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Abstract: Background

Structured illumination microscopy (SIM) is a family of methods in optical fluorescence
microscopy that can achieve both optical sectioning and super-resolution effects. SIM
is a valuable method for high resolution imaging of fixed cells or tissues labeled with
conventional fluorophores, as well as for imaging the dynamics of live cells expressing
fluorescent protein constructs. In SIM, one acquires a set of images with shifting
illumination patterns. This set of images is subsequently treated with image analysis
algorithms to produce an image with reduced out-of-focus light (optical sectioning)
and/or with improved resolution (super-resolution).

Findings

Five complete, freely available SIM datasets are presented including raw and analyzed
data. We report methods for image acquisition and analysis using open source
software along with examples of the resulting images when processed with different
methods. We processed the data using established optical sectioning SIM and super-
resolution SIM methods, and with newer Bayesian restoration approaches which we
are developing.

Conclusion

Various methods for SIM data acquisition and processing are actively being developed,
but complete raw data from SIM experiments is not typically published. Publically
available, high quality raw data with examples of processed results will aid researchers
when developing new methods in SIM. Biologists will also find interest in the high-
resolution images of animal tissues and cells we acquired. All of the data was
processed with SIMToolbox, an open source and freely available software solution for
SIM.
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Abstract 20 

Background: Structured illumination microscopy (SIM) is a family of methods in optical fluorescence 21 

microscopy that can achieve both optical sectioning and super-resolution effects. SIM is a valuable method 22 

for high resolution imaging of fixed cells or tissues labeled with conventional fluorophores, as well as for 23 

imaging the dynamics of live cells expressing fluorescent protein constructs. In SIM, one acquires a set of 24 

images with shifting illumination patterns. This set of images is subsequently treated with image analysis 25 
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algorithms to produce an image with reduced out-of-focus light (optical sectioning) and/or with improved 26 

resolution (super-resolution).  27 

Findings: Five complete, freely available SIM datasets are presented including raw and analyzed data. We 28 

report methods for image acquisition and analysis using open source software along with examples of the 29 

resulting images when processed with different methods. We processed the data using established optical 30 

sectioning SIM and super-resolution SIM methods, and with newer Bayesian restoration approaches which 31 

we are developing. 32 

Conclusion: Various methods for SIM data acquisition and processing are actively being developed, but 33 

complete raw data from SIM experiments is not typically published. Publically available, high quality raw 34 

data with examples of processed results will aid researchers when developing new methods in SIM. 35 

Biologists will also find interest in the high-resolution images of animal tissues and cells we acquired. All 36 

of the data was processed with SIMToolbox, an open source and freely available software solution for 37 

SIM.  38 

Keywords: super-resolution microscopy, SIMToolbox, structured illumination microscopy, open-source 39 

software, fluorescence, Bayesian methods, LAMP1, live cell imaging. 40 

Data description 41 

Context 42 

Several methods are now available which are able to extend the resolution of fluorescence microscopy 43 

beyond the diffraction limit. These methods include photoactivated localization microscopy [1,2] (PALM, 44 

FPALM), stochastic optical reconstruction microscopy [3,4] (STORM, dSTORM), super-resolution 45 

optical fluctuation imaging [5,6] (SOFI), stimulated emission depletion microscopy [7] (STED), and 46 

structured illumination microscopy [8,9] (SIM). 47 

Of these various methods, SIM is usually regarded as the most useful for imaging live cells, and 48 

this method has rapidly gained in popularity. Depending on the optical setup and data processing method 49 

used, SIM can achieve optical sectioning (OS-SIM) [10], an effect which greatly reduces out-of-focus light 50 
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similar to laser scanning confocal fluorescence microscopy. SIM can also be used for imaging beyond the 51 

diffraction limit in fluorescence microscopy. Super-resolution SIM (SR-SIM) [8,9], in its most common 52 

implementation [11], uses laser illumination to create a high frequency interference fringe pattern (close to 53 

or at the resolution limit of the microscope) to illuminate the sample. In such an experiment, image 54 

information with details beyond the limit of spatial frequencies accepted by the microscope is aliased into 55 

the acquired images. By acquiring multiple images with shifting illumination patterns, a high-resolution 56 

image can be reconstructed [8,9]. Two-dimensional SR-SIM enables a twofold resolution improvement in 57 

the lateral dimension [8,9,12,13]. If a three-dimensional illumination pattern is used, a twofold resolution 58 

improvement can also be realized in the axial direction [11,14,15]. SIM is perhaps the most attractive 59 

super-resolution method for imaging live cells because it does not require high illumination powers, can 60 

work with most dyes and fluorescent proteins, uses efficient widefield (WF) detection, and can achieve 61 

high imaging rates. SIM has been demonstrated in several applications, including 2D  [12,13], and 3D 62 

imaging [14,16].  63 

As interest in super-resolution imaging has increased, several alternative approaches for SIM have 64 

been introduced which use various kinds of patterned illumination [17–21]. For example, in multifocal 65 

structured illumination microscopy (MSIM) [17], a 2D array of focused laser spots is scanned across a 66 

sample, and subsequent image processing is used to achieve an image with improved resolution. Structured 67 

illumination methods have also been combined with light sheet excitation, a method ideal for imaging live 68 

cells [22–26].  69 

In addition to new illumination schemes, alternative data processing methods have also been 70 

introduced [27–33]. For example, Orieux et al. suggested a 2D method for SIM reconstruction based on 71 

Bayesian estimation [28], and our group showed that Bayesian reconstruction methods in SIM have several 72 

potential advantages and can achieve a performance comparable to traditional SIM methods [29]. To allow 73 

3D imaging, our group subsequently introduced maximum a posteriori probability SIM (MAP-SIM [30]), 74 

a method based on reconstruction of the SIM data using a Bayesian framework. Image restoration 75 
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approaches are useful when working with low signal levels in SIM [34], and have been recently 76 

reviewed [35]. 77 

We present complete raw and analyzed SIM data from several different situations in cell biology 78 

studies in which we imaged both live and fixed mammalian cells as well as fixed tissues. We used an 79 

alternative approach for SIM illumination which has been previously described [30,36,37]. Our system 80 

uses either light emitting diode (LED) or laser illumination, and a fast ferroelectric liquid crystal-on-silicon 81 

(FLCOS) microdisplay (also known as a spatial light modulator (SLM)) for SIM pattern definition. SLMs 82 

have seen use in SIM and related applications when high speed imaging and flexibility in controlling the 83 

spatial and temporal properties of the illumination are priorities [12,13,42,43,14,16,25,37–41]. To analyze 84 

the data we used OS-SIM, SR-SIM, and MAP-SIM methods. All of the raw and analyzed data are available 85 

on GigaDB, and the analysis software (SIMToolbox) is open-source and freely available [36]. 86 

Methods 87 

Cell lines and reagents 88 

All cell lines used were maintained in DMEM supplemented with 10 % FCS, 100 U/ml penicillin, 100 89 

U/ml streptomycin, and L-glutamate (Invitrogen) at 37 °C and 100% humidity. Cell lines we used for this 90 

study included U2-OS (human bone sarcoma), A431 (human skin carcinoma), and Hep-G2 (human liver 91 

carcinoma). 92 

Preparation of samples for imaging 93 

(SIM data 1, Fig. 4) U2-OS cells expressing lysosome-associated membrane protein 1 labeled with green 94 

fluorescent protein (LAMP1-GFP) were grown in petri dishes with coverslip bottoms (MatTek) for 24 95 

hours, then imaged them in full medium at room temperature. In this experiment, we used microscopy 96 

system 1 (Olympus IX71, Table 2). 97 

 98 

(SIM data 2, Fig. 5) A431 cells were grown on #1.5H coverslips (Marienfeld) for 48 hours in 99 

normal medium. We washed the cells once with phosphate buffered saline (PBS), pH 7.4, and then treated 100 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



the cells with 1 m DiI-C16 (Molecular Probes) in PBS at room temperature for 5 minutes. This probe is 101 

a lipid modified with a fluorescent dye that inserts into the plasma membrane of live mammalian cells 102 

within a few minutes. We then washed the cells twice with PBS, then imaged them on the SIM system in 103 

fresh PBS at room temperature using a coverslip chamber (Biotech). In this experiment, we used 104 

microscopy system 3 (Leica DMi8, Table 2). 105 

(SIM data 3, Fig. 6) A prepared slide was acquired (AmScope) containing sectioned rabbit testis 106 

stained with hematoxylin and eosin (H&E). In this experiment, we used microscopy system 3 (Leica DMi8, 107 

described below). 108 

(SIM data 4, Fig. 7) Hep-G2 cells expressing Dendra2-histone 4 [44] were grown on #1.5H 109 

coverslips for 24 hours, then fixed for 15 minutes at room temperature with 4% paraformaldehyde. We 110 

then permeabilized the cells for 5 minutes at room temperature with 0.1% triton-X100, then washed the 111 

cells with PBS. We then labeled the actin cytoskeleton of the cells for 1 hour at room temperature with 5 112 

nM Atto 565 phalloidin, followed by washing the cells with PBS. We finally mounted the coverslips on 113 

clean cells using mowiol 4-88 (Fluka). In this experiment, we used microscopy system 1 (Olympus IX71, 114 

Table 2). 115 

(SIM data 5, Fig. 8) A prepared slide was acquired (Molecular Probes) containing bovine 116 

pulmonary endothelial (BPAE) cells stained with Alexa Fluor 488 phalloidin (to label the actin 117 

cytoskeleton) and Mitotracker CMXRos (to label mitochondria). In this experiment, we used microscopy 118 

system 2 (Olympus IX83, Table 2). 119 

Table 1 summarizes the imaging parameters used for the different samples. 120 

Microscope setup and acquisition 121 

We used three different home-built SIM setups based on the same general design as described 122 

previously [30,36,37] (Figure 1). The three SIM systems were based on Olympus IX71, Olympus IX83, 123 

and Leica DMi8 microscopes coupled with sCMOS cameras (Andor) under the control of IQ3 software 124 

(Andor). The parameters of the different microscope setups are shown in table 2. 125 
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In each microscope setup, the illumination patterns were produced by a high-speed ferroelectric 126 

liquid crystal on silicon (FLCOS) microdisplay (SXGA-3DM, Forth Dimension Displays, 13.6 m pixel 127 

pitch). This particular FLCOS microdisplay has been used previously in 128 

SIM  [14,16,48,25,29,30,36,37,45–47], and in other optical sectioning systems such as programmable 129 

array microscopy (PAM)  [40,42,49]. The display was illuminated by a home-built, three channel LED 130 

system based on high power LEDs (PT-54 or PT-120 with DK-114N or DK-136M controller, Luminous 131 

Devices) with emission maxima at 460 nm, 525 nm, and 623 nm. The output of each LED was filtered 132 

with a band pass filter (Chroma), and the three wavelengths were combined with appropriate dichroic 133 

mirrors (Chroma). The light was then vertically polarized with a linear polarizer (Edmund Optics). We 134 

imaged the microdisplay into the microscope using an external tube lens (table 2) and polarizing beam 135 

splitter cube (Thor Labs). With any of the setups and when using a 100× objective, single microdisplay 136 

pixels are imaged into the sample with a nominal size of 136 nm, thus as diffraction-limited spots. This is 137 

important for achieving the highest resolution results [37]. More details are available in the supplementary 138 

material of [36]. 139 

The microdisplay allows one to create any desired illumination pattern. In our experiments, the 140 

illumination masks consisted of line grids of different orientations (0º, 90º, 45º and 135º). The lines were 141 

one microdisplay pixel thick (diffraction limited in the sample when using a 100× objective) with a gap of 142 

“off” pixels in between. The illumination line grid was shifted by one pixel between each image acquisition 143 

to obtain a shifted illumination mask. The shift between each image was constant, and the sum of all 144 

illumination masks resulted in homogenous illumination. Our optical setup, in which an incoherently 145 

illuminated microdisplay is imaged into the sample with highly corrected microscope optics, results in 146 

much more stable SIM illumination parameters compared to conventional SIM in which the illumination 147 

pattern is created by laser interference. We use a unique spatial calibration method to determine, with very 148 

high accuracy, the position of the patterned illumination in the sample [37]. This is a spatial domain process 149 
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and does not rely on fitting of data to a model except for the assumption that the imaging is linear and shift-150 

invariant. 151 

Insert Figure 1 152 

Table 1 Imaging parameters for the SIM datasets 153 

Data sample 
Label 

(structure) 

Pixel 
size, 
nm 

Illumination 
Exposure 
time, ms 

SIM experiment 
type 

SIM 
pattern  

# of 
angles/
phases 

Microscope 
system used 

SIM data 
1 (Fig. 4) 

Live  
U2-OS 
cells 

LAMP1-GFP 
(lysosomes and 

membrane) 
65 LED 480 nm 25 2D time lapse 

1/11 
 

1 

SIM data 
2 (Fig. 5) 

Live 
A431 
cells 

DiI-C16 
(membrane) 

65 LED 530 nm 100 3D 4/24 3 

SIM data 
3 (Fig. 6) 

Fixed 
rabbit 
testis 

Hematoxylin 
and eosin 
(structural 

strain) 

65 LED 530 nm 200 3D  1/11 3 

SIM data 
4 (Fig. 7) 

Fixed 
Hep-G2 

cells 

Dendra2-H4 
(nucleus) 
Atto565-
phalloidin 

(actin) 

65 
LED 480 nm 
LED 530 nm 

500 3D  4/24 1 

SIM data 
5 (Fig. 8) 

Fixed 
BPAE 
cells 

AlexaFluor 488 
phalloidin 

(actin) 
Mitotracker 
CMXRos 

(mitochondria) 

65 

Lumencor 
spectra-X  
470 nm  
550 nm 

300 2D  1/11 2 

 154 

Table 2 Parameters of the microscope systems 155 

Setup Microscope Objective 
sCMOS 
Camera 

Illumination tube lens 
focal length and part 

number 

1 Olympus IX71 
100×/1.4 

UPLSAPO 
Andor Neo 5.5  

180 mm 
U-TLU 

2 Olympus IX83 
100×/1.3 
UPLFLN 

Andor Zyla 4.2+  
180 mm 

SWTLU-C 

3 Leica DMi8 
100×/1.47 

HCX PLAPO TIRF 
Andor Zyla 4.2+  

200 mm 
11525408 

 156 

Data processing methods 157 

We processed all of the data presented here using SIMToolbox, an open source, user friendly, and freely 158 

available program which our group developed for processing SIM data [36]. SIMToolbox, sample data, 159 

and complete documentation are freely available (http://mmtg.fel.cvut.cz/SIMToolbox). SIMToolbox is 160 

capable of OS-SIM [10,37], SR-SIM [8,9], and MAP-SIM [30] methods. See the supplementary 161 

information for additional details about these methods.  162 
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Resolution measurements - spatial domain method  163 

We used microscopy setup 1 (Olympus IX71) to measure spatial resolution by averaging spatial 164 

measurements from fifty individual 100 nm fluorescent beads. We used a 100×/1.40 NA oil immersion 165 

objective and 460 nm LED excitation (emission 500 - 550 nm). A 19 × 19 pixels region of interest (ROI) 166 

was selected around each bead in both the widefield and MAP-SIM images. The ROIs were then registered 167 

with sub-pixel accuracy using normalized cross-correlation. Each ROI was fit with a Gaussian function 168 

and the full width at half maximum (FWHM) was determined in the axial and lateral directions. Figure 2 169 

shows the resulting averaged FWHM values and PSF cross-sections. 170 

Insert Figure 2 171 

Resolution measurements - frequency domain method 172 

It is desirable to measure the actual resolution achieved in SIM images (or image sequences) of cells or 173 

tissues, but suitable structures are not always present in the images. We therefore developed a robust 174 

frequency domain method which can be used to measure resolution in any fluorescence microscopy 175 

image [50]. 176 

The power spectral density (PSD) describes the distribution of the power of a signal with respect 177 

to its frequency. The PSD of an image is the squared magnitude of its Fourier transform, and can be written 178 

as 179 

    
2

PSD , ,k l I m n  (1) 180 

where represents the Fourier transform, I(m,n) is the image intensity, m,n indexes the rows and columns 181 

of the 2D image, respectively, and (k,l) are coordinates in the frequency domain. In polar coordinates, the 182 

circularly averaged PSD (PSDca) in frequency space with frequency q and angle θ is given as 183 

 ca 10

1
PSD 10 log PSD ,

q

q
N 


 

   
 

  (2) 184 

which averages PSD at spatial frequency q. Nq is the number of pixels at a particular frequency q. The 185 

resolution limit in real space corresponds to the cut-off frequency in Fourier space. Assuming a noiseless 186 
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case, the cut-off frequency will be equal to the spatial frequency at which PSDca drops to zero. In practice, 187 

PSDca contains non-zero values over the whole frequency range caused by noise. The signal to noise ratio 188 

(SNR) in Fourier space is generally very low close to the cut-off frequency, which makes precise detection 189 

of the cut-off frequency challenging. For this we use a spectral subtraction method [50]. Assuming additive 190 

noise, in the frequency domain we can write 191 

     X k Y k E N k    
 (3) 192 

where ,Y X , and  E N k 
 

 represent the noisy signal, the desired signal, and the noise spectrum estimate 193 

(expected noise spectrum), respectively. The amplitude noise spectrum  N k is estimated from the parts of 194 

signal where only noise is present. If the spatial sampling is high enough to fulfill the Nyquist–Shannon 195 

criterion and oversamples the resolution limit of SR-SIM, spatial frequencies close to the half of the 196 

sampling frequency do not contain useful signal and can be used for noise estimation. We varied the 197 

frequency cut-off threshold over the range 
max max0.95 ;f f , estimated the level of noise for every threshold 198 

value, and obtained the mean and variance of the cut-off frequency (i.e. the resolution estimate). The
maxf199 

is given by
max

1
2 2

s

xy

f
f

p
  , where

sf and xyp are the sampling frequency and the backprojected pixel 200 

size, respectively. 201 

Figure 3 shows the PSDca and corresponding resolution limit measured for the data shown in Fig. 202 

5. Using our resolution estimation algorithm, we calculated a lateral spatial resolution of 294 nm for WF, 203 

and 141 nm for MAP-SIM. The measured resolution is in approximate agreement with our results measured 204 

on 100 nm fluorescent beads (Fig. 2).  205 

Insert Figure 3 206 

Imaging live cells, fixed cells, and tissues with SIM 207 

To demonstrate the utility of our approach in imaging live cells, we imaged U2-OS cells that had been 208 

transfected with GFP-tagged lysosomal associated membrane protein (LAMP1-GFP). LAMP1 is a highly 209 

glycosylated protein which is found on the surface of lysosomes and in the plasma membrane [51]. Fig. 4 210 
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shows widefield, OS-SIM, and MAP-SIM images of U2-OS cells expressing LAMP1-GFP, and the fast 211 

Fourier transform (FFT) of each image. The dotted circles in Fig. 4(d-f) show the approximate limit of 212 

resolution in each image. We found that, in addition to lysosomal expression, LAMP1-GFP is also present 213 

in high concentrations in the plasma membrane of U2-OS cells.  214 

In this experiment, we acquired SIM image sequences with an exposure time of 25 ms, a raw 215 

imaging rate of 40 Hz. We used a SIM pattern with 11 phases (pattern period in the sample plane 1.5 m) 216 

and a single angle (0º with respect to the camera), acquiring 3982 total frames, resulting in 472 processed 217 

frames (see table 1). The imaging rate of processed result frames was therefore 3.6 Hz. The full image 218 

sequence is available at http://mmtg.fel.cvut.cz/mapsimlive_suppl/. It is also available at Giga DB. We 219 

further analyzed this data as shown in the supplementary material (Figure S2-S3). 220 

Insert Figure 4 221 

We next imaged live A431 cells which we labeled with the fluorescent lipid DiI-C16. In this experiment 222 

we acquired SIM image sequences with an exposure time of 100 ms, a raw imaging rate of 10 Hz. We used 223 

a SIM pattern with 34 total phases and four angles (see table 1). This data is shown in Figure 5. 224 

Insert Figure 5 225 

Figure 6 shows SIM imaging of fixed tissues, in this case the seminiferous tubule of the rabbit stained with 226 

hematoxylin and eosin.  227 

Insert Figure 6 228 

Figure 7 shows SIM imaging of fixed HEPG2 cells expressing H4-Dendra, a nuclear marker. We also 229 

stained the cells with Atto 532-phalloidin to label the actin cytoskeleton.  230 

Insert Figure 7 231 

Figure 8 shows SIM imaging of fixed BPAE cells labeled with Alexa 488-phalloidin and mitotracker 232 

CMXRos to visualize the actin cytoskeleton and mitochondria, respectively. 233 

Insert Figure 8 234 
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5. Discussion 235 

SIM results sometimes suffer from artifacts related to the illumination pattern. The artifacts, which can be 236 

severe and are a cause for concern, can be due to several factors including illumination pattern phase 237 

instability and pattern distortion because of refractive index mismatch between the sample and the 238 

immersion fluid. In our hands, MAP-SIM results do not suffer from detectable patterned artifacts, Fig. 2(c), 239 

and the FFT of the MAP-SIM result is free of noticeable spurious peaks, Fig. 2(f). We attribute this to 240 

several factors, primarily the use of incoherent illumination together with a SLM for pattern generation. 241 

This, combined with precise synchronization of the SIM system helps eliminate patterned artifacts. 242 

Additional artifacts in SIM images can arise due to the detector. In sCMOS cameras like the one we used, 243 

each pixel reads out through its own amplifier and as such, each pixel exhibits a different gain. While very 244 

minor, such artifacts can be corrected using a variance stabilization method as has been introduced for 245 

single molecule localization microscopy [52]. 246 

There are several other advantages to the use of incoherent illumination in SIM, including removing 247 

the need for a pupil plane mask to block unwanted diffraction orders that are generated when using laser 248 

interference. Also, incoherent imaging of a SLM for pattern formation means that the pattern frequency 249 

does not depend on the wavelength.  250 

The LCOS microdisplay (and vendor-supplied microdisplay-timing program) we used can display an 251 

illumination pattern and switch to the next pattern in the sequence in 1.14 ms, allowing unprocessed SIM 252 

images to be acquired at rates of approximately 875 Hz. However, such rapid imaging is not useful if the 253 

reconstructed SIM images are of poor quality, for example if they suffer from low signal to noise ratios. 254 

Specifying the fastest possible acquisition rate is inadequate without consideration of the resolution and 255 

SNR of the results. Our resolution analysis shown in Figs. 3-4 uses measured quantities to evaluate SIM 256 

results and helps to make realistic conclusions about imaging speeds. 257 

6. Re-use potential 258 
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 The presented SIM datasets can be reused in several ways. Researchers investigating SIM 259 

reconstruction algorithms can use the datasets to compare their results with those presented here, including 260 

the newer method MAP-SIM. Also, the data may be further analyzed in other ways. One possibility is 261 

shown in the supplementary material (part 2: Single particle tracking experiments in LAMP1-GFP cells.) 262 

Here, we used single particle tracking methods to study the mobility of lysosomes within U2-OS cells.   263 

Availability of source code and requirements 264 

Project name: SIMToolbox v1.3 265 

Project home page: http://mmtg.fel.cvut.cz/SIMToolbox/ 266 

Operating system: platform independent 267 

Programming language: MATLAB 268 

License: GNU General Public License v3.0 269 

Detailed software compatibility notes 270 

The SIMToolbox GUI was compiled with MATLAB 2015a and tested in Windows 7 and 8. The GUI is a 271 

stand-alone program and does not require MATLAB to be installed. To use the MATLAB functions within 272 

SIMToolbox (i.e., without the GUI), MATLAB must be installed. The functions were mainly developed 273 

with 64 bit MATLAB versions 2012b, 2014a, 2015a in Windows 7. When using SIMToolbox functions 274 

without the GUI, the MATLAB “Image Processing Toolbox” is required. SIMToolbox also requires the 275 

“MATLAB YAML” package to convert MATLAB objects to/from YAML file format. Note that this 276 

package is installed automatically when using the GUI. 277 

Availability of data 278 

All raw and analyzed data is available on GigaDB at http://gigadb.org/site/index. 279 

Abbreviations 280 

GFP, green fluorescent protein, NA, numerical aperture; PSF, point spread function; WF, wide field; SIM, 281 

structured illumination microscopy; PSD, power spectral density; PSDca, circularly averaged power 282 

spectral density. 283 
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FIGURE CAPTIONS 460 

Figure 1: Structured illumination microscope setup, which we used with different microscope bodies and 461 

cameras. See text and table 2 for details. 462 

Figure 2: Measurements of the spatial resolution on a sample of fluorescent beads. Cross-sections of the 463 

PSF are obtained by averaging measurements over 50 beads along lateral and axial directions. 464 

Figure 3: Resolution analysis and normalized power spectral density (PSD) measured on a selected image 465 

from the data in Fig. 5. The results indicate a circularly-averaged PSD lateral spatial resolution of 294 nm 466 

for WF, and 141 nm for MAP-SIM, in approximate agreement with the analysis in Fig. 4(d-f).  467 

Figure 4: Imaging live cells beyond the difraction limit with MAP-SIM. U2-OS cells expressing LAMP1-468 

GFP were imaged using the LCOS-based SIM system. Subsequent processing using OS-SIM or MAP-SIM 469 

methods. (a) WF, (b) OS-SIM, (c) MAP-SIM, (d) FFT of WF, (e) FFT of OS-SIM, (f) FFT of MAP-SIM. 470 

The images were individually scaled for presentation. The dotted cirular lines indicated approximate 471 

resolution achieved in each image according to analysis of the FFT. The full image sequence is available 472 

at http://mmtg.fel.cvut.cz/mapsimlive_suppl/. 473 

Figure 5: Imaging live cells beyond the difraction limit with SIM. A431 cells labeled with DiI-C16 were 474 

imaged using the LCOS-based SIM system. Subsequent processing using SR-SIM or MAP-SIM methods. 475 

(a) WF, (c) SR-SIM, (e) MAP-SIM. (b), (d), and (f) each show a zoom-in of the region indicated in (a). (f) 476 

shows the SIM illumination pattern in one of the four angles used. (g) shows a FFT of the image in (f). The 477 

images were individually scaled for visualization purposes. Each is a maximum intenstiy projection of 3 Z 478 

positions (spacing 400 nm (except for f and g which show a single Z-position). 479 

Figure 6: Imaging animal tissues using the LCOS-based SIM system and subsequent processing using OS-480 

SIM or MAP-SIM methods. Seminiferous tubule of the rabbit stained with hematoxylin and eosin. (a) WF, 481 

(c) OS-SIM, (e) MAP-SIM. (b), (d), and (f) each show a zoom-in of the region indicated in (a). (f) shows 482 
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the SIM illumination pattern in one of the four angles used. (g) MAP-SIM depth-coded using the lookup 483 

table isolum [53]. The images were individually scaled for visualization purposes. Each is a maximum 484 

intenstiy projection of 31 Z-positions (spacing 300 nm (except for (a, b, f) which shows 1 Z-position). 485 

Figure 7: SIM imaging of fixed HEP-G2 cells expressing Dendra2-H4 (nucleus) and labeled with Atto-486 

532 phalloidin. (a) WF, (c) SR-SIM, (e) MAP-SIM. (b), (d), and (f) each show a zoom-in of the region 487 

indicated in (a). (f) shows the SIM illumination pattern in one of the four angles used. (g) shows a FFT of 488 

the image in (f). The images were individually scaled for visualization purposes. Each is a maximum 489 

intenstiy projection of 22 Z-positions (spacing 200 nm (except for a, b, f and g which show 1 Z-position). 490 

Figure 8: 2D SIM imaging of fixed BPAE cells labeled with Alexa 488-phalloidin (actin) and mitotracker 491 

CMXRos (mitochondria). (a) WF, (b) MAPSIM. 492 
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