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Human-Disease Phenotype Map Derived from
PheWAS across 38,682 Individuals

Anurag Verma,1,2 Lisa Bang,3 Jason E. Miller,1 Yanfei Zhang,4 Ming Ta Michael Lee,4 Yu Zhang,5

Marta Byrska-Bishop,3,7 David J. Carey,6 Marylyn D. Ritchie,1,2 Sarah A. Pendergrass,3 Dokyoon Kim,2,3,*
and the DiscovEHR Collaboration

Phenome-wide association studies (PheWASs) have been a useful tool for testing associations between genetic variations and multiple

complex traits or diagnoses. Linking PheWAS-based associations between phenotypes and a variant or a genomic region into a network

provides a new way to investigate cross-phenotype associations, and it might broaden the understanding of genetic architecture that

exists between diagnoses, genes, and pleiotropy. We created a network of associations from one of the largest PheWASs on electronic

health record (EHR)-derived phenotypes across 38,682 unrelated samples from the Geisinger’s biobank; the samples were genotyped

through the DiscovEHR project. We computed associations between 632,574 common variants and 541 diagnosis codes. Using these

associations, we constructed a ‘‘disease-disease’’ network (DDN) wherein pairs of diseases were connected on the basis of shared associ-

ations with a given genetic variant. The DDN provides a landscape of intra-connections within the same disease classes, as well as inter-

connections across disease classes. We identified clusters of diseases with known biological connections, such as autoimmune disorders

(type 1 diabetes, rheumatoid arthritis, and multiple sclerosis) and cardiovascular disorders. Previously unreported relationships between

multiple diseases were identified on the basis of genetic associations as well. The network approach applied in this study can be used to

uncover interactions between diseases as a result of their shared, potentially pleiotropic SNPs. Additionally, this approachmight advance

clinical research and even clinical practice by accelerating our understanding of disease mechanisms on the basis of similar underlying

genetic associations.
Introduction

Pleiotropy occurs when a given locus (e.g., a SNP or

gene) influences two or more different phenotypes or

traits. The phenome-wide association study (PheWAS)

is an important tool that has the strength to identify

associations between genetic variants and clinical phe-

notypes and also the potential to reveal pleiotropic asso-

ciations among diseases.1–4 Although pleiotropy often

refers to a common molecular mechanism, PheWASs

can identify statistical associations between a single

variant and multiple phenotypes. They can also provide

the basis for a statistical approach to identifying cross-

phenotype associations, which can then be verified as

true pleiotropic effects.1 Over the past decade, associa-

tions from hundreds of genome-wide association studies

(GWASs) have accumulated in the EBI GWAS Catalog.5

Although a GWAS typically investigates a single pheno-

type at a time, the accumulated associations from

many studies (such as those in the EBI GWAS Catalog)

provide the opportunity to investigate cross-phenotype

associations.6,7 More recently, PheWASs have shown suc-

cess in identifying cross-phenotype associations within

the same study populations.8,9

Electronic health records (EHRs) are a powerful resource

for studying individual outcomes viamultiple longitudinal
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data elements, such as disease diagnoses, laboratory mea-

sures, medications, and other health-related information.

EHR data have been useful in population health research;

more importantly, linking EHR data with genomics data

enables us to examine the genetic architecture of various

disease outcomes and traits. PheWASs have been an effec-

tive tool to mine genetic associations for candidate SNPs or

genome-wide variants;10 hence, PheWASs provide the abil-

ity to identify cross-phenotype associations in which one

SNP is associated with multiple diseases or traits. While

investigating such cross-phenotype associations at a

genome-wide scale, researchers might uncover potential

hidden connections between diseases, especially when

two diseases share associations with two or more SNPs

that are located in different regions of the genome

(Figure 1). One way to examine these connections is by

creating a network of diseases in which pairs of diseases

are connected on the basis of their shared associations

with one or more SNPs. The strength of the network

approach is that it condenses the complex links between

SNPs and diseases and reveals links between diseases that

would be hard to identify by just looking at disease associ-

ations at a single locus, such as when one only considers

cross-phenotype association with a SNP.

Previous networks based on gene-disease associations,

such as the Human Disease Network, used gene-disease
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associations cataloged in the Online Mendelian Inheri-

tance in Man (OMIM) database.11 Other studies have

used summary statistics from the GWAS catalog and/or

the Genetic Associations Database (GAD) to investigate

SNP-phenotype associations by using network-based ana-

lyses.6 However, because these networks are based on sum-

mary statistics from disparate studies they have several crit-

ical limitations. First, differences in disease phenotype

definitions across different studies can impact the interpre-

tation of the association results,12 leading to a high false

positive rate. Second, in most cases, networks constructed

from summary statistics are limited to providing individ-

ual-level genotype and phenotype information. This limi-

tation can restrict the design of follow-up studies conduct-

ed on the new hypotheses derived from the network

analyses.

In this study, we circumvented these limitations by draw-

ingonassociation results froma single-source EHR that used

consistent phenotype definitions and by using a single gen-

otyping platform. We employed genetic associations be-

tween 625,325 SNPs and 541 ICD-9 (internal classification

of diseases, ninth revision) diagnosis codes from a PheWAS

of38,668unrelated individuals inGeisinger’sbiobank.Adis-

ease-disease network (DDN) was constructed from the

31,017 PheWAS association results (p value < 13 10�4).13

The DDN revealed thousands of connections between

hundreds of diseases, and it also provided a high-level

view of disease connections, including known and previ-

ously unreported disease links; therefore, to identify rele-

vant disease connections from this dense network, we

focused on three broad research goals. One of the key goals

was to gain a bird’s-eye view of disease connections charac-

terized by underlying genetic associations. More specif-

ically, when we grouped the diseases into disease classes,

we asked which diseases share strong links within a disease

class, as well as across different disease classes. The second

goal was to integrate functional knowledge of the genome

with genetic associations to ascertain biologically relevant

findings. We integrated epigenomic knowledge into the

DDN and examined the changes on the basis of tissue spec-

ificity. A number of recent studies have used EHRdata alone

to identify disease correlations and comorbidities,14,15 so

our last goal was to explain some of the disease correlations

and comorbidities due to shared genetics.We compared the

PheWAS-derived DDN to a separate network of diseases

identified via an orthogonal EHR-only approach without

genetics. Additionally, we used network statistics to mine

the DDN for clusters of diseases with known links to one

another in order to generate new hypotheses.

These disease connections can serve as the basis for new

hypotheses to test for comorbidities and pleiotropy. With

regard to testing new hypotheses, one of the most signifi-

cant advantages of our approach is the single-source EHR

linked to genomic data; it provides an opportunity to

revisit individual-level genotype and phenotype data to

design more targeted studies and ask more specific

questions.
2 The American Journal of Human Genetics 104, 1–10, January 3, 201
Material and Methods

Cross-Phenotype Associations
To construct the DDN, we used the genetic associations, identified

through the PheWAS approach, that were reported in in our previ-

ous study to comprehensively test for associations between

625,325 SNPs and 541 EHR-based phenotypes.13 As part of

MyCode initiative, individuals agreed to provide blood and DNA

samples for broad, future research, including genomic analyses

as part of the Regeneron-Geisinger DiscovEHR collaboration and

linking to data in the Geisinger EHR under a protocol approved

by the Geisinger Institutional Review Board. The association

testing was performed on genotype and phenotype data from

38,668 unrelated individuals. We used 31,017 associations with

a p value < 1 3 10�4 to generate a network between disease diag-

noses derived from ICD-9 phenotypes.13
Construction of the Network
Disease-Disease Network

In a bipartite network, the edges ðEÞ are only formed between two

distinct node groups. Different network objects, commonly repre-

sented as circles or dots, are referred to as nodes, and the connec-

tions drawn between these nodes are referred to as edges. The two

nod groups in our DDN are diseases ðDÞ and SNPs ðSÞ, and these

two groups can be represented in a network by N ¼ ðD;S;EÞ, where

E is an edge between two nodes. We also accounted for the linkage

disequilibrium (LD) correlations between the SNPs in the associa-

tion results used for construction of the network. Therefore, S can

be either a SNP or an LD haplotype block shared between the two

diseases ðDÞ. One can further compress the information in a bipar-

tite network by projecting the network for each group of nodes

ðD or SÞ, such that the nodes in the projection for one group will

form an edge if they share at least one node with the other group.

We constructed a bipartite network projection of diseases on the

basis of shared SNP associations identified in the PheWAS analysis.

In the DDN, nodes represent disease diagnoses, and two nodes are

connected to each other when they share one or more SNP or an

LD haplotype block (Figure 1 and Table S1). Further, we divided

the ICD-9 codes into broader disease classes based on the ICD-9

categories reclassified by Rassekh et al.16 We used a software called

Gephi to construct and visualize the DDN (see Web Resources).

To evaluate the strength of the associations, we applied the

hypergeometric test (SciPy implementation) to calculate the

probability that an ICD-9 code shared associated SNPs with

another ICD-9 code as a result of pure chance. The hypergeometric

test is a generalization of Fisher’s exact test for the one-tailed

case and has been applied to gene-set enrichment tests,17–19

gene-GO term-association tests,20 and quantification of mosai-

cism,21 among other tests. Because our genetic association data

come from a single source, the number of SNPs associated with

each disease can be compared, and thus this method surpasses

some of the limitations of GWASs or literature-based networks.

Given a population of N SNPs, wherein K is associated with given

ICD-9 code 1 and n is associated with given ICD-9 code 2, the

probability that strictly k SNPs are associated with both ICD-9 co-

des is given by the probability mass function as follows:

p ¼ ð N�KCn�kÞð KCkÞ
NCn

The integral of this function is called the cumulative distribution

function (CDF). To get the probability that k or more SNPs are
9



Figure 1. Overview of Network Construction
The cross-phenotype associations from a PheWAS analysis were used to construct the network of diseases. In the construction of the
bipartite network, diseases (represented by yellow circles) and SNPs (represented by blue triangles) formed an edge if there was an asso-
ciation identified between them. Then, the bipartite network projection for the diseases was used for constructing a disease-disease
network (DDN).
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associated with both ICD-9 codes, we took (1 – CDF), the comple-

mentary cumulative distribution function (CCDF). Generally, the

p value for a disease-disease association will be lower if the number

of common SNP associations (k) is higher than the number of

SNPs associated with each disease.
Network Statistics
Network statistics allow for the descriptive characterization of a

network graph and the identification of meaningful connections.

In this study, we applied various network analysis approaches to

the DDN to identify the most crucial disease nodes, as well as to

automate the extraction of disease cluster subnetworks. We used

the statistical packages available as plug-ins within Gephi to

perform all of the network analytics.

Hub Diseases

Hub nodes are those that have significantly more edges than

other nodes. These nodes are important because they play a

critical role in the centrality of the network. There are a num-

ber of ways to measure centrality of a network and, hence,

identify hub disease nodes. In this case, we used a measure

called betweenness centrality to identify such nodes in the

DDN. Betweenness centrality for a given node ðniÞ is calculated

on the basis of the number of shortest paths between two other

nodes ðnj;nkÞ in the network and the number of times these

paths pass through the node ðniÞ. We computed the between-

ness centrality for all pairs of nodes across the whole network.

The mathematical notation of betweenness centrality is as

follows:

CBðniÞ ¼
X

j;k

gj;kðniÞ
gj;k

gj;k Shortest path linking node j and k

gj;kðniÞ Number of paths passing through node i

The nodes with a high betweenness centrality value tend to be

most important for keeping the network connected. We used

this measure to change the representation of the nodes in the

network by scaling the node size based on its betweenness central-

ity. In this way, we were able to visually identify the most impor-

tant disease nodes in the network on the basis of network

statistics.
The
Community Detection
Community detection is an approach used in network analytics to

partition a large, densely connected network into smaller subnet-

works.22,23 Various community-detection methods can algorith-

mically identify meaningful subnetworks. These methods have

most commonly been applied in social network analyses for the

detection of structure in social interactions.24 We used Louvain’s

method,22,25 which is implemented in Gephi as the ‘‘modularity’’

feature, to partition the DDN and detect subnetworks, or commu-

nities, of diseases (see Web Resources). The communities detected

had varying types of disease nodes. We used the identified disease

communities to further investigate the biological interpretation of

disease connections in the DDN.
Tissue-Specific Functional Annotation
To investigate the tissue-specific disease connections in the

network, we used annotations from the 15 chromatin statemodels

available on the Roadmap Epigenomics website to assign chro-

matin states to different tissues.26 Using posterior probability, we

assigned the most probable chromatin states for 127 different

tissues, defined via posterior probability, to every 200 base-pair

window across the genome.We also consolidated the 127 different

tissues into 27 functional groups of tissues; for example, we used

four different adipose tissues for the chromatin-state prediction,

but we consolidated these into one group called ‘‘adipose tis-

sue.’’27 To calculate the most probable chromatin state for each

functional tissue category, we averaged the posterior probabili-

ties.27 The chromatin-state prediction provides the annotations

for the most active to the most quiescent regions of the non-cod-

ing genome. In this study, we focused on the active regulatory

elements, such as enhancers, promoters, and active transcription

start site (TSS); as a proof-of-concept, we only analyzed

enhancer-state annotations.

The chromosome base pair position of each SNP was mapped

onto the annotated chromatin states of the 27 functional groups

of tissues. We considered variants to belong inside enhancer re-

gions when a chromosome base pair position mapped onto either

of the three enhancer states: enhancer (Enh), genic enhancer

(EnhG), and bivalent enhancer (EnhBiv). Then, a total of seven

DDNs were constructed from the associations between SNPs in

enhancer regions. For visualization, we overlaid the networks

created for each tissue onto the original DDN we had

constructed.
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Figure 2. Disease-Disease Network
Using the cross-phenotype associations
from an EHR-based PheWAS, we generated
the disease-disease network (DDN). In this
network, nodes represent the diseases, and
the edges (lines) between the nodes repre-
sent shared genetic associations between
pairs of diseases. The color of the node rep-
resents the broader disease category to
which it belongs. The size of the node indi-
cates the importance of the node in the
network; importance was based on the
betweenness centrality measure. The bigger
nodes have higher betweenness centrality,
and these nodes are referred to as hub no-
des. The width of the edges (lines) repre-
sents the number of shared variants or
variants in an LD block.
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Results

Disease-Disease Network

Using the cross-phenotype associations found in the EHR-

based PheWAS analysis, we constructed a disease-disease

network (DDN) in order to understand the genetic similar-

ities between human diseases (Figure 1). The network con-

sists of 385 ICD-9-based disease diagnoses (which we ob-

tained from an original 541 ICD-9 codes by using a

threshold of p < 1 3 10-4) acting as nodes and the 1,398

edges connecting them. As shown in Figure 2, we classified

ICD-9 codes into 15 broad disease classes, labeled with

different colors. The DDN provides a bird’s-eye view of

the interconnections between the diseases on the basis of

shared genetic associations. Many interconnections,

including those between endocrine, musculoskeletal, and

neurological disorders, were observed across classes. The

strongest connections (indicated by the thickness of the

network lines in Figure 2), which are based on the highest

number of shared genetic variants, were between autoim-

mune disorders such as type 1 diabetes (MIM: 222100),

rheumatoid arthritis (MIM: 180300), psoriasis (MIM:

177900), and multiple sclerosis (MIM: 126200) (Figure 2).

These links are consistent with previous findings suggest-

ing that these autoimmune diseases are determined by

shared genetic components, indicating similar pathogenic

mechanisms, even if completely different tissue types are

affected in each disorder.28–31 This could indicate that

there are shared genetic pathways linking multiple SNPs

to the same diseases. This could also be a reflection of a

high correlation between disease occurrences.

Diseases Connected to the Most Other Diseases

Next, we focused on the disease nodes with the highest

number of direct connections with other diseases in the

network. The degree property (K) of the network represents

the number of neighbors for each node. We observed that
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on average each disease shares direct links with seven other

diseases (K ¼ 7, Figure 3). With links to 32 diseases, hypo-

thyroidism had the highest degree property (K¼ 32) in the

network. In hypothyroidism, a disorder of the endocrine

system, the thyroid gland does not produce enough

thyroid hormones, and this deficiency can lead to the

development of other diseases. Some comorbidities

observed in the DDN were morbid obesity,32,33 type 2 dia-

betes mellitus (MIM: 125853),34 vitamin D deficiency,35

hypertensive heart disease,36 thyroid cancer, and rheuma-

toid arthritis.37 On the other end of the scale, five diseases

(blepharitis; ‘‘acute, but ill-defined, cerebrovascular dis-

ease; hyposmolality and/or hyponatremia; pain in joint;

and goiter) had links to only one neighboring disease

(K ¼ 1). Thus, representing cross-phenotype associations

in the form of networks enabled visualization of complex

interconnections between different diseases.

Hub Diseases in the DDN

To further characterize the DDN, we applied different

network statistics to identify disease nodes necessary for

the cohesiveness of the network. Such nodes are also

commonly referred to as hub nodes (see Material and

Methods). We used a betweenness centrality measure to

identify hub nodes, which are represented in the DDN by

larger nodes (Figure 2). We identified many hub nodes in

different disease classes across the DDN; the highest num-

ber were in endocrine disorders and included hypothyroid-

ism, type 1 diabetes, and type 2 diabetes (Figure 2). Other

main hub nodes that we observed in the DDN were psoria-

sis, morbid obesity, multiple sclerosis, rheumatoid arthritis,

coronary atherosclerosis, and chronic kidney disease.

Identifying Biologically Relevant Subnetworks via

Epigenomics

These results demonstrate that community detection is a

good approach to visualizing the global and local structures
9



Figure 3. Disease Neighbors
In a network, the degree property is the number of direct connections between one node and other nodes. This plot presents the dis-
tribution of degrees observed in the DDN.
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of disease interaction. To further test whether the disease

nodes and the connections between them are relevant to

molecular mechanisms of disease, we incorporated chro-

matin-state annotations from the Roadmap Epigenomics

Consortium and used them to extract biologically relevant

subnetworks by using a similar approach. We only consid-

ered SNPs within enhancer regions for specific tissues for

the current analysis. Seven tissue-specific DDNs were con-

structed from the shared variants in enhancer regions.

The largest observed subnetwork where SNPs were in active

enhancer regions was in the liver. The associated diseases

for this tissue included 19 diseases, such as cirrhosis of the

liver, chronic non-alcoholic liver disease, hyperlipidemia,

morbid obesity, essential hypertension, and cardiovascular

diseases, among others (Table S2). For adipose tissue, there

were eight diseases in the subnetwork, including links be-

tween cardiovascular, nutritional, endocrine, and autoim-

mune diseases (Figure 4). Only two of the nodes in this sub-

network were connected to each other. Within the adipose

subnetwork, we observed connections between cardiovas-

cular diseases such as peripheral vascular disease, myocar-

dial infarction, coronary artery disease, and abdominal

aneurysm. Supporting these connections, previous studies

have reported known links between increased gene expres-

sion in adipose tissue and cardiovascular diseases.24,25 The

second node was for type 1 diabetes, which had connec-

tions to psoriasis and Raynaud syndrome. Psoriasis and

type 1 diabetes are both autoimmune diseases, and they

share associations with the variation in the human leuko-

cyte antigen (HLA) region. Numerous studies have identi-

fied strong connections between the pathogenesis of these

autoimmune diseases and variations in HLA.38,39

Community Detection

EHR data provide a vast amount of information pertaining

to diseases. Machine-learning approaches are being

applied to longitudinal EHR data so that predictive models

of disease correlations, risk predictions, and comorbidities
The
can be developed.40–42 EHR-based predictive models can be

used for combining disease connections into a network

similar to the DDN. To compare the DDN with networks

from longitudinal EHR data, we applied a probabilistic rela-

tionship model to ICD-9 diagnoses derived from the same

Geisinger longitudinal EHR data (unpublished data). These

prediction models were developed under an Ising model

framework,43 and all the predictions were based on EHR

data alone. The Ising model is a type of Markov random

field (MRF) graphical model for binary data.44 It provides

an approximation of the full joint-probability distribution

across hundreds of ICD-9 codes. Thus, it can help to un-

cover patterns of dependencies between ICD-9 codes that

result from either shared genetic or environmental archi-

tecture. This predictive algorithm generated a graphical

model of disease states for 500 ICD-9 codes; this model is

a representation of similarities between ICD-9 codes.

Then we evaluated whether we observed the same links

that we identified in the PheWAS-derived DDN.

Rather than comparing all the disease connections,

which would be computationally intensive, we applied

the community-detection method in Gephi to the DDN

in order to find subnetworks algorithmically. The method

found nine communities; as shown in Figure 5, the num-

ber of diseases in each community varied between clusters

of 2 and 102.

Next, we selected one community that encompassed 20

diseases and showed connections between different disease

classes, such as nutritional, neurological, cardiovascular,

skin, and digestive-system disorders (Figure 6A). We

compared this subnetwork of the DDN with the network

derived from probabilistic graphical model of disease state,

wherein disease state is defined as the status of all ICD-9

code diagnoses in an individual’s EHR. We used the Ising

model framework to develop the probabilistic graphical

model of disease state. We checked to see whether we could

observe some of the links we identified in our DDN subnet-

work (identified via community detection) in the Ising
American Journal of Human Genetics 104, 1–10, January 3, 2019 5



Figure 4. Diseases with Shared Enhancers
in Adipose Tissue
The highlighting of disease nodes in the
network indicates that the shared SNPs be-
tween these diseases are located in the
enhancer region of the nearby gene.
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model ofdisease state (Figure6B). Throughthis independent

investigation, we identified direct and indirect connections

between ICD-9 codes in the Isingmodel network; these con-

nections were similar to those found in the DDN. Thus, we

demonstrated a probabilistic dependence between these

diagnosis codes in line with what we see in our network.

Whenwe compared the morbid obesity associated with dis-

eases directlyneighboringone another inboth theDDNand

the Ising model (Figure 6), we found many similarities. Spe-

cifically, the comorbidities that showed direct links to

morbid obesity in both networks were sleep apnea,45

lumbago,46 and edema.47 These results suggest that the

probabilistic dependencies observed between these diseases

in the Isingmodelnetwork canprobablybe explainedby the

shared genetic architecture that was identified through the

DDN. In the DDN, we also found links between morbid

obesityandcardiovasculardiseases (coronaryatherosclerosis

and intermediate coronary syndrome),which are knownco-

morbidities.45 Other interesting links with morbid obesity

were bariatric-surgery-associated conditions, such as post-

gastric absorption and post-surgical non-absorption. It is

possible that these connections might be due to a diagnosis

correlation that arose in the EHRwhen an individual under-

wentbariatric surgerybecauseof theirpre-existingcondition

of morbid obesity. Gout was also a comorbidity of morbid

obesity.45However, these diseaseswere connected indirectly

through another comorbidity: sleep apnea. With this

example, we highlight the core strength of EHR-based

studies, which allow us to answer similar questions about

disease relationships with different methods and thereby

provide more robustness to the findings.
Discussion

In this study, we generated and evaluated a network of

cross-phenotype associations derived from an EHR-based

PheWAS. In contrast to previous disease networks, which
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were built of summary statistics from

disparate studies, the DDN benefits

from utilizing a single source of EHR

data. The network analyses performed

on the DDN have illuminated deeper

structures within and across disease

classes. For example, autoimmune dis-

eases are caused by dysfunctional im-

mune systems that attack the healthy

cells in a variety of organs. Type 1 dia-

betes, rheumatoid arthritis, and multi-
ple sclerosis were some of the common autoimmune con-

ditions within the DDN. Although these conditions have

distinct symptoms, previous findings have shown strong

evidence that complex interactions occur between these

diseases as a result of shared genetic architecture.48,49

The identification of these previously known findings

regarding these autoimmune diseases provides support

for the network approach of investigating cross-phenotype

associations derived from PheWASs.

In this study, the SNPs linking these autoimmune dis-

eases mapped to 19 genes, variations in all of which were

associated with increased risk of autoimmune disease

(Table S2). Two genes, C6orf10 (chromosome 6 open

reading frame 10 [MIM: 618151]) and TAP2 (transporter

2, ATP-binding cassette, subfamily B [MIM: 170261]),

were the only two genes linked to three autoimmune dis-

eases: type 1 diabetes, rheumatoid arthritis, and multiple

sclerosis. Of the 19 genes, C2 (complement component 2

[MIM: 613927]), HCG26 (HLA complex group 26 [HGNC:

29671]), and PSMB8 (proteasome subunit beta 8 [MIM:

177046]) had no previously known associations with auto-

immune diseases. However, we replicated the findings of a

genetic study of one of the largest European American co-

horts (UK Biobank), which revealed associations between

rheumatoid arthritis andmultiple sclerosis.54 Additionally,

we performed a gene ontology (GO) enrichment analysis

with genes shared between type 1 diabetes, multiple

sclerosis, and rheumatoid arthritis. Notably, many

immune-system-process-related GO terms were identified

(Table S3). Using epigenomics, we found that a variant in

HCG26, one of the 19 genes, is located in the enhancer re-

gion targeting LTA (lymphotoxin alpha [MIM: 153440]);

the variant was identified in multiple tissues by the fine

mapping approach described in Verma et al..13 (dbSNP:

rs2523663). LTA is a protein-coding gene that encodes cy-

tokines produced by lymphocytes in the immune system

(see NCBI in Web Resources). Cytokines play an important

role in the pathogenesis of various autoimmune disorders,



Figure 5. Disease Communities
The plot shows the distribution of community disease connections, which were identified by community detection. The x axis shows
the total number of communities identified, and the y axis shows the number of disease nodes in each community.
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and cytokine-inhibiting agents are key drug targets for type

1 diabetes and multiple sclerosis.50–53 Because of the many

key genes shared between connected diseases, along with

the epigenetic regulation, cytokine-inhibiting agents may

offer intervention strategies to satisfy the unmet medical

needs that still exist in those connected diseases.

Additionally, we identified previously unreported dis-

ease connections by using the DDN approach. For

example, we found that links between morbid obesity

and its known comorbidities can be explained by shared

genetic associations. These comorbidities were not present

in the Human Disease Network (Figure S1). This inconsis-

tency might be explained by differences in the phenotypes

used to construct the network. We also demonstrated sim-

ilarities between networks formed from two distinct pre-

dictive algorithms from the same EHR system. Taken

together, these results suggest that the probabilistic depen-

dencies observed between certain diseases (e.g., morbid
Figure 6. Comparison of Disease-Disease Network Construction th
The figure illustrates the similarities between the disease network that
and the probabilistic model created from longitudinal EHR data (the

The
obesity, sleep apnea, lumbago, gout, venous insufficiency,

and edema) in the Ising model can be explained by shared

genetic architecture identified via our disease-disease

network. With this example, we highlight the core

strength of EHR-based studies: the ability to apply different

approaches, such as using genetic and/or phenotypic in-

formation, in order to arrive at a stronger conclusion.

The potential strength of the DDN is to identify disease

connections that were not expected. From the DDN gener-

ated in this study, we found that hyperlipidemia was

linked to not only atherosclerosis, but also many im-

mune-related diseases, such as type I diabetes, psoriasis,

hypothyroidism, and multiple sclerosis, as well as other

immune-mediated diseases, such as allergic rhinitis, ble-

pharitis, acute bronchitis, and herpes. These unexpected

observations indicate the non-canonical role of the im-

mune system in lipid-metabolizing disorders and/or the

pathogenic role of hyperlipidemia in immune responses.
rough Two Orthogonal Approaches
was constructed on the basis of genetic associations (the DDN) (A)
Ising model) (B).
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Indeed, lymphotoxin (LT) and LIGHT, two tumor necrosis

factor cytokine family members that are primarily ex-

pressed on lymphocytes, are critical regulators of key en-

zymes that control lipid metabolism in mouse models.54

Although further studies are warranted to infer the causal-

ity of these associations, our DNN confirmed the shared ge-

netic risk of hyperlipidemia and immune diseases.

In conclusion, community detection is a powerful

method to identify and visualize cross-phenotype associa-

tions from analysis of PheWASs. It uncovered previously

unreported shared links in known interactions between

diseases, as well as other unreported connections between

diseases. It also provided a way to generate new hypotheses

to guide further targeted investigation into comorbidities,

pleiotropy, and epistasis. Although we explored intercon-

nections between multiple diseases in an EHR-based popu-

lation, this approach can also be applied to many publicly

available resources with summary-level and individual-

level data on multiple phenotypes. Networks similar to

the ones generated here could be adapted from NHANES,

UK BioBank,55 GERA,56 eMERGE,57 and the Million

Veteran Program, among other populations. Furthermore,

we plan to extend the network analysis by including asso-

ciations between genetic variants and clinical laboratory

measures in EHR. This work provides new avenues by

which network-based methods can be applied to large,

gene-trait-based studies to uncover the genetic underpin-

nings of disease.

Lastly, an interactive visualization tool of the disease-dis-

ease network is available (see Web Resources).
Supplemental Data

Supplemental Data include one figure and three tables and can be

found with this article online at https://doi.org/10.1016/j.ajhg.

2018.11.006.
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biomedinfolab.com/software
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Gephi, https://gephi.org
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Figure S1. Network similarities with human disease network. (A) The disease connection between 
the three highlighted autoimmune diseases (Red box) in HDN are same as observed in the DDN. (B) 
Obesity and its neighboring diseases in HDN and the highlighted red box represent the connections found 
in our network as well. 
 
 



    

 
Gene Diseases Shared SNPs Known GWAS Associations Enhancer Region Variants Tissues 

PTPN22 Type 1 Diabetes 
Multiple sclerosis 1 Previously Known exm85427 Breast 

Dnd41_TCell_Leukemia 

BAG6 Type 1 Diabetes 
Multiple sclerosis 1 Previously Known rs760293 

Adrenal 
HepG2_Hepatocellular_Carcinoma 
Liver 

BTNL2 
Type 1 Diabetes 

Rheumatoid 
arthritis 

2 Previously Known rs3129953 Breast 
Cervix 

C2 Type 1 Diabetes 
Multiple sclerosis 1 Novel N/A N/A 

C6orf10 

Type 1 Diabetes 
Multiple sclerosis 

Rheumatoid 
arthritis 

4 Previously Known N/A N/A 

CFB Type 1 Diabetes 
Multiple sclerosis 1 Previously Known rs1048709 Pancreas 

Placenta 

HCG20 
Type 1 Diabetes 

Rheumatoid 
arthritis 

1 Previously Known rs6920124 

Blood 
Bone 
Cervix 
Dnd41_TCell_Leukemia 
GI Smooth Muscle 
HepG2_Hepatocellular_Carcinoma 
Stromal Connective Stem cells 
Thymus 

HCG26 Type 1 Diabetes 
Multiple sclerosis 1 Novel rs2523663 

Blood 
Heart 
Spleen 

HLA-DOB Type 1 Diabetes 
Multiple sclerosis 1 Previously Known rs2071469 Placenta 

Stromal Connective Stem cells 

HLA-DQA1 Type 1 Diabetes 
Multiple sclerosis 1 Novel N/A N/A 

HLA-DQA2 Type 1 Diabetes 
Multiple sclerosis 1 Previously Known N/A N/A 

HLA-DQB1 Type 1 Diabetes 
Multiple sclerosis 1 Novel N/A N/A 

HLA-DRA Type 1 Diabetes 
Multiple sclerosis 1 Previously Known N/A N/A 

LOC101929072 
Type 1 Diabetes 

Rheumatoid 
arthritis 

1 Previously Known rs2251396 

A549_EtOH_0.02pct_Lung_Carcinoma 
Blood 
Bone 
Breast 
Dnd41_TCell_Leukemia 
Fat Skin (Adipose Tissue) 

LOC102725019 Type 1 Diabetes 
Multiple sclerosis 1 Previously Known N/A N/A 

NOTCH4 Type 1 Diabetes 
Multiple sclerosis 2 Previously Known N/A N/A 

PSMB8 Type 1 Diabetes 
Multiple sclerosis 1 Novel N/A N/A 

TAP1 Type 1 Diabetes 
Multiple sclerosis 1 Previously Known rs3198005 Breast 

Cervix 

TAP2 

Type 1 Diabetes 
Multiple sclerosis 

Rheumatoid 
arthritis 

5 Previously Known 
rs3819721 
rs241426 

rs3819714 

Blood 
Breast 
Dnd41_TCell_Leukemia 
HepG2_Hepatocellular_Carcinoma 
Placenta 
Thymus 
Cervix 

 
Table S2. Shared SNPs between disease network. Here we present all the SNPs shared between key 
hub nodes in the network i.e. Type 1 Diabetes, Multiple Sclerosis, and Rheumatoid Arthritis. 
. 
 
 



    

 
Gene ontology term p-value FDR q-value 
Antigen processing and presentation ion of peptide antigen 9.74e-16 5.76e-12 
MHC class II receptor activity 2.87e-15 6.47e-12 
Immune system process 3.53e-15 6.47e-12 
Antigen processing and presentation 4.38e-15 6.47e-12 
MHC class II protein complex 1.58e-14 1.87e-11 
Positive regulation of immune system process 9.36e-14 9.23e-11 
Regulation of immune system process 2.16e-13 1.83e-10 
MHC protein complex 2.91e-13 2.15e-10 
Immune response 9.9e-13 6.51e-10 
Regulation of immune resonse 5.62e-12 3.33e-9 

 
Table S3. Gene Ontology enrichment analysis using shared genes between Type 1 Diabetes, Multiple 
Sclerosis, and Rheumatoid Arthritis. P-values were obtained from the hypergeometric distribution 
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