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eAppendix 1: VICTRE trial imaging physics

The images in the VICTRE trial were generated with an in-silico version of the Siemens Mammomat Inspiration
system based on the MC-GPU Monte Carlo transport code. The simulation code was developed using publicly
available information on the specifications and operation of the clinical device. Our guiding principle while
developing the code was to model all device components that are relevant to the image formation process with
as much realism as possible. Reasonable approximations were made to increase the computational efficiency
and to model parts of the device for which limited public information was available. The following describes the
main models implemented in the code:

1. X-raysource

a. Energy spectrum. The initial energy of each x ray was randomly sampled from a histogram of a
28 or 30 kVp Tungsten anode spectrum after 50-micron Rhodium and 1-mm Beryllium filtration
(spectra generated using [23]).

b. Focal spot. The initial location of each x ray was randomly sampled using a 3D Gaussian
distribution (i.e., uniform distribution on the surface of a sphere with a Gaussian distributed
radius) centered at the nominal focal spot location 65 cm above the detector. The full width at
half maximum of the Gaussian distribution was 300 microns, corresponding to the nominal focal
spot size of the device. The Gaussian distribution was cropped at 2 standard deviations to
prevent the generation of x rays far from the nominal location [see S Prasad, WR Hendee, and
PL Carson, Med. Phys. 3, p. 217-223, 1978].

c. Motion blur (from continuous tube motion during DBT acquisitions): the x-ray location after
focal spot sampling was rotated about the DBT system rotation axis using a randomly sampled
angle following a uniformly distribution between -0.09 and +0.09 degrees. The total 0.18-degree
arc motion corresponds to a combined effect of exposure time and angular rotation speed.

2. X-ray detector

a. Antiscatter grid. An analytical model of a 1D, focused grid was implemented to randomly
sample if an x ray arriving at the detector was absorbed by the grid. The grid model was used for
DM acquisitions only. For DBT acquisitions, the grid was not used, and software-based scatter
correction was not performed. The composition of the grid materials and other grid physical
parameters were approximated.

b. Direct-conversion detector layer. A 200-micron-thick amorphous Selenium layer was defined as
the active detector. X rays are tracked inside the detector layer until a Compton or photoelectric
interaction takes place. The entire x-ray energy is locally deposited at the pixel covering the
interaction location. This model allows x rays to cross the detector without interaction and
reproduces the angle-dependent point spread function. If the energy deposited in the
interaction is larger than the main Selenium K-edge energy (12.6 keV), a fluorescence
characteristic x ray is emitted (59.6% probability). This secondary x ray is tracked until escaping
or until re-absorption contributing to image blurring and correlating neighboring pixels.

To validate the accuracy of the models implemented in MC-GPU simulations, standard bench testing
experiments used to characterize imaging devices were reproduced in silico. The simulated bench testing is
useful to estimate the sensitivity of the results to the approximations of the models. The Modulation Transfer
Function (MTF) of the simulated detector was measured following the methodology described in the
international standard IEC 62220-1-2 (“Characteristics of digital x-ray imaging devices — Detectors used in
mammography”). Following this method, simulations of x-ray projections of a steel edge were performed using
with the same exposure parameters used in the DM simulations. The detector MTF in different orientations was
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estimated from the edge images using publicly available software [Y. Kao, M. Albert, A. Carton, H. Bosmans, and
A. Maidment, Proc. SPIE Medical Imaging 2005: Physics of Medical Imaging 5745 (2005)]. A comparison of MTFs
from simulated images and experimental measurements [A. Makeev, L. Ikejimba, and S. J. Glick, SPIE Medical
Imaging. 2018] are presented in Figure 3. The results show that the simulated detector MTF has a comparable
shape and is only approximately 5% sharper than the experimental results.

The small discrepancy in the MTFs is mostly caused by three approximations in the simulation code: ignoring
electron transport and not modeling the secondary charge diffusion inside the Selenium layer, simple modeling
of Selenium fluorescence using a single average characteristic ray energy with uncertainty in the fluorescence
yield, and lack of additional scattering from detector components other than the sensitive layer which cannot be
avoided in the experimental setting. The simulated MTFs at different acquisition angles and with motion blur
agree well with experimental measurements reported in the literature. The MTF is typically defined only for
normal acquisition with a static source. Analyzing images of the edge in other angular conditions is valuable to
assess the model under tomosynthesis projections.

eFigure 1: Comparison of simulated and experimental modulation transfer function (MTF) of the VICTRE
detector in different configurations. The vertical red line indicates the Nyquist frequency of the detector
given by the pixel size of 85 microns.
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eAppendix 2: Virtual patients in the VICTRE trial

The breast models in VICTRE are based on the method described in detail by Graff (C. G. Graff, Proc. SPIE
Medical Imaging, San Diego, 2016). An overview of the model is illustrated in eFigure 2. The outside surface is
first formed by a quadratic hemisphere shell with a skin layer and nipple area overlaid. The shape of the shell is
adjusted for overall breast volume and surface curvature. Voronoi segmentation was used to randomly divide
the interior of the shell into regions of fat or glandular components, with each glandular component containing
a ductal network with terminal duct lobular units (see eFigure 3). The volume is then filled with Cooper's
ligaments, chest muscle, and blood vessels. To physically compress the breast object, the volume is transformed
into a tetrahedral mesh and each mesh element as given elastic properties determined by the glandular or
adipose voxels at the center of the element. The mesh is then deformed using linear elasticity finite element
modeling with the breast compressed in a craneocaudal orientation to a thickness of choice. For the VICTRE
trial, the breast model was sampled at 50 pum, isotropic voxel size. The implementation is initiated with a set of
random numbers and creates random voxelized breast anatomy objects segmented into 9 different tissue types.
Several different modeling techniques are employed including a non-isotropic Voronoi segmentation, recursive
tree branching algorithms to generate a ductal tree and vascular network, and Perlin-noise perturbed random
spheroids to create fat lobules.

eFigure 2: Anatomical components of virtual breast model.
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eFigure 3: Some breast model elements: (a) vascular network, and (b) ductal tree with terminating lobular units.
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eAppendix 3: Implementation of the VICTRE trial computer reader algorithms

The reader model was designed based on a channelized Hotelling model observer (CHO) for a location-known
detection task. The CHO is a type of linear model observer (MO) which calculates a probability score (t) of an
image (g) by multiplying a template w with the image (t = w'g). Depending on the mechanism of the MO, the
template considers the statistics of the image differently. For the Hotelling observer (the optimal linear MO), the
mean of signal (S) to be detected and the data covariance (K, ) are used to construct the MO’s template as w =
Kg_lS. The mean and covariance are usually learned from a set of training cases. The process of forming the MO
template is called training of the MO. After training, the MO is ready to be applied to a set of testing cases to
evaluate the detection performance. eFigure 4 illustrates the reading process used in VICTRE including the
training and testing of a MO and the output of an AUC (or detectability SNR) estimated from the distributions of
the scores for a set of lesion-present and lesion-absent testing cases. For the CHO, channelization functions are
applied to an image first to extract certain features used to derive the image score.

An advantage of channelization is the reduction of data dimensionality leading to significantly reduced data
demands for MO training. Our reader model used five Laguerre-Gauss (LG) channels. LG-CHO has been shown
to trend human performance for detecting a spherical lesion in backgrounds with no orientation. Because only
five channels were used, 100 pairs of cases for training were sufficient. The reader model also adjusted to the
signal type and imaging modalities. For DM, a 2D CHO was used. For DBT, a 3D CHO was used since readers
acted on volume data. The LG channels for the spiculated mass had a Gaussian width of 30 and 25 pixels for DM
and DBT respectively. Our 5 convolutional LG channels for clusters had a Gaussian width of 1.5 pixels. eFigure 5
shows the typical MO templates used in VICTRE for detecting the two types of lesions in DM and DBT. Note that
the MO templates had the same dimensionality as the ROls of images (DM) or volumes (DBT) extracted for
evaluating lesion detection performance.

eFigure 4: Flowchart of the image interpretation process by the computer readers in VICTRE.
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eFigure 5: The typical reader templates used in VICTRE for detecting lesions in DM and DBT. The middle column
shows mean signals obtained by averaging 100 pairs of training patches. The right column shows the
corresponding reader templates. The sizes for the patches are 109x109, 65x65, 109x109x9, and 65x65x5 from
the top to the bottom row.
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eAppendix 4: Radiation dose estimates in the VICTRE trial

The distribution of radiation dose to patients in the comparative trial is only known as an average target. For the
VICTRE trial we have exact estimates based directly on the same Monte Carlo simulations performed for the
image acquisition in DM and DBT. The distribution of mean average glandular dose for the entire VICTRE
population is presented in eFigure 6. Note that the match with the target, per-view, average glandular dose
(AGD) for the comparative trial population (1.0 and 1.5 mGy for DM and DBT respectively) is reasonable (within
15%).

eFigure 6: Radiation dose distributions in the VICTRE trial population. Glandular dose for all virtual patients was
calculated and included in this histogram for digital mammography (DM) and digital breast tomosynthesis (DBT)
and for each of the four breast sizes and radiographic densities considered.
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eAppendix 5: Power-law beta estimates of VICTRE trial images

To assess the realism of the simulated images used in this study a power spectrum analysis was performed. Itis
well known that mammographic images have an exponentially decaying power spectrum Pover a range of
spatial frequencies fthat represent anatomical structures (A. E. Burgess et al., “Human observer detection
experiments with mammograms and power-law noise”, Med. Phys. (28)4, 2001), i.e.,

P(f) = ae™Pf

The exponential decay constant 8 is commonly used to characterize and compare breast image texture.
Following the procedure described by Burgess (A. E. Burgess, Proc. SPIE Medical Imaging Symposium, San Diego,
1999), B values were calculated for both mammographic and DBT reconstructed images across each of the four
breast density categories. These values were compared to measurements reported for clinical datasets acquired
using the same imaging system (L. Cockmartin et al., Med. Phys. 40(8), 2013). eFigure 7 summarizes this
analysis. In general, there was good agreement between B for real and simulated images. The mean B for
simulated mammograms was 3.88 versus 3.37 for the clinical population. For DBT reconstructed images mean B
was 2.45 for simulated and 2.31 for real images. The distribution of B for the virtual patient DBT images was very
consistent with the clinical distribution (eFigure 7c) while B for the virtual patient mammograms was slightly
higher on average (eFigure 7b), indicating relatively lower high frequency mammographic content. This may be
due to differences in the virtual patient population and the population studied by Cockmartin et al., as the
virtual patient population was not designed to match the patient population in their study. The virtual
population for example did not contain examples of extremely thick breasts or moderately thick dense breasts,
which have more overlapping glandular tissue and ligaments, potentially creating more high frequency content
in mammograms that would reduce average B. In principle prior knowledge of the B distribution for a patient
population could be used to customize a virtual patient population, though that was not attempted in this work.
General trends observed in clinical images were also present in the simulated data, including lower 3 for DBT
images compared to mammographic images and higher 3 for denser breast types.

eFigure 7: A scatterplot of B_recon versus f_mammo for the four breast glandular densities, fatty (yellow),
scattered density (blue), heterogeneously dense (green), and very dense (red) is given in (a). Plots (b) and (c)
compare distributions of B for the VICTRE virtual patient to patient data for mammography and DBT
reconstructions respectively (solid bars represent +SD and dashed bars indicate observed extrema).
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eAppendix 6: The VICTRE trial imaging pipeline

All code, parameters, and datasets are available at https://github.com/DIDSR/VICTRE. Here we summarized
VICTRE's pipeline, a complete imaging clinical trial software package. First, breast digital models are developed
based on procedural approaches of normal anatomy. The breasts were imaged using GPU-accelerated Monte
Carlo transport codes and interpreted using reader models for the presence of lesions. All these components
were assembled into a cohesive computational pipeline and datasets made available in DICOM format for ease
of visualization. We made available the pipeline and tools as an open-source collection in a VICTRE container.
The container can be used either on local or cloud-based servers as-is or modified to execute a variety of
imaging clinical trials.

Breast models (in-silico or virtual patients) are generated and cropped to a fixed volume to speed up loading and
fit them in the limited Graphics Processing Units (GPU) memory. The breast generation and compression codes
require input configuration files defining the parameters characterizing the breast shape, size, density, glandular
fraction, and compression thickness. In addition to the model, the breast model code generates a file with lesion
insertion location candidates based on the position of the terminal duct lobular units which are a common site
for carcinogenesis. The digital breast phantom is saved in an 8-bit integer raw format file. The breast generation
and compression codes are written in C++. Lesions are then inserted in a subset of the compressed breast
phantom population to create cancer cases.

The lesion insertion locations are randomly chosen from the list of possible locations given by the breast
phantom generation code. The selected location is then passed through checks to ensure that the lesion is
within the phantom boundaries, non-overlapping with tissues like air, muscle, nipple, and skin, and
nonoverlapping with already inserted lesions. The lesion insertion code uses the possible locations file
generated by the breast model generation code as an input. Phantoms with lesions are then saved in the same
raw format and lesion locations are saved in a text file. Lesion insertion code is developed using Python.

The in-silico patients are then imaged using a state-of-the-art Monte Carlo x-ray transport code (MC- GPU). We
obtained projection images for the two modalities in the VICTRE trial: digital mammography (DM) and digital
breast tomosynthesis (DBT). MC-GPU uses its own input configuration file describing imaging parameters
including source, detector geometry, focal spot blur, and detector noise parameters. The output files are the DM
images and DBT angular projections in 32-bit real little-endian raw format. The imaging code is written in C and
CUDA (Compute Unified Device Architecture).

VICTRE implemented a filtered back-projection (FBP) reconstruction algorithm for DBT using single-threaded C
modified from an extension of a single-threaded C code to allow for DBT reconstruction. The modifications
account for an x-ray source moving in an arc about the object with a stationary detector with the z-axis of the
object normal to the detector plane. The FBP reconstruction code input parameters including DBT volume
details, distance from the source to detector, phantom dimensions, pixel pitch, and voxel size are provided via
command line. The reconstructed volume is saved in 64-bit little-endian raw format.

After images are acquired, lesion-present and lesion-absent regions of interest (ROls) are extracted from the DM
images (or volumes of interest, VOlIs, from the DBT volumes). Regions of interest are then interpreted by in-
silico readers using a location-known exactly paradigm. For extracting lesion-absent ROls, we applied rigorous
checks including if the subimages are within the reconstructed volume boundaries and non-overlapping, to find
appropriate locations. The ROl extraction code accepts input parameters via command line including phantom
and DM and/or DBT image/volume details, and size and number of ROIs to be extracted. The output for this
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code (developed in Python) are extracted ROIs (or VOIs for DBT) in 32-bit real little-endian raw format, as well as
their locations saved as a separate text file. These ROls can then be read by a human or an in-silico reader for
image interpretation.

Images from the VICTRE trial were generated in raw format and then converted to DICOM format. To
accommodate the in-silico details, we added metadata in DICOM tags to describe the way the images were
generated and to allow for reproducibility. We used tags including patient information, clinical trial description,
imaging study performed per modality and series under each study. Breast type, lesion absence or presence,
and compressed breast thickness are described as attributes of the patient undergoing the imaging studies. A
complete description of the mapping of DICOM tags to the in-silico trial parameters, along with the dataset of all
images generated in the VICTRE trial are publicly available via the Cancer Imaging Archive
(https://wiki.cancerimagingarchive.net/display/Public/VICTRE).
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