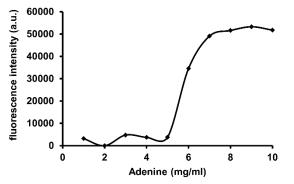
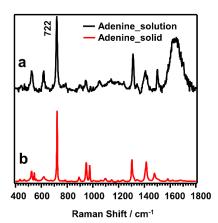
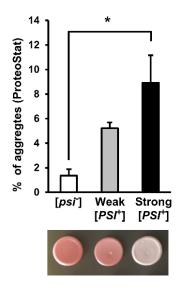
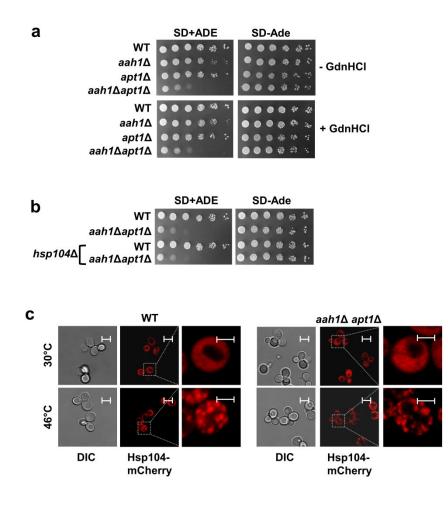

Fibril Formation and Therapeutic Targeting of Amyloid-like Structures in a Yeast Model of Adenine Accumulation


D. Laor et al


Supplementary Figure 1. Respiratory competence of the salvage mutant upon adenine feeding using glycerol as a carbon source. WT, $aahl\Delta$, $aptl\Delta$ and $aahl\Delta aptl\Delta$ strains were serially diluted and spotted on SG complete medium (2% glycerol) containing 20 mg/L adenine (SG+ADE) or on SG medium without adenine (SG-ADE).


Supplementary Figure 2. $aah1^+$ and $apt1^+$ insertion to $aah1\Delta apt1\Delta$ strain restore the cell growth toxicity observed in the presence of adenine. $aah1\Delta apt1\Delta$ strain transformed with single copy plasmids carrying pRS416-AAH1(pAAH1) and pRS313-APT1(pAPT1) as well as WT and $aah1\Delta apt1\Delta$ strains transformed with vectors only (pRS416 and pRS313) were serially diluted and spotted on SD medium without the relevant markers (uracil and histidine respectively) containing 20 mg/L adenine (SD+ADE) or without adenine (SD-ADE).

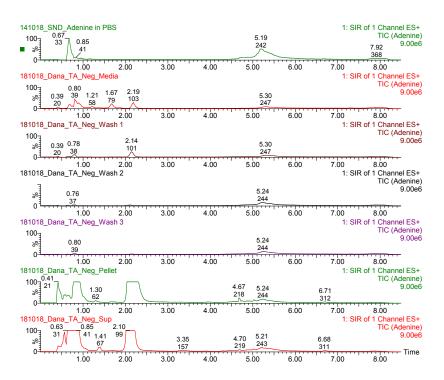

Supplementary Figure 3. Adenine self-assembly *in vitro* at different concentrations. Adenine was dissolved to a final concentration of 1 mg/ml to 10 mg/ml, as indicated. Next, 20 μ M ThT (final concentration) was added following an overnight incubation and fluorescence emission endpoint measurement at 480 nm (excitation at 450 nm) was carried out.

Supplementary Figure 4. Raman spectra of adenine. a, Raman band was measured using 5mg/ml of adenine in 0.5M HCl_{aq} solution. **b,** Raman band of adenine in solid from.

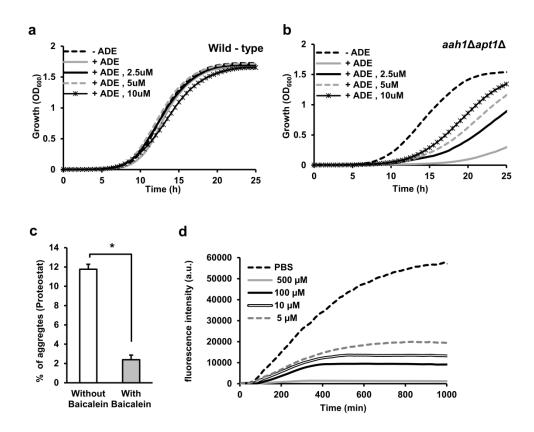
Supplementary Figure 5. *In vivo* characterization of distinct amyloid fibers formed by the yeast prion protein Sup35 by ProteoStat staining. $10\mu l$ of W303 [*psi*], weak [*PSI*⁺] and strong [*PSI*⁺] were spotted on YPD plate for color distinction following ProteoStat staining and analyzed by flow cytometry, showing a correlation to the level of [*PSI*⁺]: red, pink and white respectively. **P* < 0.01 (Student's *t*-test). Values are the mean \pm s.d. of three experiments.

Supplementary Figure 6. The sensitivity of the salvage mutant to adenine feeding is independent of Hsp104. a, WT, $aah1\Delta$, $apt1\Delta$ and $aah1\Delta apt1\Delta$ strains were serially diluted and spotted on SD complete medium containing 20 mg/L adenine (SD+ADE) or on SD medium without adenine (SD-ADE) in the absence (-GdnHCl) or presence (+GdnHCl) of 5mM guanidine hydrochloride. **b**, WT, $aah1\Delta apt1\Delta$, $hsp104\Delta$ and $aah1\Delta apt1\Delta hsp104\Delta$ strains were serially diluted and spotted on SD complete medium containing 20 mg/L adenine (SD+ADE) or on SD medium without adenine (SD-ADE). **c**, Representative confocal and differential interference contrast (DIC) images of WT and $\Delta aah1\Delta apt1$ cells expressing Hsp104-mCherry on SD complete medium containing 20 mg/L adenine at 30°C and following heat shock (15 minutes at 46°C). Scale bar is 5 µm. Images in the right panel of each strain/condition are magnified views of the area marked with dashed lines (scale bar is 2 µm).

181018_Dana_SND_tannic acid in DM 100- ■ &	SO_delut		5.23 5.49 242 254	4: SIR of 1 Channel ES- TIC (Tannic acid) 2.00e5
1.00 2.00 181018_Dana_TA_Pos_Media 100- **********************************	3.00	4.00	5.00 6.00 5.49 254	7.00 8.00 4: SIR of 1 Channel ES- TIC (Tannic acid) 2.00e5
1.00 2.00 181018_Dana_TA_Pos_Wash 1 100 80.49 0.49 0	3.00	4.00	5.00 6.00 5.49 254	7.00 8.00 4: SIR of 1 Channel ES- TIC (Tannic acid) 2.00e5
1.00 2.00 181018_Dana_TA_Pos_Wash 2 100 0.53 8 25	3.00	4.00	5.00 6.00 5.49 2 <u>5</u> 4	7.00 8.00 4: SIR of 1 Channel ES- TIC (Tannic acid) 2.00e5
0 ⁻¹ , 1.00 2.00 181018_Dana_TA_Pos_Wash 3 100 0.49 23 0 ⁻¹ , 1.00 23 0 ⁻¹ , 1.00 100 23 0 ⁻¹ , 1.00 100 23 0 ⁻¹ , 1.00 100 100 100 100 100 100 100	3.00	4.00	5.00 6.00	7.00 8.00 4: SIR of 1 Channel ES- TIC (Tannic acid) 2.00e5
1.00 2.00 181018_Dana_TA_Pos_Pellet 100 0.49 0.49 0.49 0.49	3.00	4.00	5.00 6.00 5.51 5.23 255 242	7.00 8.00 4: SIR of 1 Channel ES- TIC (Tannic acid) 2.00e5
1.00 2.00 181018_Dana_TA_Pos_Sup 1007 0.47 0.47 0.47	3.00	4.00	5.00 6.00 5.49 5.20 254 241	7.00 8.00 4: SIR of 1 Channel ES- TIC (Tannic acid) 2.00e5
1.00 2.00	3.00	4.00	5.00 6.00	7.00 8.00


b

141018_SND_Adenine in PBS 100			5.19		1: SIR of 1 Channel ES+ TIC (Adenine) 2.00e7
			242		2.0007
0 ⁻¹	3.00	4.00	5.00	6.00	7.00 8.00 1: SIR of 1 Channel ES+ TIC (Adenine)
	.34 10		5.26 245		2.00e7
1.00 2.00 181018_Dana_TA_Pos_Wash 1 100 ₃	3.00	4.00	5.00	6.00	7.00 8.00 1: SIR of 1 Channel ES+ TIC (Adenine)
0.80 2.17 0 39 102			5.26 245		2.00eź
1.00 2.00 181018_Dana_TA_Pos_Wash 2 100¬	3.00	4.00	5.00	6.00	7.00 8.00 1: SIR of 1 Channel ES+ TIC (Adenine)
			5.21 243		2.00e7
1.00 2.00 181018_Dana_TA_Pos_Wash 3	3.00	4.00	5.00	6.00	7.00 8.00 1: SIR of 1 Channel ES+ TIC (Adenine)
			5.24 244		2.00e7
1.00 2.00 181018_Dana_TA_Pos_Pellet 100_0.41_41_103_ \$21_1 103_103_103_103_103_103_103_103_103_103_	3.00	4.00	5.00 5.21 243	6.00	7.00 8.00 1: SIR of 1 Channel ES+ TIC (Adenine) 2.00e7
0 ¹	3.00	4.00	5.00	6.00	7.00 8.00 1: SIR of 1 Channel ES+
	(5.24 244		TIC (Adenine) 2.00e7
0.4	3.00	4.00	5.00	6.00	7.00 8.00


a

181018 100 • ***	_Dana_SND_ta	nnic acid in DMS	O_delut		5.23 5.4 242 25	9	4: SIR of 1 Channel ES- TIC (Tannic acid) 2.00e5
181018 100	1.00 Dana_TA_Nec 0.62 29	2.00 g_Media	3.00	4.00	5.00	6.00	7.00 8.00 4: SIR of 1 Channel ES- TIC (Tannic acid) 2.00e5
04, 181018_ 100	1.00 _Dana_TA_Neg 0.56 _26	2.00 g_Wash 1	3.00	4.00	5.00	6.00	7.00 8.00 4: SIR of 1 Channel ES- TIC (Tannic acid) 2.00e5
181018 100	1.00 Dana_TA_Neg 0.51 24	2.00 g_Wash 2	3.00	4.00	5.00	6.00	7.00 8.00 4: SIR of 1 Channel ES- TIC (Tannic acid) 2.00e5
04- 181018 100- 	1.00 Dana_TA_Neg 0.56 26	2.00 g_Wash 3	3.00	4.00	5.00	6.00	7.00 8.00 4: SIR of 1 Channel ES- TIC (Tannic acid) 2.00e5
	1.00 _Dana_TA_Neg 0.53 _25	2.00 g_Pellet	3.00	4.00	5.00	6.00	7.00 8.00 4: SIR of 1 Channel ES- TIC (Tannic acid) 2.00e5
	1.00 Dana_TA_Neg 0.49 23	2.00 3_Sup	3.00	4.00		6.00 55 57	7.00 8.00 4: SIR of 1 Channel ES- TIC (Tannic acid) 2.00e5
5	1.00	2.00	3.00	4.00	5.00	6.00	7.00 8.00

d

Supplementary Figure 7. TA is present inside $aah1\Delta apt1\Delta$ cells together with adenine. ad, $aah1\Delta apt1\Delta$ cells were grown in SD medium containing adenine and TA (a, b) or in SD medium containing adenine without TA (c, d). LC-MS analysis focused on TA negatively charged molecular peak at 1700 Da, RT around 5.40 minutes (a, c) and on adenine positively charged molecular peak at 136.1 Da, RT around 0.70 minutes (b, d). Examined samples were tannic acid and adenine as standards (SND), the growth medium (Media), the washing steps (Wash1-3), the pellet (Pellet) and the supernatant (Sup).

Supplementary Figure 8. Addition of baicalein rescues the toxic effect observed in the adenine salvage mutant. a-b, Growth curves of WT (a) and $\Delta aah1\Delta apt1$ (b) strains in SD medium containing 2 mg/L adenine (+ADE), with or without the following concentrations of baicalein: 2.5 μ M, 5 μ M and 10 μ M. c, Flow cytometry analysis of $\Delta aah1\Delta apt1$ cells with and without 10 μ M baicalein following ProteoStat staining. *P < 0.01 (Student's *t*-test). Values are the mean \pm s.d. of three experiments. d, Adenine self-assembly *in vitro* in the presence of baicalein. ThT fluorescence emission intensity at 480 nm (excitation at 450 nm) in the presence of 8 mg/ml adenine was measured over time in the absence (PBS) and in the presence of baicalein at the following concentrations: 5 μ M, 10 μ M, 100 μ M, 500 μ M. Adenine was dissolved and treated as described in the Methods section.

Supplementary Table 1: list of strains

Yeast Strains	Genetic background	Source
Wild-type, BY4741	MATa, his 3- ΔI , leu 2 Δ -0, met 15-	Martin kupiec's lab
	$\Delta 0, ura3-\Delta 0$	-
$apt l\Delta$	MATa, his3- $\Delta 1$, leu2 Δ -0, met15-	Martin kupiec's lab
1	$\Delta 0$, ura3- $\Delta 0$, apt1::hphMX	-
$aah1\Delta$	MATa, his $3-\Delta 1$, leu 2Δ -0, met 15-	Martin kupiec's lab
	$\Delta 0$, ura3- $\Delta 0$, aah1:: KanMX	-
$aahl \Delta apt l \Delta$	<i>MATa</i> , his3- Δ 1, leu2 Δ -0, met15-	This study
1	$\Delta 0$, ura3- $\Delta 0$, aah1:: KanMX,	
	apt1::hphMX	
W303	<i>MATa, ade2-1, trp1-1, can1-100,</i>	Martin kupiec's lab
	leu2-3, his3-11,15, ura3-1	Ĩ
74-D694, strong $[PSI^+]$	ade 1-14 (UGA), trp1-289	Susan Lindquist 's lab
[pin-]	(UAG), leu2-3,112, his3⊿ -200,	-
	$ura3-52$, strong $[PSI^+]$ [pin ⁻]	
	variant	
74-D694, weak [<i>PSI</i> ⁺]	ade 1-14 (UGA), trp1-289	Susan Lindquist 's lab
[pin-]	(UAG), <i>leu2-3,112</i> , <i>his3∆ -200</i> ,	
	$ura3-52$, weak $[PSI^+]$ [pin ⁻]	
	variant	
$hsp104\Delta$	<i>MATa</i> , his3- Δ 1, leu2 Δ -0, met15-	This study
_	$\Delta 0$, ura3- $\Delta 0$, hsp104:: NAT	
$aah1\Delta apt1\Delta hsp104\Delta$	<i>MATa</i> , his3- Δ 1, leu2 Δ -0, met15-	This study
	$\Delta 0$, ura3- $\Delta 0$, hsp104:: NAT,	
	aah1:: KanMX, apt1::hphMX	
Wild-type, pRS313	MATa, his3- $\Delta 1$, leu2 Δ -0, met15-	This study
pRS416	$\Delta 0$, <i>ura3</i> - $\Delta 0$, pRS313, pRS416	
$aah1\Delta apt1\Delta$, pRS313	<i>MATa</i> , <i>his3-</i> Δ 1, <i>leu2</i> Δ -0, <i>met15-</i>	This study
pRS416	$\Delta 0$, ura3- $\Delta 0$, aah1:: KanMX,	
	apt1::hphMX, pRS313, pRS416	
$aah1\Delta apt1\Delta$, pRS313	<i>MATa</i> , <i>his3-</i> Δ <i>1</i> , <i>leu2</i> Δ <i>-0</i> , <i>met15-</i>	This study
pRS416aah1	$\Delta 0$, ura3- $\Delta 0$, aah1:: KanMX,	
	<i>apt1::hphMX</i> , p <i>APT1</i> , p <i>AAH1</i>	
Wild-type, Hsp104-	MATa, his3- $\Delta 1$, leu2 Δ -0, met15-	This study
mCherry	$\Delta 0$, <i>ura3</i> - $\Delta 0$, pAG415-Hsp104-	
	mCherry	
aah1∆apt1∆, Hsp104-	<i>MATa</i> , his3- Δ 1, leu2 Δ -0, met15-	This study
mCherry	$\Delta 0$, ura3- $\Delta 0$, aah1:: KanMX,	
in Choiry	apt1::hphMX, pAG415-Hsp104-	
	mCherry	

Supplementary Table 2: list of plasmids

Plasmid name	Description	Source
pUC57-AAH1	pUC57 derivative containing a de	GenScript
	novo synthesis of AAH1 gene	
pUC57- APT1	pUC57 derivative containing a de	GenScript
	novo synthesis of APT1 gene	
pRS313	Yeast centromere vector with a	Martin kupiec's lab
	HIS3 marker	
pAPT1	[pRS313] <i>APT1</i>	This study
pRS416	Yeast centromere vector with a	Martin kupiec's lab
	URA3 marker	
pAAH1	[pRS416] AAH1	This study
pRS415	Yeast centromere vector with a	Martin kupiec's lab
	LEU2 marker	
pAG415-Hsp104-	pAG415GPD- Hsp104-mCherry	Simon Alberti's lab
mCherry		

Supplementary Table 3: list of primes

Primer name	Description
Apt1_Fw	CCAACCTACTAGTAGTGGTC
Apt1_Rev	CTACTTTGTGGCACAAAGCAG
Aah1_Fw	GACAAGCAGGCCTGTGTATTT
Aah1_Rev	GTTCCCGAATTGTAATCTCGTG
Hsp104_Fw	CATTGAACCCTCCATCGTGGTAG
Hsp104_Rev	GAGTCATATGAGTCGCTACATTC
KanMX_Rev	CACCATGAGTGACGACTGAAT
Hyg_Rev	CATCAGCTCATCGAGAGCCTG
natMX6_Fw	GGGGTTCACCCTCTGCGGCC
natMX6_Rev	GGGACACTGGTGCGGTACCG
pRS306_Fw	CGCCAGCTGGCGAAGGGGGGGATGTGCTGCA
pRS306_Rev	ATTAGGCACCCCAGGCTTTACACTT

Supplementary Methods

ThT fluorescence endpoint measurements

Adenine was dissolved at various concentrations, ranging from 1 mg/ml to 10 mg/ml at 90°C in PBS and plated on a 96-well black plate together with 20µm ThT in PBS (final concentration). Following an overnight incubation at room temperature, ThT emission signal at 480 nm (excitation at 450 nm) was measured using a TecanTM Infinite® 200 PRO plate reader. The results displayed are representative of three biological experiments performed in triplicate.

ThT kinetic assay of adenine self-assembly inhibition

Adenine was dissolved to a final concentration of 8 mg/ml at 90°C in PBS. The solution was plated on a 96-well black plate and mixed with the inhibitor baicalein at the stated concentration, and with 20µm ThT (final concentration). Fluorescence (excitation at 450nm, emission at 480nm) was recorded over time using a TecanTM Infinite® 200 PRO plate reader. Data processing was performed using the OriginLab software. The results displayed are representative of three biological experiments performed in triplicate.

LC-MS

100 ml of cells at the logarithmic phase were centrifuged and washed three times with PBS. 1ml of the growth medium and of each wash were collected for LC-MS analysis. After the third wash, the pellet was resuspended in PBS together with acid-washed glass beads. Tubes were vortexed for 45 minutes in 4°C using disruptor-genie. Cell debris and soluble material were separated by centrifugation. Both fractions as well as the medium and washes were analyzed by MS.

The pellet was resuspended in 200 μ l DMSO, heated for 5 minutes at 85°C and sonicated for 5 minutes at 40 °C. The lysis mixture was centrifuged at 6000 rpm for 10 minutes. 150 μ l of the lysate were transferred to a Waters 96 well ACQUITY collection plate for LC-MS analysis. 20 μ l of each sample were injected to Waters Autopurification system analytical module equipped with SQD2 MS detector at the following conditions: a. LC: Waters XSelect Peptide CSH C18 column (5 μ m, 4.6mm x 100mm) using a 10 minute gradient from 95:5 Water:acetonitrile (both with 0.1% formic acid) to acetonitrile (0.1% formic acid); b. MS: acquisition parameters were optimized in order to select the proper ion for selected ion monitoring (SIR) experiments. The protonated molecule of adenine [M+H]⁺ at m/z 136.1 and deprotonated molecule of tannic acid [M-H]⁻ at m/z 1700.1 were obtained at a cone voltage of 80 V. The results displayed are representative of three biological experiments.

Plasmids cloning

The gap-repair cloning system was used to clone by transformation the pUC57-*AAH1* and pUC57-*APT1* vectors into linearized pRS416 and pRS313 plasmids respectively that contain an appropriate homology inside the yeast cells, relying on interchanging

parts of the plasmids by homologous recombination. Candidates were confirmed by PCR using primers upstream and downstream to the insertion site.