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Expanding the Spectrum of BAF-Related Disorders:
De Novo Variants in SMARCCZ2 Cause a Syndrome
with Intellectual Disability and Developmental Delay
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SMARCC2 (BAF170) is one of the invariable core subunits of the ATP-dependent chromatin remodeling BAF (BRG1-associated factor)
complex and plays a crucial role in embryogenesis and corticogenesis. Pathogenic variants in genes encoding other components of
the BAF complex have been associated with intellectual disability syndromes. Despite its significant biological role, variants in SMARCC2
have not been directly associated with human disease previously. Using whole-exome sequencing and a web-based gene-matching pro-
gram, we identified 15 individuals with variable degrees of neurodevelopmental delay and growth retardation harboring one of 13 het-
erozygous variants in SMARCC2, most of them novel and proven de novo. The clinical presentation overlaps with intellectual disability
syndromes associated with other BAF subunits, such as Coffin-Siris and Nicolaides-Baraitser syndromes and includes prominent speech
impairment, hypotonia, feeding difficulties, behavioral abnormalities, and dysmorphic features such as hypertrichosis, thick eyebrows,
thin upper lip vermilion, and upturned nose. Nine out of the fifteen individuals harbor variants in the highly conserved SMARCC2 DNA-
interacting domains (SANT and SWIRM) and present with a more severe phenotype. Two of these individuals present cardiac abnormal-
ities. Transcriptomic analysis of fibroblasts from affected individuals highlights a group of differentially expressed genes with possible
roles in regulation of neuronal development and function, namely H19, SCRG1, RELN, and CACNB4. Our findings suggest a novel
SMARCC2-related syndrome that overlaps with neurodevelopmental disorders associated with variants in BAF-complex subunits.
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The chromatin-remodeling complex BRG1-associated fac-  disability (ID), growth retardation, sporadic autism,"’

tor (BAF) plays an essential role in the regulation of gene
expression and higher-order chromatin organization by
modulating the nucleosome and changing chromatin
conformation and accessibility."* BAFopathies are a het-
erogeneous group of disorders caused by mutations in
the various subunits composing the BAF complex. The
clinical phenotypic spectrum of BAFopathies is wide and
involves various human neurodevelopmental disorders
including syndromic and nonsyndromic intellectual

schizophrenia,'” and amyotrophic lateral sclerosis."”

The most recognizable syndrome associated with
BAF abnormalities is Coffin-Siris syndrome (CSS [MIM:
135900]). This is a genetically heterogeneous ID syndrome
characterized by developmental delay (DD), speech delay,
coarse facial appearance, feeding difficulties, and hypo-
plastic-to-absent fifth finger nails and fifth distal pha-
langes.'* This syndrome is associated with abnormalities
in multiple subunits of the BAF complex including the
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ATPase subunit SMARCA4 (MIM: 603254), the common
core subunit SMARCB1 (MIM: 601607), and BAF acces-
sory subunits such as SMARCE1/BAF57 (MIM: 603111),
ARIDIA (MIM: 603024), ARIDIB (MIM: 614556),"°
ARID2 (MIM: 609539),'® and DPF2 (MIM: 601671).'” CSS
can result of pathogenic changes in other chromatin re-
modeling proteins with no direct interaction with BAF
complex, including SOX11 (MIM: 600898)'® and PHF6
(MIM: 300414)."

Other BAFopathies include Nicolaides-Baraitser syn-
drome (MIM: 601358) caused by pathogenic variants in
SMARCA2 (MIM: 600014) that has a significant pheno-
typic overlap with CSS and is characterized by ID, sparse
hair, short stature, microcephaly, brachydactyly, interpha-
langeal joint swellings, and epilepsy.””*' Some individuals
with clinical diagnosis of DOORS syndrome (MIM:
220500), characterized by deafness, onychodystrophy,
osteodystrophy, ID, and seizures, were found to carry
pathogenic variants in SMARCB1 (MIM: 601607), high-
lighting the clinical overlap between CSS and DOORS
syndrome.”” We have previously reported mutations in
another BAF subunit, ACTL6A (MIM: 604958), to be asso-
ciated with ID.?* Pathogenic variants in ADNP (MIM:
611386), encoding a transcription factor that interacts
with the BAF complex, have been identified in individuals
presenting dysmorphic facial features, autism spectrum
disorder (ASD), ID, hypotonia, and congenital heart
defects.”* Detailed phenotypic and genetic comparison
between the different BAF-related syndromes has been
discussed elsewhere.*?

SMARCC2 (MIM: 601734) encodes BAF170, a common
core subunit of the BAF complexes with high homology
to SMARCC1 (BAF155).%° It is an intrinsic factor of glial
radial cells and plays a crucial role in embryogenesis and
corticogenesis, determining the mammalian body and
cortical size.?” Smarcc2;Smarccl double knockout mice
demonstrated proteasome-mediated degradation of the
entire BAF complexes, resulting in impairment of the
global epigenetic and gene expression program of forebrain
development.?® Recently, deletion of Smarcc2 in mice re-
vealed its role in learning and behavioral adaptation.”’
SMARCC2 was also reported as one of the chromatin-re-
modeling genes involved in ASD.*° Despite its significant
biological role, variants in SMARCCZ have not been directly
associated with a syndrome in humans previously.

We report 15 unrelated individuals (Tables 1 and S1)
with variants in SMARCC2, detected by whole-exome
sequencing (WES), and with clinical presentation that in-
cludes mild to severe ID (HP:0012736), DD with promi-
nent speech delay (HP:0000750), behavioral abnormalities
(HP:0000708), growth retardation (HP:0008897), feeding
difficulties at the neonatal period (HP:0008872), hypoto-
nia (HP:0011398), and dysmorphic features including hy-
pertrichosis (HP:0000998), thick eyebrows (HP:0000574)/
prominent supra-orbital ridges (HP:0000336), and thin up-
per and lower vermillion (HP:0000233), suggesting overlap
with Coffin-Siris and Nicolaides-Baraitser syndromes. Sub-

jectsin this cohort were gathered using GeneMatcher.*' All
individuals’ families from the different institutions agreed
to participate in this study and signed appropriate consent
forms. Permission for clinical photographs was given sepa-
rately. Individual 4 has been reported before and was iden-
tified in a gene panel screening (1,256 genes) of 96 individ-
uals with ID.** The variant ¢.1833+2T>C in individual 10
was reported before as part of a work to identify new gene-
disease associations in trio WES from 119 undiagnosed in-
dividuals.>® Individuals 1, 4, 6, 7, 9-13, and 15 had trio
WES. Individuals 2, 3, 5, and 14 had a proband WES
followed by Sanger confirmation for the individual and
parents. Biological parents of individuals 3 and father of
individual 8 are not available for testing. Individual 8
had duo WES with his mother and results were re-analyzed
as part of the Undiagnosed Diseases Network (UDN). This
individual was found to harbor an intronic splice site
variant ¢.1833+1G>T in SMARCC2 that was not found
in his mother. Twelve of the fifteen individuals have
proven de novo variants in SMARCC2. Individual 2 in-
herited the variant from his affected father. Paternal grand-
parents were negative for the variant indicating a de novo
variant in the father.

All of the individuals presented here have some degree
of ID and/or DD (Tables 1 and S1). Ten (10/15, 65%) have
moderate to profound DD and ID while the other five indi-
viduals have only mild ID or mild DD. 13/15 (86%) individ-
uals have speech impairment with 7 of them completely
lacking language. Most individuals present muscle tone
abnormalities. 13/15 (85%) individuals present significant
hypotonia, while two of the individuals present high
tone or spasticity. Ten of the individuals (67%) present
behavioral problems including aggression and self-inju-
rious behavior as well as hyperactivity, hypersensitivity to
touch, sleep disturbances, and obsessive and rigid behavior.
Two were noted to have difficulties in social interactions,
yet not qualified for formal diagnosis of autism. Eight indi-
viduals present feeding difficulties and six of them have
mostly postnatal growth retardation. Individual 9 has
continuous feeding difficulties with laryngomalacia and
nasal feeding tube since age 14 months. 11 out of the 15
individuals are reported to have dysmorphic craniofacial
features (Figure 1). The most pronounced dysmorphic fea-
tures are hypertrichosis (6/15), thick eyebrows/prominent
supra-orbital ridges (6/15), thin upper or thick lower lip-
vermilion (6/15 and 5/15, respectively), and upturned
nose (6/15). Most of the individuals have normal fifth
finger/toe and finger/toenail.

8 of the 15 individuals presented here (1, 5-7, 11-14)
have one of seven missense variants in SMARCC2
(GeneBank: NM_003075.3) and all are predicted to be dele-
terious/probably damaging according to PROVEAN and
SIFT, in silico tools to predict the functional effect of an
amino acid substitution. All missense variants are in well-
conserved amino acids in SMARCC2 (Figure 2). In vitro
missense tolerance ratio (MTR) tool shows that six of
the seven missense variants presented here preferentially
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affect one of the 25% most intolerant residues of
SMARCC2 (p = 0.0004) with p.Asn134Asp being the only
missense variant affecting a tolerant region of this gene
(Figure S1). This might be consistent with the milder
phenotype presented in this individual. SMARCC2 ExAC
z-score for intolerance for missense variations is signifi-
cantly high (4.26) and the gene is predicted to be poten-
tially associated with dominant conditions according
to an LDA score of 2.435 by the DOMINO algorithm.** In-
dividual 15 harbors a de novo in-frame deletion of methio-
nine 1153 (c.3456_3458delCAT). Methionine 1153 dele-
tion and its missense substitutions to various amino
acids (isoleucine, threonine, valine) appear once (allele
frequency 3.231 x 10 °) and four times, respectively, in
gnomAD.”” This might indicate that this position is rela-
tively tolerable for changes and explain the mild clinical
presentation of individual 15. It is important to note that
detailed phenotype such as IQ scores are not available for
individuals included in the ExAC database.

Individuals 2 and 3 carry truncating mutations
located at the N terminus of SMARCC2 (exons 9 and 11).
Individual 2 carries a heterozygous nonsense variant
(p-Trp241*) and individual 3 carries a frameshift variant
(p.Glu334Argfs*49). Interestingly, both present mild
phenotype. Individual 2, who presents mainly behavioral
abnormalities and only mild DD, inherited the change
from his affected father who presents with borderline
intelligence (IQ of 72) and behavior problems. ExAC data-
base identified only a single loss-of-function allele in
SMARCC2 (p.Glu389Aspfs*5); however, with only 11
(22%) of 49 reads at this frameshift variant site, it is un-
likely to be a germline variant (binomial exact test for
50% germline heterozygous expectation; p = 0.0001).
The depletion of protein-truncating variants in SMARCC2
is evident in large human population reference cohorts.
Based on the EXAC cohort, SMARCCZ achieves a LoF deple-
tion FDR adjusted p = 5.5 x 10~ ', ranking it among the
1.6% most significantly LoF-depleted genes in the human
exome.*® It also has a probability of loss-of-function (LoF)
intolerance (pLI) score of 1, supporting deleterious effect
for predicted LoF pathogenic variants.”> SMARCC2%HI
score of 20.29 also predicts that this gene is less likely to
tolerate a loss-of-function variant or deletion.®’

Four individuals harbor splicing variants. Three individ-
uals (8-10) have one of two variants in intron 19
(c.1833+2T>C and c.1833+1G>T) that are predicted in
silico to affect splicing donor site according to Human
Splicing Finder (HSF). One individual (4) presents a
splicing variant in intron 14 (c.1311-3C>G) that is pre-
dicted to affect exon acceptor site. In vitro assay in lympho-
cytes from individual 8 (c.1833+1G>T) indicates that this
variant leads to abnormal splicing with deletion of exon 19
(amino acids 590-611) that compose the SANT domain in
SMARCC2 (Figure 3A). The capture of a shorter cDNA
product using RT-PCR might indicate the presence of an
mRNA escaping nonsense-mediated decay (NMD). RT-
qPCR quantification of SMARCC2Z in lymphocytes from in-

dividual 4 (c.1311-3C>G) demonstrates a ~50% decrease
in mRNA compared to a control and a coding in-frame
deletion (individual 15, p.Met1153del), suggesting hap-
loinsufficiency through NMD (Figure 3B).

Nine individuals carry missense or splicing variants in
the highly conserved SWIRM (Swi3, Rsc8, and Moira)
and SANT (Swi3, Ada2, NCoR, and TFIIIB) domains of
SMARCC2 (Figure 2). The SWIRM domain interacts with
DNA, binds di-nucleosome structures, and mediates spe-
cific protein-protein interactions.”® The SANT domain
has DNA-binding activity>® and is believed to function as
a histone tail binding module.*° Eight of the individuals
reported here have a heterozygous novel variant in the
SANT domain of SMARCC2. One individual has a missense
variant changing leucine for proline in position 609
(p-Leu609Pro), two have a missense variant changing
leucine for proline in position 610 (p.Leu610Pro), one in-
dividual has a missense variant changing leucine for pro-
line in position 613 (p.Leu613Pro), and one has a missense
variant changing cysteine to arginine in position 635
(p.Cys635Arg). Three individuals have one of two intronic
variants that are predicted in silico to affect the same
splicing donor site in SANT and one individual presents a
splicing variant at the SWIRM domain. This group of
nine individuals present with moderate to severe DD and
ID and with severe speech impairment, with six of them
having no language at all. Five out of these nine individ-
uals (55%) have abnormal brain MRI findings including
small corpus callosum and generalized cerebral atrophy.
Five out of the nine present significant growth retardation
and four of them have seizure disorder. It seems that indi-
viduals carrying a pathogenic variant in SWIRM or SANT
domains have a more severe presentation. Interestingly,
only the two individuals harboring the p.Leu610Pro
variant have cardiovascular abnormalities. An echocardio-
gram for individual 6 revealed distended left coronary
artery and for individual 7 mild non-progressive dilatation
of the ascending aorta (Z score of 2.54).

To further investigate the pathogenicity of the variants,
we calculated the geometric mean distance between the
observed mutations to assay the clustering of the muta-
tions.*! As this calculation considers only the length
of the spliced transcript, intronic splicing mutations were
annotated according to the closest coding nucleotide.
Compared to ten million random permutations of muta-
tions along the transcript, the observed mutations are
significantly clustered (p value 10~7), suggesting a patho-
mechanism that does not operate through haploinsuffi-
ciency alone. Interestingly, removing the frameshift and
nonsense mutations from the analysis does not affect the
significance, but taking out the splicing mutations does
(p value 0.12). This result points toward a more important
role in the pathogenicity for the SWIRM and SANT
domains than for the SMARCC_N region, and a corollary
of this interpretation is the hypothesis that expressed but
incorrectly spliced transcripts could function through a
dominant-negative mechanism.
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Table 1. Summary of SMARCC2 Variants and Clinical Presentation of 15 Individuals

Individual # #1 #2 #3 #4° #5 #6 #7 #8 #9 #10° #11 #12 #13 #14 #15 Total

Gender M M M F M F M M M M M F M M M

Age (Y) SY 3y 2Y 17Y 4Y 18Y 11Y 11Y 25Y 10.5Y 19Y 7Y 8Y 5Y 27 Mo

Nucleotide c.400A>G  ¢.723G>A  ¢.999dupA c.1311— c.1826T>C c.1829T>C c.1829T>C c.1833+ 1833+  c.1833+ c.1838T>C ¢.1903T>C  c.2686A>G c.2699A>G ¢.3456_

change 3C>G 1G>T 2T>C 2T>C 3458delCAT

Amino acid p-Asn134Asp p.Trp241* p.Glu334  splicing p-Leu609Pro  p.Leu610Pro  p.Leu610Pro splicing  splicing splicing p.Leu613Pro p.Cys635Arg p.Met896Val p.Glu900Gly p.Met1153del

change Argfs*49 variant variant®  variant variant

De novo variant?  yes no (affected n/a yes yes yes yes n/a yes yes yes yes yes yes yes

father)

Affected domain SMARCC_N SMARCC_N SMARCC_N SWIRM SANT SANT SANT SANT SANT SANT SANT SANT SMARCC_C SMARCC_C carboxy

terminal

Neurodevelopmental Abnormalities

Developmental mild DD mild DD mild DD severe DD severe DD severe DD severe DD severe DD moderate moderate moderate-  moderate moderate-  mild ID mild DD 15/15
delay and/or (DbQ=20) ID DD, severe DD DD, severe DD
intellectual moderate- moderate ID
disability severe ID
Speech - speech delay — absence of absence of absence of absence of absence  absence of minimal  absence of speech delay speech delay speech delay speech 13/15
impairment language language language language of language  speech language abnormalities
language
Behavioral - + + + + - + + - - - + + + + 10/15
abnormalities
Hypotonia + spasticity + + + and + + + + + - + + + + 13/15
spasticity
Seizures - - - + + - + - - - + - - - - 4/15
Movement - + - - - + - - - - - - - - - 2/15
disorder
CNS n/a two discrete n/a normal thinning generalized generalized normal normal normal abnormal slightly small normal MRI normal MRI n/a 6/12
abnormalities hyperintens MRI of corpus cerebral cerebral MRI MRI MRI corpus corpus
on MRI white matter callosum and  atrophy, atrophy, callosum callosum,
lesions splenium, hypointensity hypo- prominent
periventricular globus myelination perivascular
white matter  pallidus spaces
loss
Growth
FIT - - - - + + + - + + - - - + - 6/15
Sucking/feeding  — - - - + + + - + + + - - + + 8/15
difficulty
Craniofacial 11/15
Features
Thin/sparse - - - - + + - - + - + - - - - 4/15
scalp hair

(Continued on next page)
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Table 1. Continued

Individual # #1 #2 #3 #4° #5 #6 #7 #8 #9 #10° #11 #12 #13 #14 #15 Total
Hypertrichosis - - - —+ + - - — + — — + + + - 6/15
Thick eyebrows — — - - + - + + - + - + - - + - 6/15
Long eyelashes - - - - - - - - + + + - + n — 5/15
Ptosis - - - - - + + - - + + - - + - 5/15
Thin upper - - - - + + - + + - - + + - - 6/15

lip vermilion

Thick lower - — - + - - + — + — + - + - — 5/15
lip vermilion

Palate - — - — — — — — — + + — — + — 3/15
abnormalities

Nose upturned/  — - - - + + + - - + + + - - - 6/15
anteverted

nostrils

Skeletal-Limb Features

Sth finger or - - - - + - - - — + + - - + - 4/15
toe/nails
abnormalities
Scoliosis - - - kyphosis + + + - - - - + - - - 5/15
Other
Cardiovascular n/a - - - n/a left coronary  non- - - - - - n/a - n/a 2/11
distension progressive
mild aortic
dilatation

(Z score=2.54).

Inguinal - - - - + — + + — - - - — - - 3/15
hernia
Undescended n/a - - n/ap + n/ap + - n/a - - n/ap - - n/a 2/12
testis
Skin problems - hypo - - eczema eczema, - - hypo- vitiligo hyper eczema - - - 7/15
pigmented scleroderma melanotic (present in pigmented
hair, cafe au macula unaffected irregular
lait macules father) skin on back

Abbreviations: FTT, failure to thrive; DD, developmental delay; ID, intellectual disability; DQ, developmental quotient; CNS, central nervous system; MRI, magnetic resonance imaging; M, male; F, female; Y, years; Mo,
months; n/a, not available information; n/ap, not applicable. Minus sign (—), not reported in this individual; plus sign (+), reported in this individual.

2See Martinez et al.*”

PSee Zhu et al.**

“See Figure 3.




Figure 1.
(A) Individual 4 (c.1311-3C>G) at 17 years of age.
(B) Individual 12 (p.Cys635Arg) at 7 years of age.
(C) Individual 7 (p.Leu610Pro) at 11 years of age.
(D) Individual 8 (c.1833+1G>T) at 11 years.

(E) Individual 14 (p.Glu900Gly) at 5 years of age.

Pictures of Ten of the Individuals with SMARCC2 Variants

(F) Individual 10 (c.1833+2T>C) at 10.5 years of age (father of this individual presents vitiligo as well).

(G) Individual 11 (p.Leu613Pro) at 19 years of age.
(H) Individual 2 (p.Trp241*) at 3 years of age.

(I) Individual 3 (p.Glu334Argfs*49) at 2 years of age.
(J) Individual 15 (p.Met1153del) at 2 years of age.

Note coarse facial features (A, C, G), thick eyebrows/prominent supra-orbital ridges, long eyelashes, upturned nose, open mouth with
thin upper lip vermilion, and hypertrichosis. Note lateral commissures creating skin indentation seen among most affected individuals.

Note camptodactyly of 5th fingers and toes (F2, F3).

To better understand the impact of SMARCC2 mutations
on gene expression, we performed an RNA-seq analysis on
fibroblasts from individual 1 with p.Asn134Asp mutation
and individual 7 with p.Leu610Pro mutation. We analyzed
both samples together to assess shared differential gene
expression patterns. Analysis of differentially expressed
genes (DEGs) shows an almost equal amount of DEGs up-
regulated and downregulated in these two individuals
(Figure 4A). Gene Ontology (GO) analysis of these DEGs
using the GOrilla web application demonstrates a signifi-
cant enrichment in genes related to embryonic morpho-
genesis, multicellular organismal process, and develop-
mental process (Figure 4C). Among the shared DEGs
between the two tested individuals, we identified genes
with possible role in regulation of neuronal development
and function, namely H19, SCRG1, RELN, and CACNB4.

H19 codes for a long noncoding RNA and is among the
most upregulated DEGs (log,FC = 7.4, padj = 7.18 x
10~*%) in both individuals compared to control subjects
(Table S2). H19 is an imprinted gene and has been impli-
cated in the regulation of growth and embryonic develop-
ment, tumorigenesis, and epilepsy-induced astrocyte and
microglia activation.*? ** Interestingly, knocking down
SMARCA4 in MCF10A epithelial cell line also results in
significant H19 upregulation' suggesting that H19 expres-
sion is affected by BAF complex modification and that
SMARCC2 p.Asn134Asp and p.Leu610Pro mutations could
indeed affect the complex integrity and/or function.

SCRG1 is another significant DEG (log,FC = 5.43, padj =
9.30 x 10~ '*) mainly expressed in the human brain, and
its level is highly regulated during postnatal development,
being absent in the fetal brain.** Duplication of the gene
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Figure 2. SMARCC2 (BAF170) Main Domains and Variants

Amino acid alignments demonstrate that the missense variants affect highly conserved amino acids and the variants causing splicing
abnormalities affect highly conserved nucleotides (GenBank: NP_003066, transcript ENST00000267064.8). The involved amino
acids/nucleotides are framed in black. Number of relevant individual (#) is on gray background. For intron/exon location of the different

variants, see Table S1.

has been suggested to contribute to ID.*° In human mesen-
chymal stem cells, SCRG1 expression is important for
the maintenance of self-renewal and preventing osteo-
blastic differentiation.*’ Interestingly, impaired postnatal
radial glial cells self-renewal was observed in conditional
Smarcc2-deficient animals,”” and abolishing the expression
of Smarca4 or Smarcc2 in postnatal neuronal stem cells re-
sults in preferential onset of gliogenesis instead of neuro-
genesis.””*

Another overexpressed gene is RELN (log,FC = 3.72,
padj = 3.39 x 10~*), which encodes Reelin, a large secreted
matrix serine protease that is involved in layering of neu-
rons in the cortex and cerebellum. It also regulates micro-
tubule function in neurons and neuronal migration, and
its enzymatic activity is important for the modulation of
cell adhesion. Recessive RELN mutations cause lissence-
phaly (MIM: 257320), while dominant mutations cause
epilepsy (MIM: 616436).*°

Finally, CACNB4, which also has significantly increased
expression (log,FC = 3.52, padj = 1.88 x 1077), encodes
a beta auxiliary subunit of voltage-gated calcium ions
channels. Calcium channels play an essential role in the
nervous system for neurotransmitter release as well as the
regulation of gene expression.’”*! Interestingly, CACNB4
was shown to translocate to the nucleus to regulate gene
expression.’”>® Different isoforms of the B-subunit of
voltage-gated calcium ions channels have been shown to

control the transcription of genes by recruiting proteins
involved in DNA remodeling such as the heterochromatin
protein 1.°* Also, the B-subunit was reported to downregu-
late Wnt signaling, a crucial player in neural develop-
ment,”” through interaction with the transcription factor
TCF4 which is associated with Pitt-Hopkins syndrome
(MIM: 610954).%* Mutations in other subunits of voltage-
gated channels have been associated with mental disor-
ders, autism spectrum disorders (ASD), and cardiovascular
problems.’*™? In humans, CACNB4 mutations have
been associated with episodic ataxia (MIM: 613855) and
juvenile myoclonic and idiopathic generalized epilepsy
(MIM: 607682).

To validate the relevance of our results and to under-
stand the low overlap between DEGs in the two assessed
individuals, we compared our results to other public data-
sets involving BAF-complex components. We looked at da-
tasets in both human and mouse cell lines and primary
cells in culture (Figure $2)."°°"°* The number of DEGs
varies significantly between assays from just 18 to 3,038.
We calculated and plotted the overlapping genes for
each dataset, showing varying degrees of overlap (0% to
83%) suggesting a great heterogeneity in genes affected
by BAF-complex defects, in both a subunit- and a cell
type-specific manner. Thus, we hypothesize that patho-
genic mutations in different domains of the same subunit,
as seen in the two individuals assessed in our study, could
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(A) PCR amplification of cDNA from individual 8 at exons 18 to 20 reveals deletion of exon 19 (amino acids 590-611) due to splicing

variant ¢.18334+1G>T in SMARCC2 (GenBank: NM_003075).

(B) SMARCC2 gene expression was quantified by qRT-PCR from lymphoblastoid cell lines (LCLs) for individuals 4 and 15 and an unre-
lated control subject, in triplicates. SMARCC2 expression was normalized to GAPDH, and results are represented as relative expression
normalized to the control. Error bars represent SEM (standard error of the mean) and significance was assessed with bilateral unpaired

Student’s t tests.

lead to different gene expression patterns as they could
affect the interaction with unique subunits or transcrip-
tion factors and could explain the low overlap we ob-
tained. Still, 48% of the DEGs in SMARCC2 individuals’ fi-
broblasts are found in at least one other dataset, suggesting
some commonalities, and confirming a general BAF-com-
plex-linked transcriptomic profile.

Spatiotemporal regulation of the different subunits
assembly and the activity of the BAF complex are well
orchestrated and essential to enable normal development
and proper functioning of the nervous system.”°®*®
With the exception of impaired cognitive function
observed in Smarcc2-deficient mice, no mutations in
SMARCC2 have been associated with a particular pheno-
type/disease. Here we show that mutations in SMARCC2
affect gene expression, and in particular a subset of puta-
tive genes potentially implicated in neurogenesis and
proper functioning of the nervous system, namely H19,
SCRG1, RELN, and CACNB4. Our results further suggest
that mutations of SMARCC2 may regulate pathways
important for postnatal gliogenesis, differentiation, and
function of astrocytes and oligodendrocytes. Further
studies need to be undertaken in other models to deter-
mine the role of these genes in individuals affected by
SMARCC2 mutations.

Neurodevelopmental disorders associated with path-
ogenic variants in BAF chromatin remodeling com-
plex subunits present overlapping clinical phenotype.
Comparing the clinical presentation of the different
associated conditions (Table 2%**2*¢%%%) emphasizes
the wide clinical spectrum of the disorders and the
importance of trio WES in the diagnostic process. Other
than our observation that missense and splicing variants
in the highly conserved SANT and SWIRM domains uni-
formly lead to a severe phenotype, we could not point

out a clear genotype-phenotype correlation. Missense
variants outside of these two domains were found mostly
but not exclusively in individuals with mild presenta-
tion, suggesting variable degree of effect on BAF-complex
function for missense variants. Pathogenic variants
reported in SMARC subunits (SMARCA2, SMARCA4,
SMARCB1, and SMARCE1) are mostly missense and
in-frame deletions (Table 2) with dominant-negative
effect mechanism causing Coffin-Siris and CS-like syn-
dromes.®?> Recently, mutations identified in BAF-sub-
unit DPF2 were suggested to cause CSS-like pheno-
type in a dominant-negative mechanism related both
to missense and splicing/truncating variants through
NMD escape.'’

Given that SMARCC1 and SMARCC2 are paralogous
genes, that they can form heterodimers or homo-
dimers,”’ and that both share functional scaffolding
properties,”® it is conceivable that SMARCC1 could at
least partially compensate for the loss of SMARCC2 lead-
ing to a milder phenotype in case subjects with trun-
cating mutations in the SMARCC N-terminal region.
Nevertheless, our results also suggest that the mutant
mRNA of individual 4 (c.1311-3C>G) undergoes NMD
as one of the consequences of the splice site mutation,
thereby indicating that haploinsufficiency can also be
seen in individuals with a severe phenotype. As neither
RNA nor cells were available for these individuals with
N-terminal truncating mutation, we cannot exclude the
possibility that the mRNA could escape NMD and the
truncated protein remained functional to perform essen-
tial function or to allow for a compensatory mechanism
to take place. Finally, different SMARCC2 isoforms could
be expressed in different tissues or at different times
during development, so the location of truncating muta-
tions could affect the phenotype depending on the
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Figure 4. Fibroblasts Harboring p.Leu610Pro or p.Asn134Asp SMARCC2 Mutation Have Differential Gene Expression Patterns When

Compared to Fibroblasts from Healthy Control Subjects

RNA-seq was performed on fibroblasts from four healthy controls and two affected individuals to assay gene expression.

(A) Heatmap of differentially expressed genes (DEGs). Log, fold change (Log2FC) and p values adjusted for 10% false discovery rate (padj)
were calculated for the two individuals and four control subjects, respectively pooled together using the “DESeq2” R package. Normal-
ized count values from “DESeq2” were plotted and scaled row-wise using the “pheatmap” R package for genes with a padj lower than 0.01
and an absolute Log,FC value higher than 2.

(B) Volcano plot showing differentially regulated genes as fold-change versus adjusted p values. Log,FC and -log;o(padj) values were
plotted using the “ggplot2” R package as a volcano plot. Red dots represent genes with a padj lower than 0.01 and a abs(Log,FC) lower
than 2. Green dots represent genes with a padj lower than 0.01 and a abs(log,FC) higher than 2.

(C) Histogram of the enriched GO annotations with FDR adjusted p values lower than 0.01 calculated using the GOrilla web application
using DEGs for the two individuals pooled together.

(D) RT-qPCR analysis of mRNA expression profile for RELN, CACNB4, H19, and SCRG1 with p.Leu610Pro and p.Asn134Asp SMARCC2
mutations. The data are presented as “relative quantification” mean + SEM from 6 independent control subjects (N = 2). A Student’s
t test was used to determine the statistical significance. *p < 0.05 versus control group; **p < 0.01 versus control group.

affected isoform.”' The wide phenotypic variety and the
lack of clear genotype-phenotype correlation of the con-
ditions associated with BAF-complex subunits were also
suggested to be attributed to a possible dosage-depen-
dent manner of the ATP-dependent chromatin remodel-
ing machinery.”> This, with the significant intolerance
of the BAF-complex subunits genes to LoF variants,
might support a contribution of LoF variants to the
phenotype.

The SMARCC2-related condition presented here overlaps
with other BAFopathies suggesting a CSS and Nicolaides-

Baraitser-like syndrome characterized by intellectual
disability, developmental delay with significant speech
delay, and behavioral abnormalities. We provide evidence
of dysregulated expression of H19, SCRG1, RELN, and
CACNB4, the relevance of which will need to be explored
in future model organism studies.

Accession Numbers

Variants have been deposited in ClinVar under submission num-
ber SUB4878282.
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Table 2.

Summary of Clinical Presentation and Molecular Variants Associated with Coffin-Siris and Coffin-Siris-like Syndromes

ARID1A ARID1B ARID2 SMARCA2 SMARCA4 SMARCB1 SMARCET1 S0X11 ACTL6A DPF2 SMARCC2
Associated condition  CSS 2 (614607) CSS 1 (135900) CSS 6 (617808) NCBRS (601358) CSS 4 (614609) CSS 3 (614608) CSS 5 (616938) mental ID syndrome CSS 7 (618027) CSS-like
(MIM#) retardation,
AD 27 (615866)
OMIM gene 603024 614556 609539 600014 603254 601607 603111 600898 604958 601671 601734
References Kosho et al.;*  Santen et al.>  Gazdagh et al.°” Santen et al.® Kosho et al;*  Koshoetal;* Koshoetal; Khanetal.””  Marom etal.*® Vasiliou et al."”
Kosho et al.;*® Kosho et al.;°® Kosho et al.;°° Kosho et al‘;"‘"
Santen et al.® Santen et al.® Zarate et al.®®
Pathogenic Variants Reported
missense - - - 4/4 10/12 4/13 6/6 4/13 2/3 5/8 8/15
in-frame deletion - - - - 2/12 9/13 (all - - - - 1/15
p-Lys364del)
splice-site variants - 2/29 - - - - - - 1/3 1/8 4/15
frameshift and stop 8/8 25/29 11/14 - - - - 2/13 - 2/8 2/15
gained/nonsense
partial/full gene - 2/29 3/14 - - - - 7/13 - - -
deletions
Clinical Presentation
Short stature 3/8 3/27 10/14 1/4 9/12 11/11 3/5 4/11 0/3 4/8 6/13
Poor weight gain 3/6 11/28 n/r 2/4 4/12 8/9 4/6 n/r 0/3 4/7 5/13
Microcephaly 2/8 0/27 0/14 1/4 10/11 9/10 4/6 3/13 n/r 0/7 6/13
DD and/or ID 717 28/28 14/14 4/4 11/11 11/11 6/6 10/13 3/3 8/8 15/15
Speech delay (first 6/6 28/28 11/11 4/4 11/11 10/10 2/6 11/13 3/3 8/8 13/15
word after 12 months)
Severe speech delay 5/6 17/28 5/11 2/4 6/11 9/10 n/r n/r 0/3 n/r 8/15
(1st word >5 years)/
no language
Seizures 2/7 5/20 3/4 0/4 2/12 8/10 2/6 4/14 0/3 n/r 4/15
Hypotonia 7/8 23/27 2/14 2/4 8/11 8/11 2/6 3/13 0/3 4/7 13/15
Brain MRI 7/8 9/25 6/6 0/3 6/7 9/9 3/4 2/3 n/r 3/3 6/12
abnormalities
Behavioral 3/5; AX, n/r 10/14; ADHD, n/r 7/8; HA, HS, 4/8; HA, IM, 1/1; HA 6/13; ASD, 2/3; ADD/ 3/8; STM, TAN, 10/15; ADHD,
problems: HA, OCB AG, AX, HA, M, OCB, SI, TAN ADHD, AG, ADHD, AG, OCB, HA, SLD, AG, ASD, AX,
reported frequency HS (to loud SAS, SI HA, SI, SLD IM, TAN, SLD RG, DSI/ASD  DSI, HA, HP,
and phenotype noises), RG, HS, OCB, RG,
SLD, STM SI, SLD, TAN

(Continued on next page)
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Table 2. Continued

ARID1A ARID1B ARID2 SMARCA2 SMARCA4 SMARCB1 SMARCE1 50X11 ACTL6A DPF2 SMARCC2

Dysmorphic Features

reported as coarse  n/r n/r 9/14 n/r n/r n/r 6/6 n/r 1/3 2/8 n/r

thick eyebrows 6/8 24/27 2/7 4/4 9/12 11/11 5/6 1/13 1/3 n/r 6/15

thick lower 6/7 22/24 1/7 2/3 10/12 8/11 6/6 7/13 n/r n/r 5/15
vermilion

hypertrichosis 717 26/28 0/7 4/4 12/12 8/11 n/r 2/13 n/r n/r 6/15

sparse scalp hair 3/5 18/28 0/7 4/4 5/12 10/11 5/6 4/13 n/r 6/7 4/15
Cleft palate 2/6 n/r 1/14 n/r 5/12 2/13 2/6 1/13 0/3 n/r 0/15

Hand, Foot & Digital Anomalies

hypoplasia or 6/7 5/22 2/10 0/3 10/12 8/11 2/6 n/r 0/3 0/8 0/15
absence of
5th distal phalanx

hypoplastic nails 6/8 19/28 8/12 0/2 10/12 11/11 6/6 7/14 1/3 8/8 3/15
brachydactyly 0/8 11/24 1/10 1/3 n/r n/r 0/6 0/14 1/3 5/8 0/15
clinodactyly n/r n/r 0/7 n/r n/r n/r 0/6 12/14 2/3 3/8 1/15
syndactyly n/r n/r 0/7 n/r n/r n/r 0/6 4/14 1/3 n/r 0/15
Other skeletal 2/7 n/r 4/14 n/r 1/10 7/9 3/6 4/14 1/3 3/8 (craniosyn- 7/15
anomalies ostosis)
Laryngotracheal 1/4 2/28 2/14 n/r 2/4 n/r 1/6 n/r 1/3 n/r 2/15
anomalies
Hearing loss 2/6 5/22 n/r 0/3 4/12 8/11 2/6 2/14 n/r 4/8 2/15
Cryptorchidism 2/5 n/r n/r n/r 3/9 2/5 1/4 3/4 0/3 n/r 2/12
Heart defect 3/8 n/r 1/14 n/r 5/12 5/11 4/5 n/r 1/3 4/8 2/11
Dextrocardia 0/8 0/27 n/r 0/4 0/12 2/11 1/5 n/r 0/3 n/r 0/11

Abbreviations: AD, autosomal dominant; ADHD, attention deficit hyperactivity disorder; AG, aggressiveness; ASD, autism spectrum disorder; AX, anxiety; CCS, Coffin-Siris syndrome; DD, developmental delay; DSI, difficulties
with social interactions (not qualify for ASD diagnosis); HA, hyperactivity; HP, hyperphagia; HS, hypersensitive; ID, intellectual disability; IM, impulsive; MRI, magnetic resonance imaging; NCBRS, Nicolaides-Baraitser
syndrome; n/r, not reported; OCB, obsessive-compulsive behavior; OFC, occipital frontal circumference; RG, rigidity/“routine driven”; SAS, short attention span; SD, standard deviation; SI, self-injury; SLD, sleep disturbance;
STM, stereotypic movements; TAN, tantrums. For comparison of clinical presentation of other BAF-related genes (including PHF6, ADNP, and TBC1D24), see Kosho et al.®®
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Figure S1: Visualization of the eight de novo missense variants in SMARCC2
using the Missense Tolerance Ratio (MTR) tool. Eight of the individuals in
this cohort harbor one of seven de novo missense variants. Six of these missense
variants preferentially affect one of the 25% most intolerant residues of
SMARCC2 (p=0.0004). p.Asn134Asp is the only missense variant affecting a

tolerant region of this gene. Numbers in brackets represent individual’s number.
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Figure S2: Comparison of RNAseq data from various public datasets
involving BAF-complex components. RNAseq results were obtained from
the European Nucleotide Archive. Datasets were analyzed with a padj cutoff of
0.01 as some datasets did not have DEGs whose Log2FC was higher than 2.
DEGs shared by at least 2 datasets were considered as overlapping. To compare
DEGs between species, gene names were converted from mouse to human, then
plotted using the UpSet R package (Conway ].R, 2017). Overlaps which contain

genes found in SMARCC? Fibroblasts are colored in blue.

Supplemental Tables
Table S1: Elaborated table describing the clinical findings in 15 individuals

harboring SMARCC?2 variants.



ADHD- attention deficit hyperactivity disorder; AG-aggressiveness; ASD-
autism spectrum disorder; AX- anxiety; CNS — central nervous system; DD-
developmental delay; DQ- developmental quotient; DSI- difficulties with social
interactions (not qualify for ASD diagnosis); F-female; FTT — failure to thrive;
HA- hyperactive; HP- hyperphagia; HS- hypersensitive; ID- intellectual
disability; L — left; M- male; Mo- months; MRI- magnetic resonance imaging;
n/a- not available information; n/ap- not applicable; n/r- not reported; OB-
obsession; OFC- occipital frontal circumference; R- right; RG- rigidity/‘routine
driven’; SD- standard deviation; SI- self-injury; SLD- sleep disturbance; ST-
stubborn; TAN- tantrums; Y- years;

Table S2: Differentially expressed genes in individuals 1 and 7 with
SMARCC?2 variants p.Asn134Asp and p.Leu610Pro compared to control
samples. Significant differentially expressed genes were selected with log, fold
change of more than 2 or less than -2, and an adjusted p-value lower than 0.01.
Due to sex differences between patients (males) and controls (females), genes on
the X or Y chromosomes are not included.

Table S3: Differentially expressed genes in individual 1 with SMARCC2
variant p.Asn134Asp compared to control samples. Significant differentially
expressed genes were selected with log, fold change of more than 2 or less than
-2, and an adjusted p-value lower than 0.01. Due to sex differences between
patients (males) and controls (females), genes on the X or Y chromosomes are

not included.



Table S4: Differentially expressed genes in individual 7 with SMARCC2
variant p.Leu610Pro compared to control samples. Significant differentially
expressed genes were selected with log, fold change of more than 2 or less than
-2, and an adjusted p-value lower than 0.01. Due to sex differences between
patients (males) and controls (females), genes on the X or Y chromosomes are
not included.

Table S5: GOrilla annotation for differentially expressed genes in patients
with SMARCC2 variants p.Leu610Pro or p.Asn134Asp compared to
control samples. Significant differentially expressed genes were selected with
absolute Log2FC higher than 2, and an adjusted p-value lower than 0.01. N is the
total number of background genes, B is the total number of genes in the
background list which correspond to the specific GO, n is the total number of
genes with a differential expression in both the patients, and b is the number of

genes in that target list with this GO annotation.

Supplemental Methods

Document S1: Materials and Methods

RT-qPCR for gene expression analysis:

Total RNA was isolated from fibroblasts using Qiagen RNeasy mini kit (Qiagen
cat# 74104) and treated with DNase (Turbo DNA Free, ThermoFisher cat #
AM1907) before the cDNA synthesis. ¢cDNA was prepared from 2ug of total
RNA using Superscript III Reverse Transcriptase and oligo(dT) primer

(ThermoFisher). cDNA was quantified by using SsoAdvanced Universal SYBR



Green (Bio-rad) on a LightCycler 480 II (Roche) with a 10s denaturing step at
95°C and 20s annealing step at 59°C for 40 cycles.

Splicing PCR: The following primers generated from mRNA of SMACCR2
(NM_003075) were used. SMARCC2-F2 GGC TGC GCA CAG AC A TGT
ACA CAA;

SMARCC2-R2 TAA CAG GGT TGC CCG ACT GAC TGA;

SMARCC2-R3 TCC GCC TTG CCT GTT ACT TTG GCT;

The PCR cycling condition for PCR is as following: 95°C 60seconds for
denature, 60°C 30 second annealing, and 72°C

The PCR products were recovered from agarose gel and then sequenced.
Splicing RT-qPCR: Total RNA was isolated from LCLs using Qiagen RNeasy
mini kit, and treated with DNase using the Turbo DNA Free kit. cDNA was
prepared from 1 ug RNA using qScript cDNA SuperMix (VWR International cat
# CA101414-104). cDNA was quantified by using PowerUp SYBR Green
Master Mix (ThermoFisher cat# A25742) on a LightCycler 96 (Roche).
RNAseq Analysis

Human primary fibroblasts were sub-cultured in DMEM (ThermoFisher cat#
11995-065) 10% FBS, ImM GlutaMax (ThermoFisher cat#35050-061) and 1X
antibiotics-antimycotics (ThermoFisher cat# 15240-062). Fibroblasts were
plated at 1 million cells per 150 mm dish and allowed to grow until they reached
about 80% confluency. Cells were trypsinized, washed 2 times with 1X PBS,
resuspended in QIAzol (Qiagen cat# 79306) and stored at -80°C until all samples

were ready for RNA extraction. RNA isolation was performed using the RNeasy



mini kit (Qiagen cat# 74104) according to the manufacturer’s protocol. Samples
were treated with the Turbo DNA free kit (ThermoFisher cat# AM1907) and
quality was assessed using the Agilent 2100 Bioanalyzer. Sequencing was
performed at the McGill University and Genome Quebec Innovation Center
(MUGQIC). mRNA Libraries were prepared using the TruSeq Stranded mRNA
kit (Illumina) according to the manufacturer’s instructions. Samples were run on
the Illumina HiSeq 4000 PE100. Output files were analyzed using the MUGQIC
RNAseq pipeline (MUGQIC, n.d.) steps 1 through 14 on the Guillimin Genome
Quebec HPC. In summary, BAM files were converted to FASTQ using Picard
(BROAD Institute, n.d.), sequences were trimmed using Trimmomatic (Bolger,
2014) then aligned to the GRCh37 genome using STAR (Dobin, 2013), and raw
counts were called using HTseq (Anders S, 2015). Differential expression
analysis was performed using the DESeq2 R package (Love, 2014), with default
parameters. GO annotations were obtained using the GOrilla web application
(Eden, 2009).

Supplementary Analysis of Overlaps (figure S2): To understand the low
overlap between DEGs in the two assessed individuals, we compared our results
to other public datasets involving SWI/SNF components. We looked at several
datasets in both human and mouse cell lines and primary cells in culture (Table).
We re-analyzed every dataset separately using only a padj cutoff of 0.01 as some
datasets did not have DEGs whose Log2FC was higher than 2. To compare
DEGs between species, gene names were converted from mouse to human, then

plotted using the UpSet R package. There is a high discrepancy in the number of



significant DEGs for each dataset; mouse primary late cortical progenitors with
a double SMARCC1/SMARCC?2 knock-out (dcKO mLCPs) only have 18 DEGs,
compared to 3038 DEGs for the BRG1 knockdown in the MCF-7 human breast
adenocarcinoma cell-line. Additionally, overlaps between separate datasets are
scarce; the highest overlap is 236 genes between the BRG1-KD in MCF-7 cells
and the BRG1-KD in HepG2 hepatocellular carcinoma cells, corresponding to 8

and 12% overlap respectively.
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