Table S1. List of bacterial strains and plasmids used in this study.

Name	Description/genotype	Marker	Reference
Strains			
M. abscessus S	Mabs sensu stricto, strain CIP104536 ^T , smooth	_	Laboratoire de Référence des Mycobactéries
<i>M. abscessus</i> R	<i>Mabs sensu stricto</i> , strain CIP104536 ^T , rough	-	Laboratoire de Référence des Mycobactéries
M. abscessus S	<i>Mabs sensu stricto</i> , strain ATCC 19977, smooth	-	ATCC
CFZ-R1	<i>M. abscessus</i> S harboring the L40W mutation in MAB_2299c, co-resistant to CFZ/BDQ	-	This study
CFZ-R3	<i>M. abscessus</i> S harboring a c276 deletion leading to a P92 frameshift mutation in MAB_2299c, co-resistant to CFZ/BDQ	-	This study
CFZ-R4	<i>M. abscessus</i> S harboring a g541t substitution leading to an early stop codon in position E181 in MAB_2299c, co-resistant to CFZ/BDQ	-	This study
CFZ-R6	<i>M. abscessus</i> S harboring a 318a insertion leading to a D106 frameshift mutation in MAB_2299c, co-resistant to CFZ/BDQ	-	This study
CFZ-R7	<i>M. abscessus</i> S harboring the L151P mutation in MAB_2299c, co-resistant to CFZ/BDQ	-	This study
CFZ-R9	<i>M. abscessus</i> S harboring the G215S mutation in MAB_2299c, co-resistant to CFZ/BDQ	-	This study
ΔМАВ_2299с	Mabs MAB_2299c unmarked deletion mutant obtained by two-step homologous recombination in the smooth parental strain CIP104536 ^T	-	This study
Δ <i>MAB_2299c</i> .C	Δ <i>MAB_2299c</i> complemented with pMV261- <i>MAB_2299c</i>	Kan	This study
ΔΜΑΒ_2299c / ΔΜΑΒ_2300- ΜΑΒ_2301	Δ <i>MAB_2299c</i> in which Δ <i>MAB_2300- 2301</i> have been deleted by two-step homologous recombination.	-	This study
<i>E. coli</i> XL1 Blue	endA1 gyrA96 recA1 thi-1 relA1 hsdR17 supE44 lac [F´ proAB laclqZΔM15 Tn10 (Tetr)].	Tet	Stratagene
<i>E. coli</i> BL21 (DE3) (pRARE2)	gal dcm (DE3) F- ompT hsdSB(rB- mB-) transformed by our hand with the pRARE2 vector (CamR)	Cam	New England Biolabs
Plasmids			

pET32a	Vector for high-level expression of	Amp	Novagen
	proteins fused with an N-terminal		
	thioredoxin protein and a 6×His tag.		
pET32a- <i>MAB_2299c</i>	pET32a in which MAB_2299c is cloned	Amp	This work
	in fusion with the thioredoxin/His tag		
	sequence and containing a TEV		
	cleavage site before MAB_2299c to		
	remove the tags.		
pET32a- <i>MAB_2299c_L40W</i>	pET32a into which the	Amp	This work
	MAB_2299c_L40W gene is cloned.		
pUX1	Vector for targeted disruption	Kan, Hyg	(1)
	through homologous integration,		
	containing the brightly red		
	fluorescent tdTomato marker for		
	positive selection.		
pUX1-katG	Variant of pUX1 containing the <i>katG</i>	Kan, Hyg	This work
	gene of <i>M. tuberculosis</i> H37Rv as a		
	counter-selectable marker in the		
	presence of isoniazid and used for the		
	generation of unmarked		
	chromosomal alterations.		
pUX1-katG- <i>MAB_2299c</i>	Variant of pUX1-katG containing	Kan	This work
	adjacently cloned up- and		
	downstream sequences		
	(approximately 1 kb each) of the		
	MAB_2299c open reading frame.		
	Used to generate an unmarked		
	deletion of MAB_2299c in M.		
	abscessus.		
pUX1-katG- <i>MAB_2300-MAB_2301</i>	Variant of pUX1-katG containing	Kan	This work
	adjacently cloned up- and		
	downstream sequences		
	(approximately 0.5 kb each) of the		
	MAB_2300-2301 Operon. Used to		
	generate an unmarked deletion of		
	Multi convugator anabling the	Kan	(2)
μνινζοι	cloning into E, coli and the	NdH	(2)
	overexpression of genes under the		
	control of the strong and constitutive		
	hsn60 promoter in mycobacteria		
pM//261_Aflu	nMV261 vector where an Afill	Kan	(1)
	restriction site was inserted within	NdH	(-)
	the multi-cloning site		
pMV261-MAR 2299c	nMV261 overexpressing the TetP	Kan	This work
piviv201-10100_22330	MAB 2299c under the control of the	NdH	THIS WULK
	hsp60 promoter		

Amp, ampicillin; Kan, kanamycin; Tet, Tetracycline; Stp, streptomycin ; Cam, chloramphenicol.

References

- 1. Viljoen A, Gutiérrez, Ana Victoria, Dupont C, Ghigo E, Kremer L. 2018. A simple and rapid gene disruption strategy in Mycobacterium abscessus: on the design and application of glycopeptidolipid mutants. Front Cell Infect Microbiol 8:69.
- 2. Stover CK, de la Cruz VF, Fuerst TR, Burlein JE, Benson LA, Bennett LT, Bansal GP, Young JF, Lee MH, Hatfull GF. 1991. New use of BCG for recombinant vaccines. Nature 351:456–460.

Table S2: Oligonucleotides used in this study. Fw and Rv stand for forward and reverse, respectively.

Primers	5' to 3' sequence			
Cloning in pET32a				
MAB_2299c_Fw (Kpnl)	TATA <u>GGTACCGAGAATCTGTACTTCCAGGGAG</u> TGGCGCAACTGA			
(TEV Cleavage Site)	CATTCCAACGCG			
MAB_2299c_Rv (HindIII)	TCGT <u>AAGCTT</u> TTGGTTCGCCCAGGCGTACACGCGG			
Cloning in pMV261	·			
Compl_MAB_2299c_Fw	CGCAACTGACATTCCAACGCGC			
Compl_MAB_2299c_Rv (HindIII)	GAGAGA <u>AAGCTT</u> TTCTGGTGCACGTGAGAGTG			
Generation of pUX1-katG and derivation	tive constructs			
katG_outer_Fw	TATACCGGACTACGCCGAAC			
katG_outer_Rev (<u>AvrII</u>)	GAGAGA <u>CCTAGG</u> TGCATGAGCATTATCCCGTA			
katG inner Fw	CCGGAGCCGCCAGCAACGGCT			
katG inner Rev	AGCCGTTGCTGGCGGCTCCGG			
 MAB_2299c_outer_Fw	GAAGAACAGCAGCATCACGA			
MAB_2299c_outer_Rev (Nhel)	GAGAGA <u>GCTAGC</u> GACACCTTCGTTCACGGTTT			
MAB_2299c_inner_Fw	AAAGAAGCGTCGCTCTGACCAGGCTGTTA			
MAB_2299c_inner_Rev	GGTCAGAGCGACGCTTCTTTCGTCAGTCC			
MAB_2300-MAB_2301_outer_Fw	ACGCCTTAGCTTTTCCGTTT			
MAB_2300-MAB_2301_outer_Rev	GAGAGA <u>GCTAGC</u> GCAGATGTCAACAACCGATG			
(<u>Nhel</u>)				
MAB_2300-MAB_2301_inner_Fw	TTGGATCCCGCAGCTCCGATCCGCGTGGT			
MAB_2300-MAB_2301_inner_Rev	ATCGGAGCTGCGGGATCCAAGCCCGCTTC			
PCR confirmation of MAB_2299 knoc	k-out			
MAB_2299c_U_scrn_Fw	GAAGATCGCGTAGTCGGTTC			
MAB_2299c_U_scrn_Rev	ATCACCACAGATGACCCACA			
MAB_2299c_D_scrn_Fw	CGCGTTTCATCAGGATCTTT			
MAB_2299c_D_scrn_Rev	CTTTGGAGCATGGGCATATT			
MAB_2300-MAB_2301_U_scrn_Fw	ATCACCACAGATGACCCACA			
MAB_2300-MAB_2301_U_scrn_Rev	GTGCAGGAATTCTCATGCTG			
MAB_2300-MAB_2301_D_scrn_Fw	GGAATCCGATCGGTAGTTGA			
MAB_2300-MAB_2301_D_scrn_Rev	CGCTCATGCCGATTTCTTAG			
Sequencing				
pMV5′	CGCCCGGCCAGCGTAAGTAGC			
pMV3'	GCCTGGCAGTCGATCGTACG			
pMV3' Ext	TTGAGACACAACGTCGCTTT			
NhelpUX1	ACGGCATGGACGAGCTGTAC			
qRT-PCR	I			
sigA	Fw: CACATGGTCGAGGTCATCAA			
	Rev: TGGATTTCCAGCACCTTCTC			
MAB_3551c (tgs1)	Fw: CACCGTCTACTACGGAATCAAC			
MAB_2300				
IVIAB_2301				
MAR 2202				
IVIAD_2302	FW. GAGATATICOULICACCAACATC			

	Rev: CACAGATAGTTCACCTCACCCTTTGT			
MAB_2303	Fw: ACATTCTCTGTCCCGATCATTC			
	Rev: GTGCTCTTTACCGACCTCTTC			
Eletrophoretic Mobility Shift Assay (EMSA)				
Probe A_Fw	GTGCGTAACGCACGCTACCGGGTGGTTCGTTGGCTCGCAAATCAC			
	ACGCCGTGCGTTATCCTCG			
Probe A_Rv	CACGCATTGCGTGCGATGGCCCACCAAGCAACCGAGCGTTTAGTG			
	TGCGGCACGCAATAGGAGC			
Probe B_Fw	CAGCTCCGATCCGCGTGGTGTCGG			
Probe B_Rv	GCTAATTCTCAATGGTGCGATGCC			
Probe C_Fw	TCGCCGCTAGTGGTGACGAACGAC			
Probe C_Rv	TCAGGGAACTGTACATGTGTCGTC			
Probe D_Fw	GCTTGTAGCTAACTAGGCTATTGC			
Probe D_Rv	GACTAGTGGGATCCATACCCGCGT			
Non-specific probe_Fw	CACTTCGCCATAAGTGGATTGACTCTATCCACTTTTACCCATAGA			
Non-specific probe_Fw	TCTATGGGTAAAAGTGGATAGAGTCAATCCACTTATGGCGAAGTG			
⊿Palin_Fw	GTGCGGCTACTTACCTACCGGGTGGTTCGTTGGCTCGCAAATCAC			
	ACGCTCGCACGAGTCCTCG			
∆Palin_Rv	CACGCCGATGAATGGATGGCCCACCAAGCAACCGAGCGTTTAGT			
	GTGCGAGCGTGCTCAGGAGC			
△DR_Fw	GTGCGTAACGCACGCTTGATATACTGCTTAAGGCTCGCAAATCCT			
	GACTTAGTGACCTTCCTCG			
∆DR_Rv	CACGCATTGCGTGCGAACTATATGACGAATTCCGAGCGTTTAGGA			
	CTGAATCACTGGAAGGTCG			

^aRestriction sites are underlined and specified inside brackets.

Table S3. Drug susceptibility profile of *M. abscessus* CIP104536 and its various derivatives to IPM, BDQ, CFZ, INH, EMB or RIF. MIC_{99} (µg/ml) were visually determined on Middlebrook 7H10 agar after 4 days at 37°C.

	MIC (µg/mL)					
Strain	IPM	BDQ	CFZ	INH	EMB	RIF
CIP104536	4	0.25	2	>256	16	128
∆МАВ_2299с	4	1	8	>256	16	128
ΔMAB_2299c.C	4	0.25	2	>256	16	128
ΔМАВ 2299с / ΔМАВ 2300-МАВ 2301	4	0.031	2	ND	ND	ND

IPM, imipenem; BDQ, bedaquiline; CFZ, clofazimine; INH, isoniazid; EMB, ethambutol; RIF, rifampicin. ND, not determined.

Table S4.	Percentage c	of nucleotide	or protein	sequence	identity	(ID) between	seventeen
identified A	Л. abscessus	mmpS-mmpL	couples ar	d the <i>M. tu</i>	uberculos	is mmpS5-mm	<i>pL5</i> couple
after multip	ole alignment	t using the MI	USCLE algo	rithm.			

MmpS/MmpL	Nucleotide ID ^a	MmpS ID	MmpL ID
Rv0677c-Rv0676c	100	100	100
MAB_0477-MAB_0478	75	35	44
MAB_0988c-MAB_0987c	79	46	57
MAB_1135c-MAB_1134c	80	49	60
MAB_2036-MAB_2037	75	38	52
MAB_2211c-MAB_2210c	73	36	38
MAB_2300-MAB_2301	80	49	62
MAB_2302-MAB_2303	77	47	54
MAB_2572c-MAB_2571c	75	41	20
MAB_2649-MAB_2650	77	41	52
MAB_3149-MAB_3150	80	54	61
MAB_3200-MAB_3201	73	35	42
MAB_3563c-MAB_3562c	77	38	51
MAB_4117c-MAB_4115c ^b	36	48	61, 59 ^b
MAB_4262-MAB_4263	72	27	38
MAB_4311c-MAB_4310c	78	50	54
MAB_4383c-MAB_4384c	82	61	68
MAB_4705c-MAB_4703c ^b	35	51	60, 62 ^b

^aFor nucleotide alignments and ID calculations, the sequence starting at the start codon of the *mmpS* gene and ending at the stop codon of the *mmpL* gene was used. ^b*mmpS/mmpL* couples containing an additional mmpL in the operon. For MmpL protein sequence identity to MmpL5_{Mtb} the % ID of the first MmpL is shown first followed by a comma and then the % ID of the second MmpL.

Fig. S1. Binding activity of MAB_2299c to mutated Probe A. (A) DNA sequences of Probe A and its two mutated derivatives, Δ Palin and Δ DR, where the conserved palindromes and the degenerated double repeats were replaced by random nucleotides, respectively. Conserved residues are in color for the palindromes and in bold for the double repeats. **(B)** EMSA using the Probes A, Δ Palin and Δ DR with purified MAB_2299c. Gel Shifts were revealed by fluorescence emission using the corresponding 5' fluorescein-labeled probes.

 $0.5 \,\mu\text{M}\,\Delta\,\text{DR}$

0.5 μM Δ Palin

-

-

Fig. S2. (A) Schematic representation of the intergenic region $IR_{2302/03}$ present upstream of MAB_{2302}/MAB_{2303} . Due to its large size, this 893 bp region was divided into three 373 bp overlapping probes (Probes B – C – D). **(B)** EMSA using increasing concentrations of purified MAB_2299c with Probe A (left panel), Probe B (middle panel) or Probe C (right panel). Probe A was also included as a positive control (far right panel). Gel shifts were revealed by fluorescence emission using 5' fluorescein-labeled probes. Experiments were repeated three times with similar results.

Fig. S3. Colony morphology **(A)** and *in vitro* growth **(B)** of parental *M. abscessus* WT CIP104536^T, ΔMAB_{2299c} and its complemented derivative ΔMAB_{2299c} . C. Bacteria were grown in 7H9 broth supplemented with OADC and 0.05% Tween 80. Growth was monitored by determining the OD₆₀₀ at different time points. Scale bar corresponds to 150 µm.