). For loci detected using Both Methods, FINDOR only,
or Unweighted only, respectively, we report results of a regression of standardized effect sizes ( Z√

N
) at lead

SNPs in independent non-UK Biobank replication data vs. UK Biobank discovery data.
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Locus class Rep Slope SE Num Loci
Both Methods 0.680 0.013 366

IHW only 0.574 0.066 58
Unweighted only 0.581 0.035 45

Locus class Rep Slope SE Num Loci
Both Methods 0.673 0.013 396

GBH only 0.638 0.057 73
Unweighted only 0.612 0.072 15

Locus class Rep Slope SE Num Loci
Both Methods 0.675 0.013 390
S-FDR only 0.568 0.048 93

Unweighted only 0.594 0.067 21

Locus class Rep Slope SE Num Loci
Both Methods 0.675 0.013 395

GenoWAP only 0.567 0.049 82
Unweighted only 0.569 0.054 18

Table S 14: Numerical results for independent non-UK Biobank replication analysis of novel
IHW, GBH, S-FDR, and GenoWAP loci. For loci detected using Both Methods, IHW/GBH/S-
FDR/GenoWAP only, or Unweighted only, respectively, we report results of a regression of standardized
effect sizes ( Z√

N
) at lead SNPs in independent non-UK Biobank replication data vs. UK Biobank discovery

data.
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Trait Baseline BaseLD LDscore Random Unweighted
Eosinophil Count 710 731 686 700 699

Mean Corpular Hemoglobin 791 791 758 766 765
Red Blood Cell Distribution Width 677 674 641 651 652

Red Blood Cell Count 878 885 834 839 840
White Blood Cell Count 744 750 710 713 713

Heel T Score 1148 1149 1113 1127 1130
Balding Type I 346 346 335 335 334

Body Mass Index 930 950 913 907 908
Height 2397 2402 2354 2395 2395

Waist-hip Ratio 496 506 472 458 460
Systolic Blood Pressure 694 703 661 664 666

Years of Education 302 315 293 287 286
Smoking Status 169 178 164 154 154

Auto Immune Traits 84 86 72 75 75
Eczema 191 198 179 182 181

Cardiovascular Diseases 304 314 286 285 285
Hypothyroidism 151 153 141 140 139

Respiratory and Disease 108 109 98 105 104
Type 2 Diabetes 87 86 80 78 76
FEV1-FVC Ratio 703 714 684 684 684

Forced Vital Capacity (FVC) 559 565 541 543 544
Neuroticism 143 149 136 128 128

Morning Person 161 165 159 156 156
Hair Color 433 436 427 429 428

Sunburn Occasion 82 82 74 79 78
Age at Menarche 326 338 318 318 318

Age at Menopause 89 91 85 86 85
Total 13703 13866 13214 13284 13283

Difference 420 583 -69 1 0
Jacknife SE 39.95 40.64 33.81 10.02 0

Table S 15: Results for FINDOR with different stratification criteria in the 459K UK Biobank
release. For each trait, we report the number of independent, genome-wide significant loci identified by the
Unweighted approach and by FINDOR with various stratification criteria in the 459K UK Biobank release.
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% of lead SNPs within 95% credible set
Data Method GTEx GE BLUEPRINT GE BLUEPRINT H3K27ac

145K
FINDOR-only 17.6% (2.4%) 10.2% (1.9%) 21.2% (2.6%)

Unweighted-only 0.0% (0.0%) 0.0% (0.0%) 2.0% (1.9%)

459K
FINDOR-only 13.6% (1.2%) 7.1% (0.9%) 23.4% (1.5%)

Unweighted-only 5.4% (1.7%) 3.0% (1.3%) 10.7% (2.4%)

Average Posterior Probability
Data Method GTEx GE BLUEPRINT GE BLUEPRINT H3K27ac

145K
FINDOR-only 0.052 (0.012) 0.029 (0.009) 0.039 (0.009)

Unweighted-only NA NA 0.015 (0.015)

459K
FINDOR-only 0.037 (0.006) 0.025 (0.005) 0.055 (0.006)

Unweighted-only 0.025 (0.011) 0.008 (0.006) 0.032 (0.011)

Table S 16: Novel loci identified by FINDOR are more likely to be molecular QTL. Top panel:
for lead SNPs at loci detected using FINDOR only or Unweighted only, in both 145K and 459K UK Biobank
releases, we report the % of lead SNPs that lie inside 95% causal sets for three molecular QTL, as described
in ref. [11]. Bottom panel: for lead SNPs at loci detected using FINDOR only or Unweighted only, in both
145K and 459K UK Biobank releases, we report the average causal posterior probabilities for three molecular
QTL, as described in ref. [11].
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Trait Unweighted FINDOR+VEP % improve
Eosinophil Count 187 211 13%

Mean Corpular Hemoglobin 237 260 10%
Red Blood Cell Distribution Width 198 219 11%

Red Blood Cell Count 192 213 11%
White Blood Cell Count 148 168 14%

Heel T Score 300 326 9%
Balding Type I 96 102 6%

Body Mass Index 117 139 19%
Height 674 725 8%

Waist-hip Ratio 98 107 9%
Auto Immune Traits 14 16 14%

Eczema 35 47 34%
Cardiovascular Diseases 38 60 58%

Hypothyroidism 27 34 26%
Respiratory and Ear-nose-throat Diseases 24 29 21%

Type 2 Diabetes 14 18 29%
FEV1-FVC Ratio 174 187 7%

Forced Vital Capacity (FVC) 90 107 19%
Neuroticism 11 15 36%

Morning Person 14 17 21%
Hair Color 140 145 4%

Sunburn Occasion 23 26 13%
Age at Menarche 52 58 12%

Age at Menopause 18 19 6%
Systolic Blood Pressure 98 122 24%

Years of Education 17 31 82%
Smoking Status 18 27 50%

Overall 3054 3428 12%
Average-Per-Trait 113 127 21%

Table S 17: Number of independent loci discovered in the interim UK Biobank release by in-
corporating Variant Effect Predictor (VEP) annotation weights from ref. [12] into FINDOR.
We compiled VEP annotations and classified SNPs using the same High, Medium, and Low effect classifica-
tion scheme proposed in ref. [12]. FINDOR weights were then multiplied by the weights reported in ref. [12]
(165, 33, and 3 for High, Medium and Low categories, respectively), and re-normalized to have mean 1. For
each trait, we report the total number of independent, genome-wide significant loci (p < 5× 10−8) identified
by the Unweighted approach and by FINDOR with BaseLD+VEP.
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