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Generation of Sequence Alignments

We used HHblits [1, 2] to search for sequences and generate the MSAs used in this work.
The the uniprot20 2016 02 sequence database was searched with E-value set to 0.001,
coverage was set to 60, maximum pairwise sequence identity to 90, minimum sequence
identity to 0, number of iterations to 4 and maximum number of hits allowed to pass
2nd prefilter to 500000.

For tests on MSAs with reduced Nf values the initial MSA was filtered with 80%
identity threshold (by HHfilter [2]). This filtering means that the number of sequences
in the MSA is the same as Meff, the effective number of sequences. For a given target
Nf, Meff = Nf*

√
L, thus Nf*

√
L sequences were randomly selected from the filtered

MSA, using the python function random.sample(range(2, N), Nfinal-1), where N is the
initial number of sequences in the alignment, Nfinal is the desired number of sequences.
As we always keep the sequence of the target protein in the reduced alignment, we pick
Nfinal-1 number of sequences.

Full Details of the Feature Vector for the
DeepCDpred networks.

There are 733 dimensions input into the network. For a pair of residues, (i, j), windows
of length 13 amino acids are centered at i and j respectively, with another window of
length 5 centred at position (i + j)/2. This gives (2 ∗ 13 + 5) residue positions. Each
alignment position has six descriptors, three inputs representing the predicted likelihood
of helix, strand and coil formation and one value of predicted solvent accessibility, which
are calculated by SPIDER2 [3], the Shannon entropy and a binary value to represent
whether the alignment position is part of the amino acid sequence, since as the window
moves to the termini some positions in the windows will extend beyond the termini. In
addition to these (2 ∗ 13 + 5) ∗ (3 + 1 + 1 + 1) = 186 features, each pair, (i, j), is also
described by a statistical contact potential [4], mutual information with average product
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correction (APC) [5], normalized mutual information with APC, protein chain length,
the number of sequences and effective number of sequences in the MSA, the means of
each of all the alpha helix, beta strand, coil, solvent accessibility scores, the frequency of
each of the 20 amino acids and of gap positions in the MSA and site entropies predicted
for this MSA, and the sequence separation between these two positions. Sequence
separation was coded as eight binary inputs in the feature vector, representing different
separation intervals. Together these provide forty entries in the feature vector. Further
entries in the feature vector provide information about amino acid coupling in the
broader structural context, including the scores from CCMPred [6], from QUIC
(discussed in the main text), and mfDCA [7] for a window of size 13 ∗ 13 centered at the
position pair. This sums up to 186 + 40 + (13 ∗ 13) ∗ 3 = 733 features in total. The
predicted HSEu from the algorithm proposed in paper [8] was tested as an alternative
to rASA, but it did not help to improve contact and distance prediction.

Neural Network Architecture and Training.

For training, a nine-layer neural network architecture was used for all models (i.e. one
input layer, one output layer and eight hidden layers, S1 Fig). Trainings were
performed with Keras and a TensorFlow back end. In order to avoid over training,
early-stopping was used. The data was randomly divided into two groups with 20% of
the training feature vector used for validation. The total epochs number was set to 300
and patience was set to 40. The loss function for all networks was a binary
cross-entropy function and SGD was selected as the optimizer.

Structure Prediction Protocol.

AbinitioRelax from Rosetta [9] was used for 3D structure prediction, incorporating
constraints from the predicted contacts, distances and beta sheets, from our code, and
the secondary structure predictions obtained from SPIDER2 [10]. Contact constraints
were included for the top scoring 1.5L DeepCDpred predictions, where L is the sequence
length. Three-residue and nine-residue fragments were created using Rosetta's exclude
homologs function. We generated 100 candidate structures and the one with the lowest
total Rosetta energy score, including constraint energy, was selected as the prediction.
The Rosetta script is given elsewhere in the supplementary methods. Rosetta’s standard
bounded function was used as a constraint, as documented in the Rosetta manual,
multiplied by a weight that depended on the DeepCDpred score, as shown in Table 1.
The boundaries of the bounded function depended on the DeepCDpred score and the
distance bin for which the prediction was made (Table 1), which allowed pairs with low
DeepCDpred scores more easily to have values outside the distance bin boundaries.
This reflects the greater tendency of pairs of residues with low DeepCDpred scores to
actually deviate from the defined boundaries of the prediction bin. The formula for the
upper boundary of the contact or distance constraint was determined by regressing the
actual distance against the neural network score for each of these bins. The regression
was performed using a subset of 435 proteins from the training set. The weights were
chosen to be within the typical range of values for constraints in Rosetta [11], with
predictions that were expected to be more accurate being given a higher weighting. The
chosen weights were tested on a small number of proteins from the training set, and
found to produce acceptable models. No optimisation of the weights was undertaken, so
this represents a possible area for improvement in the future.

Since we trained neural network models for each bin separately, for some residue
pairs it is possible for a given pair to score highly on more than one model. However,
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only one distance or contact constraint is applied per pair, according to the rules of
precedence described below. The procedure for adding distance information alongside
DeepCDpred contact predictions was as follows: If the score for the 8-13 bin and/or the
score for the 13-18 bin is greater than the score for the contact bin by 0.3 or more, then
a distance constraint is applied representing the 8-13 or 13-18 Ångstrom distance bin,
depending on which scores higher; unless the 18-23 bin range has a score that is greater
than the other ranges by 0.5 or more, whereupon the residue pair has a constraint
added representing the 18-23 distance range. Otherwise, a contact constraint is applied,
and no distance constraint. These selection criteria reflect the differences in the
observed accuracies of prediction for the different contact/distance ranges, but have not
been systematically optimized.

The procedure for adding distance information alongside RaptorX contact
predictions was the same as above, but using the RaptorX contact prediction score.
Again, this has not been optimized and further work in this area may lead to better
results. The python script which is used to prepare Rosetta constraint files is given and
a short example of a constraint file is shown in the supplementary methods.

Table 1. Parameters of the contact and distance constraints.

Range /Å DeepCDpred Upper Lower Standard Weight
score (s) boundary boundary deviation

>= 0.9 0.5 2.5
bin 0 - 8 >= 0.8 & <0.9 −10.8 ∗ s + 16.7 3.2 0.7 1.5

<0.8 1.0 1.0
bin 8 - 13 >= 0.8 −12 ∗ s + 23.5 7.5 1 1.5

<0.8 1.5 0.5
bin 13 - 18 >= 0.8 −8.6 ∗ s + 25.17 8.6 ∗ s + 4.84 1.5 0.8

<0.8 1.0 0.3
bin 18 - 23 >= 0.8 −7.2 ∗ s + 29.2 7.2 ∗ s + 11.2 1.5 0.6

<0.8 1.0 0.3

For structure predictions using MetaPSICOV, RaptorX and NeBcon, the top 1.5L
contact predictions were chosen, which allows us to make comparisons with
DeepCDpred.

Generation of non-topologous test set

We aimed to have the largest independent topology set that we could create. Since we
were comparing across RaptorX, MetaPSICOV and DeepCDpred, the set should be
topologously independent of all of their training sets. As outlined below, due to the size
of the RaptorX training set this left few possibilities. There are 1391 topology classes in
the CATH (v4.0.0) database and 1064 of them were used in RaptorX, MetaPSICOV,
DeepCDpred training and validation sets. 12234 protein chains were detected belonging
to remaining 327 topology classes. Then, we used the PISCES server to cull the
proteins with 25% or less sequence identity, X-ray resolution lower than 2.5 Å and
chains with length shorter than 400 amino acids and longer than 40 amino acids. This
left us with 108 proteins. Among them, we removed the ones with missing residues or
atoms in the structure. That resulted 50 proteins to be used as additional test set. For
the expanded non-topologous set, we added proteins topologous to proteins in the
MetaPSICOV training set, but not the DeepCDpred or RaptorX training sets. Applying
the same filters as above allowed us to add 11 more proteins to the non topologous set
(PDB IDs are given in Table 5).
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Table 2. Comparison of average TM-scores of the structure pools with 100 vs. 200
models.

Lowest Rosetta Energy1 Model with highest TM compared
to experimental structure

Average TM Average TM p-value2 Average TM Average TM p-value2

from 100 from 200 from 100 from 200
RaptorX
contact only 0.667 0.665 0.320 0.766 0.775 0.04
(108)
RaptorX +
Distance 0.720 0.737 0.008 0.780 0.786 7x10−5

(108)
RaptorX
contact only 0.493 0.494 0.831 0.557 0.568 1x10−5

(50)
RaptorX +
Distance 0.516 0.515 0.850 0.561 0.576 8x10−5

(50)

1Average TM, compared to experimental structure, of the model with lowest Rosetta energy model for
each of the 108 proteins and the 50 proteins in the test sets, when using a pool of 100 or 200 models,
per protein, to select from. 2Paired t-test.

Software Used

The following lists the software, as well as related settings, that were used for residue
contact/distance prediction and 3D structure prediction.

MI APC. Mutual Information with the average product correlation (MI APC), as
described by Dunn et al. [12], was calculated using a script in the MetaPSICOV source
code, which was downloaded from
http://bioinfadmin.cs.ucl.ac.uk/downloads/MetaPSICOV/.

mfDCA. mfDCA calculations were generated using the implementation provided by
the FreeContact package (downloaded from
ftp://rostlab.org/free//freecontact-1.0.21.tar.xz) with default parameters.

QUIC. The source code of QUIC was downloaded from
http://www.cs.utexas.edu/∼sustik/QUIC/QUIC MEX 1.1.tar and consisted of a
mixture of MATLAB and C scripts. It was rewritten solely in C in order to speed up
the calculation. OpenMP was also adopted to allow it to run in parallel. Parameters in
the code such as the regularization parameter and the parameter of tolerance were kept
the same as in the downloaded code, the tolerance being 0.004 and the regularization
being L1, with regularisation parameter 0.2

CCMpred. CCMpred was downloaded from
https://github.com/soedinglab/CCMpred and run with default parameters.

Rosetta. The source code of version 3.7 was downloaded from
https://rosettacommons.org and compiled into executable files using the openMPI
library.

SPIDER2. The source code of SPIDER2 and the training dataset of SPIDER2
were downloaded from http://sparks-lab.org/server/SPIDER2/. Protein secondary
structure predictions were generated using default settings.

Blastpgp. When using SPIDER2 to predict the secondary structure of the query
protein, Blastpgp, which comes from the BLAST family, was required to calculate the
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PSSM, which was fed into the neural network model in SPIDER2. Blastpgp version
2.2.26 was used here and uniref90 (November 2016) was used as the sequence database.

HHblits. HHsuite (version 2.0.16) was downloaded from the github
(https://github.com/soedinglab/hh-suite). HHblits requires a program-specific protein
sequence database of pre-calculated HMM profiles, with each HMM relating to a
sequence cluster from the UniProt sequence database. Here, the version released in
February 2016 (filename: uniprot20 2016 02) was used. The parameter settings used in
HHblits were: iteration: 4, E-value: 0.001, minimum coverage with the query sequence:
60%, maximum pairwise sequence identity: 90%.

Table 3. PDB ID list of the test set with 108 proteins.

1a3aA 1cc8A 1dsxA 1gzcA 1im5A 1ku3A 1p90A 1vjkA
1aapA 1chdA 1eazA 1h2eA 1j3aA 1kw4A 1pchA 1vmbA
1abaA 1cjwA 1ej8A 1h4xA 1jfuA 1lm4A 1qf9A 1vp6A
1ag6A 1ckeA 1f6bA 1hdoA 1jl1A 1lo7A 1qjpA 1w0hA
1aoeA 1ctfA 1fcyA 1hfcA 1jo0A 1m4jA 1r26A 1whiA
1atzA 1cxyA 1fk5A 1hh8A 1jo8A 1m8aA 1roaA 1wjxA
1avsA 1cznA 1fl0A 1htwA 1josA 1mk0A 1rw1A 1wkcA
1bdoA 1d0qA 1fvgA 1hxnA 1jwqA 1mugA 1smxA 1xffA
1bebA 1d1qA 1fx2A 1i1jA 1jyhA 1nb9A 1svyA 2cuaA
1behA 1d4oA 1g2rA 1i1nA 1k6kA 1ne2A 1t8kA 2phyA
1bkrA 1dixA 1g9oA 1i4jA 1k7jA 1npsA 1tifA 1c44A
1dlwA 1gmiA 1i58A 1kq6A 1nrvA 1tqgA 1c52A 1dmgA
1gmxA 1i71A 1kqrA 1ny1A 1tqhA 1c9oA 1dqgA 1gz2A
1iibA 1ktgA 1o1zA 1vfyA

Table 4. PDB ID list of the test set with 50 proteins.

1b12A 1ckmA 1d0qA 1dd9A 1dmgA
1e1hA 1e1hB 1g2rA 1hufA 1i71A
1inpA 1io1A 1j3aA 1o9iA 1okcA
1r7lA 1rajA 1sknP 1svbA 1tgrA
1w2yA 1whiA 1wjxA 1yrtA 1yu5X
1ywmA 2j7aC 2p84A 2rhkC 2vnlA
2wqiA 3bl9B 3bqwA 3girA 3hrdB
3o79A 3pn3A 3rioA 3rlfG 3ts2A
3vtoQ 3x02A 3x34A 4x8yA 4xb4A
4ymuC 4z6mA 5b66O 5hobA 5hocA

Table 5. PDB ID list of additional test set with 11 proteins.

1af7A 1ddgA 1dl5A 1fjrA 1fn9A
1h3iA 1h6wA 1iomA 1noyA 1rkuA
1rzhA
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Network Training Script

The python script for training the neural network is given in the file train network.py.

Rosetta Scripts

Parameter settings in the Rosetta protocol file: The Rosetta script that is used
to generate structures via Abinitio relax is given in the file flags for rosetta ab initio.

Example of a constraint file:
AtomPair CB 77 CB 85 SCALARWEIGHTEDFUNC 0.50 BOUNDED 7.50 15.01

1.5 NOE
AtomPair CB 21 CB 47 SCALARWEIGHTEDFUNC 1.00 BOUNDED 3.20 10.07

1.0 NOE
AtomPair CB 25 CB 31 SCALARWEIGHTEDFUNC 2.50 BOUNDED 3.20 6.12 0.5

NOE
AtomPair CB 22 CB 44 SCALARWEIGHTEDFUNC 2.50 BOUNDED 3.20 6.22 0.5

NOE
AtomPair CB 24 CB 44 SCALARWEIGHTEDFUNC 1.00 BOUNDED 3.20 8.77 1.0

NOE
AtomPair CB 11 CB 56 SCALARWEIGHTEDFUNC 0.50 BOUNDED 7.50 14.44

1.5 NOE
AtomPair CB 1 CB 17 SCALARWEIGHTEDFUNC 0.50 BOUNDED 7.50 15.61 1.5

NOE
AtomPair CB 48 CB 86 SCALARWEIGHTEDFUNC 1.00 BOUNDED 3.20 8.60 1.0

NOE
AtomPair CB 25 CB 65 SCALARWEIGHTEDFUNC 0.50 BOUNDED 7.50 15.80

1.5 NOE
AtomPair CB 10 CB 46 SCALARWEIGHTEDFUNC 0.50 BOUNDED 7.50 15.36

1.5 NOE
AtomPair CB 9 CB 62 SCALARWEIGHTEDFUNC 1.00 BOUNDED 3.20 9.61 1.0

NOE
AtomPair CB 24 CB 66 SCALARWEIGHTEDFUNC 0.50 BOUNDED 7.50 14.45

1.5 NOE
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Fig 1. The architecture of the neural network model adopted for amino
acid contact and distance predictions in this study.
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Fig 2. Contact prediction accuracy and speed comparisons between
PSICOV and QUIC. 221 proteins from the training set were chosen for the
comparisons and the accuracies of the top 1.5L amino acid contact predictions of each
protein for both PSICOV and QUIC is shown in graph (a). Graph (b) shows the
average contact prediction accuracies of the top scoring 1.5L amino acid pairs. (a) and
(b) indicate there is little difference between PSICOV and QUIC for amino acid contact
prediction. (c), based on the same computer (8-core i7-3770, 32 GB RAM), PSICOV
took 16.9 minutes to complete the contact prediction for each protein on average; while
QUIC only took 6.9 minutes; especially for large proteins (>300 amino acids), QUIC is
much faster than PSICOV.
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Fig 3. The distribution of inter-residue distance with respect to the
sequence separation of a pair of residues. The mean and standard deviation for
435 experimental protein structures from the training set are shown. The three blue
highlighted sequence separations (8, 13 and 15) are the minimum sequence separation
cut-offs chosen for distance predictions in bin 8-13, 13-18 and 18-23, respectively.
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test set. Reducing the Nf value decreased the prediction accuracy of DeepCDpred and
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Fig 5. Addition of distance constraints improves the model quality of both
DeepCDpred and RaptorX when the model is selected with Rosetta energy
score. The calculations are for the test set of 108 proteins. The graphs show
comparison of the TM-score with respect to experimental structures of lowest energy
models predicted using constraints from RaptorX, DeepCDpred contact only,
DeepCDpred contact + distance and RaptorX contact + DeepCDpred distance
predictions. For each test protein 100 structures were generated by Rosetta.
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Fig 6. Addition of distance constraints improves the model quality of both
DeepCDpred and RaptorX when the model with highest TM-score is
selected. The calculations are for the test set of 108 proteins. The graphs show
comparison of the TM-score with respect to experimental structures of the best models
predicted using constraints from RaptorX, DeepCDpred contact only, DeepCDpred
contact + distance and RaptorX contact + DeepCDpred distance predictions. For each
test protein 100 structures were generated by Rosetta.

December 19, 2018 10/14



Fig 7. The precision of predicting contacts and distances between different
residue types for (a) 0-8 Å, (b) 8-13 Å, (c) 13-18 Å, (d) 18-23 Å. The scale is
given on the right hand side for each plot. Precision is calculated as the number of
correctly predicted contacts for that pair of amino acid types divided by the total
number of contact predictions for that pair for the predictions with >=0.7 network
score.
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Fig 8. TM-scores of the models generated with different tools. Structure
predictions for Rosetta contact and Rosetta contact plus DeepCDpred distances were
replicated (replica1 (r1) and replica2 (r2)). For Rosetta server predictions models were
selected either by the lowest energy score (CNS score) or the best model among the 5
structures that the server provides. For all other prediction methods, models were
selected either with the lowest Rosetta energy or the best TM-score. The calculations
were performed for the test set of 108 proteins. The upper and the lower edges of the
boxes indicate the 25th and 75th percentiles, respectively. The medians are shown with
the central lines, the means are shown with black '+' signs and the outliers are shown
with red '+' signs. Even though the first set of best models which were generated with
the restraints of RaptorX contact predictions (RaptorX r1) are significantly better than
the best models generated with DeepCDpred contact predictions, replication of the
structure predictions with RaptorX contacts (RaptorX r2) resulted in no significantly
different average TM-score than the predictions performed with DeepCDpred contacts
(paired t-test p-value: 0.507). The results from the RaptorX server were on average
worse than all other calculations except the use of MetaPSICOV contact restraints
together with Rosetta, presumably because CNS, used by the RaptorX server, is not as
good at modelling structures as Rosetta is.
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