Electronic Supplementary Information

The direct single- and double-side triol-functionalization of the

mixed type Anderson polyoxotungstate [Cr(OH)₃W₆O₂₁]⁶⁻

Nadiia I. Gumerova,[†] Tania Caldera Fraile, [†] Alexander Roller,[‡] Gerald Giester[§], Magda

Pascual-Borràs,[¶]C. André Ohlin[¶] and Annette Rompel*[†]

[†] Universität Wien, Fakultät für Chemie, Institut für Biophysikalische Chemie, Wien, Austria. www.bpc.univie.ac.at

[‡] Universität Wien, Fakultät für Chemie, Zentrum für Röntgenstrukturanalyse, Wien, Austria

[§] Universität Wien, Fakultät für Geowissenschaften, Geographie und Astronomie, Institut für Mineralogie und Kristallographie, Wien, Austria

¹Department of Chemistry, Umeå University, Umeå, Sweden. http://www.moleculargeo.chem.umu.se

* Email: annette.rompel@univie.ac.at

1. IR spectroscopy

Figure S1. IR spectra of compounds Na_3CrW_6 -(tris- C_2H_5)₂·13H₂O, $Na_3K_3CrW_6$ -tris- C_2H_5 ·17H₂O, Na_5CrW_6 -tris- NH_3 ·17H₂O $Na_4(TMA)_2CrW_6$ -tris- CH_2OH ·19H₂O and $Na_6[Cr(OH)_3W_6O_{21}]$ ·22H₂O.

Table S1. The assignment of IR bands recorded from Na_3CrW_6 -(tris- C_2H_5)₂·13H₂O (= CrW_6 -(tris- C_2H_5)₂), $Na_3K_3CrW_6$ -tris- C_2H_5 ·17H₂O (= CrW_6 -tris- C_2H_5), Na_5CrW_6 -tris- NH_3 ·17H₂O (= CrW_6 -tris- NH_2), $Na_4(TMA)_2CrW_6$ -tris- CH_2OH ·19H₂O (= CrW_6 -tris- CH_2OH) and $Na_6[Cr(OH)_3W_6O_{21}]$ ·22H₂O (= CrW_6).

	The bands (cm ⁻¹) in IR spectra of					
	CrW ₆ -(tris-C ₂ H ₅) ₂	CrW ₆ -tris-C ₂ H ₅	CrW ₆ -tris-NH ₂	CrW ₆ -tris-CH ₂ OH	CrW ₆	
δ Cr–O–W	428	435	439	438	430	
ν, δ	527	513	521	522	520	
W-O-W	668	659	644	646	640	
	835	869	865	862	863	
v W=O	936	933	933	932	932	
v C–O	1007	1045	1032	1031	-	
	1058		1072	1067	-	
	1110	1113	1120	1118	-	

2. Thermogravimetric analysis

Table S2. TGA data for compounds Na_3CrW_6 -(tris- C_2H_5)₂·13H₂O, $Na_2K_4CrW_6$ -tris- C_2H_5 ·17H₂O, Na_5CrW_6 -tris- NH_3 ·17H₂O and $Na_4(TMA)_2CrW_6$ -tris- CH_2OH ·19H₂O (See Fig. S2 – S5).

Compound	Step	T, ⁰C	Mass- loss, %	Number of water and Tris-R molecules corresponding to mass-loss
		25-200	4.46	5 H ₂ O
	11	200-320	4.01	4.5 H ₂ O
	111	320-375	2.16	2.5 H ₂ O
	IV	375-700	7.70	$2 (CH_2)_3 CC_2 H_5$
	1	25-150	10.25	11.5 H ₂ O
	11	150-300	1.15	1.5 H ₂ O
Na₅ CrW₀-tris-NH₃ ·17H₂O		300-425	2.45	3 H ₂ O
	IV	425-480	0.74	1 H ₂ O
	V	480-600	0.85	1 (CH ₂) ₃ CNH ₂
	1	25-195	13.38	16 H ₂ O
Na ₄ (TMA) ₂ CrW ₆ -tris-CH ₂ OH · 19H ₂ O	11	195-400	11.81	3 H ₂ O + 2 TMA
	111	400-600	3.20	1 (CH ₂) ₃ CCH ₂ OH
	1	25-92	5.57	6.5 H₂O
No K CrW tric C H 174 O	11	92-200	4.63	5.5 H ₂ O
Na3N3CI ₩6-UI5-C2Π5·1/Π2C		200-375	4.48	5 H ₂ O
	IV	375-600	3.81	$1 (CH_2)_3 CC_2 H_5$

Figure S2. Thermogravimetric curve of Na_3CrW_6 -(tris-C₂H₅)₂·13H₂O.

Figure S3. Thermogravimetric curve of Na_5CrW_6 -tris- NH_3 ·17 H_2O .

Figure S4. Thermogravimetric curve of $Na_4(TMA)_2CrW_6$ -tris-CH₂OH · 19H₂O.

Figure S5. Thermogravimetric curve of $Na_3K_3CrW_6$ -tris- C_2H_5 ·17H₂O.

3. ESI-MS

All compounds were investigated with an ES+Qq-oaRTOF supplied by Bruker Daltonics Ltd. Bruker Daltonics Data Analysis software was used to analyze the results. The measurement was carried out in a 1:1 mixture of water/MeCN, collected in negative ion mode and with the spectrometer calibrated with the standard tune-mix to give an accuracy of *ca.* 5 ppm in the region of m/z 300-3000.

Figure S6. Negative ion-mode ESI-MS spectrum of $Na_4(TMA)_2CrW_6$ -tris-CH₂OH in H₂O/CH₃CN. ESI-MS peak envelopes of $Na_xH_{4-x}[CrW_6O_{21}(OCH_2)_3CCH_2OH]^{2-}$ (x = 1, 3; experimental pattern, black; simulated pattern, red).

Table S3. Species assigned to the peaks in the ESI-MS spectrum of $Na_4(TMA)_2CrW_6$ -tris-CH₂OH (see Fig. S6).

	m/z	m/z (calc.)	Peak Assignment
1	239.9	239.9	$[W_2O_7]^{2-}$
2	248.9	248.9	H[WO ₄] ⁻
3	480.9	480.9	$H[W_2O_7]^-$
4	502.8	502.7	Na[W ₂ O ₇] ⁻
5	564.4	564.4	$[CrW_4O_{13}(OCH_2)_3CCH_2OH]^{2-}$
6	680.2	680.2	$[CrW_5O_{16}(OCH_2)_3CCH_2OH]^{2-}$
7	825.1	825.1	$NaH_{3}[CrW_{6}O_{21}(OCH_{2})_{3}CCH_{2}OH]^{2-}$
8	847.2	847.1	$Na_{3}H[CrW_{6}O_{21}(OCH_{2})_{3}CCH_{2}OH]^{2-}$
9	897.8	897.8	$H[CrW_{3}O_{10}(OCH_{2})_{3}CCH_{2}OH]^{-}$
10	919.8	919.6	Na[CrW ₃ O ₁₀ (OCH ₂) ₃ CCH ₂ OH] ⁻

Figure S7. Negative ion-mode ESI-MS spectrum of Na_5 CrW₆-tris-NH₃ in mixed H₂O/CH₃CN. ESI-MS peak envelope of H₄[CrW₆O₂₁(OCH₂)₃CNH₂]²⁻ (experimental pattern, black; simulated pattern, red).

	m/z	m/z (calc.)	Peak Assignment
1	239.9	239.9	$[W_2O_7]^{2-}$
2	248.9	248.9	H[WO ₄] ⁻
3	355.9	355.9	[W ₃ O ₁₀] ²⁻
4	480.9	480.9	$H[W_2O_7]^-$
5	502.8	502.7	Na[W₂O ₇]⁻
6	556.6	556.6	[CrW ₄ O ₁₃ (OCH ₂) ₃ CNH ₂] ²⁻
7	672.8	672.8	[CrW ₅ O ₁₆ (OCH ₂) ₃ CNH ₂] ²⁻
8	806.6	806.6	H ₃ [CrW ₆ O ₂₁ (OCH ₂) ₃ CNH ₃] ^{2–}
9	817.6	817.6	$NaH_2[CrW_6O_{21}(OCH_2)_3CNH_3]^{2-}$
10	828.6	828.6	$Na_2H[CrW_6O_{21}(OCH_2)_3CNH_3]^{2-1}$
11	882.6	882.8	$[CrW_{3}O_{10}(OCH_{2})_{3}CNH_{3}]^{-}$

Table S4. Species assigned to the peaks in the ESI-MS spectrum Na₅CrW₆-tris-NH₃ (see Fig. S7).

Figure S8. Negative ion-mode ESI-MS spectrum of Na_6CrW_6 -tris- C_2H_5 in mixed H_2O/CH_3CN . ESI-MS peak envelope of $NaH_3[CrW_6O_{21}(OCH_2)_3CC_2H_5]^{2-}$ (experimental pattern, black; simulated pattern, red).

Table S5.	Species	assigned to	the peaks	in the ESI-MS	spectrum	Na ₆ CrW ₆ -tris-	C₂H ₅ (s	ee Fig.	S8).
-----------	---------	-------------	-----------	---------------	----------	---	-----------------	---------	------

	m/z	m/z (calc.)	Peak Assignment
1	239.9	239.9	$[W_2O_7]^{2-}$
2	248.9	248.9	H[WO ₄] ⁻
3	355.9	355.9	[W ₃ O ₁₀] ²⁻
4	480.9	480.9	$H[W_2O_7]^-$
5	502.8	502.7	Na[W ₂ O ₇] ⁻
6	563.4	563.4	[CrW ₄ O ₁₃ (OCH ₂) ₃ CC ₂ H ₅] ²⁻
7	679.2	679.2	[CrW ₅ O ₁₆ (OCH ₂) ₃ CC ₂ H ₅] ²⁻
8	824.1	824.1	$NaH_{3}[CrW_{6}O_{21}(OCH_{2})_{3}CC_{2}H_{5}]^{2-}$
9	895.7	895.7	$H[CrW_{3}O_{10}(OCH_{2})_{3}CC_{2}H_{5}]^{-}$

Figure S9. Negative ion-mode ESI-MS spectrum of the reaction mixture (30 mg of Na_6CrW_6 -tris- C_2H_5 with 50 mg of pentaerythritol (Tris- CH_2OH) were dissolved in 15 mL of H_2O and heated at 160 °C for 48 hours) with CH_3CN . ESI-MS peak envelope of $[CrW_6O_{18}(OCH_2)_6CCH_2OH(CC_2H_5)]^{3-}$ (experimental pattern, black; simulated pattern, red).

Table S6. Species assigned to the peaks in the ESI-MS spectrum of the reaction mixture after asymmetric functionalization (see Fig. S9).

	m/z	m/z (calc.)	Peak Assignment
1	564.4	564.4	[CrW ₄ O ₁₃ (OCH ₂) ₃ CCH ₂ OH] ²⁻
	569.9	569.9	[CrW ₆ O ₁₈ (OCH ₂) ₆ CCH ₂ OH(CC ₂ H ₅)] ³⁻
2	605.8	605.8	$[CrW_4O_{10}(OCH_2)_6CCH_2OH(CC_2H_5)]^{2-}$
3	680.2	680.2	[CrW ₅ O ₁₆ (OCH ₂) ₃ CCH ₂ OH] ²⁻
4	747.4	747.4	$H[CrW_{5}O_{16}(OCH_{2})_{6}CCH_{2}OH(CC_{2}H_{5})]^{2-}$
5	779.7	779.7	[CrW ₃ O ₁₁] ⁻
6	813.3	813.3	$H_4[CrW_6O_{21}(OCH_2)_3CC_2H_5]^{2-1}$
7	824.1	824.1	NaH ₃ [CrW ₆ O ₂₁ (OCH ₂) ₃ CC ₂ H ₅] ²⁻
8	855.3	855.3	$H[Cr((OCH_2)_3CCH_2OH)_2W_6O_{18}]^{2-}$
9	866.3	866.3	$Na[Cr((OCH_2)_3CCH_2OH)_2W_6O_{18}]^{2-}$
10	897.8	897.8	$H[CrW_{3}O_{10}(OCH_{2})_{3}CCH_{2}OH]^{-}$

Figure S10. Negative ion-mode ESI-MS spectrum of the reaction mixture (300 mg of TBA_6CrW_6 -tris-NH₂ with 25 mg of cinnamic acid and 25 mg of EEDQ (N-ethoxycarbonyl-2-ethoxy-1,2dihydroquinoline) were dissolved in 9.00 mL of CH₃CN and stirred at 50°C for 24 h). ESI-MS peak envelope of Na₂H₂[CrW₆O₂₁(OCH₂)₃CNHC₉OH₇]²⁻ (experimental pattern, black; simulated pattern, red).

Table S7. Species assigned to the peaks in the ESI-MS spectrum of the reaction mixture after post-functionalization (see Fig. S10).

	m/z	m/z (calc.)	Peak Assignment
1	239.9	239.9	$[W_2O_7]^{2-}$
2	248.9	248.9	H[WO ₄] ⁻
3	355.9	355.9	$[W_{3}O_{10}]^{2-}$
4	471.9	471.9	$[W_4O_{13}]^{2-}$
5	480.9	480.9	$H[W_2O_7]^-$
6	502.8	502.7	Na[W ₂ O ₇] ⁻
7	703.8	703.8	[W ₆ O ₁₉] ²⁻
	894.8	894.8	$Na_2H_2[CrW_6O_{21}(OCH_2)_3CNHC_9OH_7]^{2-}$

4. ESI-MS solution study

ESI-MS solution preparation. The stock solution of $Cr^{3+} - WO_4^{2-}$ ($C_w = 0.2 \text{ M}$) – H⁺ was prepared at a molar ratio of 1:6:6 ($Cr:W:H^+$) and a final pH of 5.7 as described in the synthetic section of this SI. The 0.5 ml aliquots were taken after 1, 3 and 10 days after the solution preparation and the volume was adjusted to 10 ml with H₂O. Then 0.5 ml of these solutions was made up to 5 ml with H₂O/CH₃CN 1:1 mixture for direct injection into the ESI-MS system. The 2 parallel probes for the reaction mixture in the second day after solution preparation with pH of 5 and 7 were made using the diluted HCI and NaOH.

Table S8. Species assigned to the peaks in the ESI-MS spectra of the stock solutions $Cr^{3+} - WO_4^{2-} - H^+$ (see Fig. S11).

		m/z	Peak		
	m/z	(calc.)	assignment		
1	239.9	239.9	$[W_2O_7]^{2-}$		
2	248.9	248.9	H[WO ₄] ⁻		
3	270.9	270.9	Na[WO₄] [−]		
4	355.9	355.9	[W ₃ O ₁₀] ²⁻		
5	419.9	419.9	[Cr W ₅ O ₁₈] ^{3–}		
6	471.9	471.9	[W ₄ O ₁₃] ²⁻		
7	480.9	480.9	$H[W_2O_7]^-$		
8	502.8	502.7	Na[W ₂ O ₇] ⁻		
9	514.3	514.3	H[Cr W ₄ O ₁₅] ^{2–}		
10	525.3	525.3	Na[Cr W ₄ O ₁₅] ²⁻		
11	547.8	547.8	[Cr W ₂ O ₈] ⁻		
12	587.8	587.8	[W ₅ O ₁₆] ²⁻		
13	630.3	630.3	H[Cr W ₅ O ₁₈] ^{2–}		
14	641.3	641.3	Na[Cr W ₅ O ₁₈] ²⁻		
15	703.8	703.8	[W ₆ O ₁₉] ^{2–}		
16	712.8	712.8	H[W ₃ O ₁₀] ⁻		
17	734.8	734.8	Na[W ₃ O ₁₀] ⁻		
18	779.7	779.7	[Cr W ₃ O ₁₁]		
19	862.2	862.2	H[Cr W ₇ O ₂₄] ²⁻		
20	873.2	873.2	Na[Cr W ₇ O ₂₄] ²⁻		
21	944.7	944.7	H[W ₄ O ₁₃] ⁻		
22	966.7	966.7	Na[W ₄ O ₁₃] ⁻		

Figure S11. Negative ion-mode ESI-MS spectra of stock $Cr^{3+} - WO_4^{2-} - H^+$ solutions measured after 1, 3 and 10 days and at different pH (5.7; 5; 7) for the solution after 1 day of reaction. All spectra do not contain signals at m/z = 515.19, 773.29 or 784.27 assigned to $[Cr(OH)_6W_6O_{18}]^{3-}$ $H[Cr(OH)_6W_6O_{18}]^{2-}$ and Na[Cr(OH)₆W₆O₁₈]²⁻, respectively.

For real-time observation of the self-assembly of CrW_6 -(tris- C_2H_5)₂ under hydrothermal condition the 0.5 ml aliquots of the reaction solution (prepared as described in the synthetic section of this SI) were taken after 12, 24 and 48 hours from the moment the reaction has been started.

Figure S12. Negative ion-mode ESI-MS spectra of reaction (HT, 160 °C) solutions $Cr^{3+} - WO_4^{2-} - H^+ - Tris-C_2H_5$ measured after 12 (C), 24 (B) and 48 (A) hours from the moment the reaction has been started. The assigned peaks (Table S8) were found in all spectra. All spectra do not contain signals at m/z = 515.19, 773.29 or 784.27 assigned to $[Cr(OH)_6W_6O_{18}]^{3-}$, $H[Cr(OH)_6W_6O_{18}]^{2-}$ and $Na[Cr(OH)_6W_6O_{18}]^{2-}$, respectively. Graphs (D) shows the general trend of increasing peak intensity of the target anion $[Cr((OCH_2)_3CC_2H_5)_2W_6O_{18}]^{3-}$.

Table S9. Species assig	ned to the peaks in the ESI-MS spectra of the reaction solution of Cr ³⁺	_
$WO_4^{2-} - H^+ - Tris - C_2H_5$	(see Fig. S12).	

	m/z	m/z (calc.)	Peak Assignment
1	239.9	239.9	$[W_2O_7]^{2-}$
2	248.9	248.9	H[WO ₄] ⁻
3	270.9	270.9	Na[WO₄]⁻
4	355.9	355.9	[W ₃ O ₁₀] ²⁻
5	471.9	471.9	[W ₄ O ₁₃] ²⁻
6	480.9	480.9	$H[W_2O_7]^-$
7	502.8	502.7	$Na[W_2O_7]^-$
8	563.4	563.4	$[CrW_4O_{13}(OCH_2)_3CC_2H_5]^{2-1}$
	568.6	568.6	[Cr((OCH ₂) ₃ CC ₂ H ₅) ₂ W ₆ O ₁₈] ³⁻
9	679.2	679.2	$[CrW_5O_{16}(OCH_2)_3CC_2H_5]^{2-1}$
10	703.8	703.8	[W ₆ O ₁₉] ²⁻
11	712.8	712.8	$H[W_{3}O_{10}]^{-}$
12	779.7	779.7	[CrW ₃ O ₁₁] [−]
13	835.3	835.3	$Na_{2}H_{2}[Cr(OCH_{2})_{3}CC_{2}H_{5}W_{6}O_{21}]^{2-}$
14	845.8	845.8	$Na_{3}H[Cr(OCH_{2})_{3}CC_{2}H_{5}W_{6}O_{21}]^{2-}$
15	853.4	853.4	H[Cr((OCH ₂) ₃ CC ₂ H ₅) ₂ W ₆ O ₁₈] ²⁻
16	864.3	864.3	Na[Cr((OCH ₂) ₃ CC ₂ H ₅) ₂ W ₆ O ₁₈] ²⁻
17	895.7	895.7	$H[CrW_3O_{10}(OCH_2)_3CC_2H_5]^-$
18	944.7	944.7	H[W ₄ O ₁₃] ⁻
19	966.7	966.7	Na[W ₄ O ₁₃] ⁻

5. Electrochemistry

Figure S13. Cyclic voltammogram of 2mM solutions of CrW_6 -tris- C_2H_5 (A) and CrW_6 -(tris- C_2H_5)₂ (B) at scan rate of 0.100 V·s⁻¹ at a glassy carbon electrode (d = 3 mm) vs. normal hydrogen electrode (NHE) in 1 M acetate buffer with pH 5.7.

6. X-ray Crystallography

The X-ray data were measured on a Bruker D8 Venture equipped with a multilayer monochromator, MoKα INCOATEC micro focus sealed tube and Kryoflex cooling device. The structure was solved by direct methods and refined by full-matrix least-squares. Non-hydrogen atoms were refined with anisotropic displacement parameters. Hydrogen atoms were inserted at calculated positions and refined with riding coordinates. The following software was used for the structure solving procedure: Frame integration, Bruker SAINT software package ¹ using a narrow-frame algorithm (absorption correction), SADABS ² (structure solution), SHELXS-2013 ³ (refinement), SHELXL-2013, ³ OLEX2, ⁴ SHELXLE ⁵ (molecular diagrams), OLEX2. ⁴ Experimental data and CCDC-codes can be found in Table **S10**.

 $Na_6[Cr(OH)_3W_6O_{21}]\cdot 21.75H_2O$ originally synthesized and crystallized by Kortz et al. ⁶, was synthesized and crystallized by an alternative procedure: 30 mL of an aqueous solution containing $Na_2WO_4\cdot 2H_2O$ (3.3 g, 10 mmol) was heated at approximately 80 °C, followed by the addition of 0.1 g of boric acid. The final pH of the solution was adjusted to 7 with diluted HCI (1 M). $CrCI_3\cdot 6H_2O$ (0.54 g, 2 mmol) dissolved in 2 mL water was added dropwise. A light turbidity occurred and it was waited until the solution cleared again before adding the next drop. After the complete addition of the $CrCI_3\cdot 6H_2O$ solution, the mixture remained turbid. The final pH of 8 was adjusted by addition of diluted NaOH (1 M). The solution was stirred and heated to approximately 80 °C for half an hour. Afterwards the solution was cooled down to room temperature, centrifuged to remove unreacted educts and transferred to crystallization beakers. After several weeks, green single crystals were obtained.⁷

Table S10. Crystallographic data.

	CrW ₆ -(tris-C ₂ H ₅) ₂	CrW ₆ -tris-C₂H₅	CrW ₆ -tris-NH ₂	CrW ₆ -tris-CH ₂ OH	CrW ₆
Empirical formula	C ₁₂ H ₄₄ CrNa ₃ O ₃₇ W ₆	C ₆ H ₂₀ CrK ₃ Na ₃ O ₃₁ W ₆	$C_4H_{28}CrNNa_5O_{41}W_6$	$C_{13}H_{65}CrN_2Na_4O_{44}W_6$	CrH _{43.5} Na ₆ O _{45.75} W ₆
		[+ solvent]			
CCDC/CSD	1842741	1842742	1842739	1842740	1870211
Formula weight M _r	2004.56	1935.73	2016.32	2182.66	2068.89
Crystal system	monoclinic	monoclinic	triclinic	monoclinic	triclinic
Space group	C2/c	C2/m	P1	Cc	P1
Т, К	100	100	200	100	200
a, b, c (A)	27.9468(17), 11.8789(6),	22.7813(14), 13.0347(8),	11.7546(6), 15.9479(8),	23.0969(9), 12.9414(4),	11.642(2), 12.341(3),
	13.1267(6)	18.2057(11)	22.9680(12)	17.2931(6)	16.526(3)
α, β, γ (°)	90, 101.792(3), 90	90, 112.130(2), 90	71.809(2), 83.295(2),	90, 103.067(2), 90	68.37(3), 85.30(3),
V (Å ³)	4265 8(4)	5007 9(5)	4008.3(4)	5035 2(3)	2085 6(9)
Z	4	8	4	8	2
\overline{D}_{calc} , g/cm ³	3.124	2.568	3.294	2.878	3.294
μ, mm^{-1}	16.494	29.619	17.579	14.003	16.915
Abs. correct. type	multi-scan	multi-scan	multi-scan	multi-scan	multi-scan
Abs. correct. Tmin	0.008	0.135	0.104	0.02	0.015
Abs. correct. Tmax	0.039	0.324	0.493	0.018	0.050
F(000)	3652.0	3460.0	3640.0	4040.0	1887.0
Crystal size, mm	0.25 × 0.25 × 0.05	0.23 × 0.11 × 0.05	0.11 × 0.09 × 0.02		
Theta range for data	2.35 – 30.10	1.99 – 36.45	2.46 – 33.59	3.14 – 33.30	2.21 – 30.3078
collection					
Index ranges	–33 ≤ h ≤ 33	–28 ≤ h ≤ 28	–14 ≤ h ≤ 14	<i>–</i> 27 ≤ h ≤ 27	–14 ≤ h ≤ 14
	–14 ≤ k ≤ 14	–16 ≤ k ≤ 16	–19 ≤ k ≤ 19	–15 ≤ k ≤ 15	–14 ≤ k ≤ 14
	–15 ≤ l ≤ 15	–22 ≤ ≤ 22	–27 ≤ l ≤ 27	–20 ≤ I ≤ 20	–19 ≤ I ≤ 19
Reflections	42215	35802	87589	47755	43007
collected					
Rint	0.0411	0.0602	0.0331	0.0317	0.0358
Data / restraints /	3875/21/287	5183/27/279	14657/122/1093	9159/110/711	7615/522/598
parameters					
Goodness-of-fit on F ²	1.075	1.121	1.061	1.162	1.096
Final R indices	$R_{\rm F} = 0.0330,$	$R_{\rm F} = 0.0611, \ wR^2 = 0.1564$	$R_{\rm F} = 0.03220,$	$R_{\rm F} = 0.0284, \ wR^2 = 0.0712$	$R_{\rm F} = 0.0358$,
	$wR^2 = 0.1023$	(all data)	$wR^2 = 0.0614$	(all data)	$wR^2 = 0.0738$
	(all data)	$\hat{R}_{\rm F} = 0.0585, \ wR^2 = 0.1595$	(all data)	$\hat{R}_{\rm F} = 0.0282, \ wR^2 = 0.0713$	(all data)
	$R_{\rm F} = 0.0313$,	(I>2σ(I))	$R_{\rm F} = 0.02556,$	(I>2σ(I))	$R_{\rm F} = 0.0299$,
	$wR^2 = 0.1047$		$wR^2 = 0.0643$		$wR^2 = 0.0684$
	(I>2σ(I))		(I>2σ(I))		(I>2σ(I))
Largest diff. peak	1.95/-1.94	0.42/-2.14	3.11/-1.43	0.60/-1.82	2.68/-2.30
and hole, e. Å ⁻³					

7. Bond valence sum (BVS) calculation

BVS calculation ^{8,9} was applied to locate the protonation state of μ_3 -O oxygen atoms in **CrW₆-tris-R** and in the parent [Cr(OH)₃W₆O₂₁]⁶⁻ synthesized in this work (**Table S11**).

Table S11. Bond valence sum values for μ_3 -O atoms in **CrW₆-tris-R** (R=-C₂H₅, -NH₂ -CH₂OH), which do not connect to the tris-ligand (blue in the figure), and for the six μ_3 -O atoms in [Cr(OH)₃W₆O₂₁]⁶⁻.

	CrW ₆ -tris-C ₂ H ₅		CrW ₆ -tris-NH ₂		CrW ₆ -tris-CH ₂ OH	
	(CCDC 1842742)		(CCDC 1842739)		(CCDC 1842740)	
	Atom	BVS values	Atom	BVS values	Atom	BVS values
	O3	-1.73	O12	-1.73	O3	-1.69
	O9	-1.65	O13	-1.72	O13	-1.68
R			O15	-1.74	O22	-1.70
	[Cr(OH) ₃ W ₆ O ₂₁] ⁶⁻ (CSD 1870211)					
μ_2 -O	Atom	BVS values	Atom	BVS values	Atom	BVS values
	01	-1.73	O3	-1.71	O5	-1.72
µ ₃-0	02	-1.18	04	-1.22	O6	-1.11

8. DFT Calculations

Figure S14. Molecular electrostatic potential for non-protonated CrW_6 . Red identifies more nucleophilic regions and green denotes less nucleophilic regions. The colour vs. potential ranges from -1.089 (red) to -0.650 (blue).

Table S12.	Relative	enthalpies	with	respect	to the	monoprotonated	CrW ₆ anion	(proton	on	а
triply-bridgir	ng oxyger	ι (μ ₃ -Ο)), [C	r(µ ₃ -(OH)₁W ₆ C	$[D_{23}]^{8-}$.					

Anion	ΔH (kcal mol ⁻¹)
[Cr(µ ₃ -OH) ₁ W ₆ O ₂₃] ⁸⁻	0
[Cr(O _t H) ₁ W ₆ O ₂₃] ⁸⁻	+4.4
[Cr(µ ₂ -OH) ₁ W ₆ O ₂₃] ⁸⁻	+11.2

All structures were optimised and the vibrational modes were calculated with PBE0 exchangecorrelation functional, the def2-TZVP basis set, and PCM as solvent model. $[Cr(O_tH)_1W_6O_{23}]^{8-}$ and $[Cr(\mu_2-OH)_1W_6O_{23}]^{8-}$ are the monoprotonated **CrW**₆, exhibiting the proton on a terminal oxygen (O_t) or doubly-bridging oxygen (μ_2 -O) atom, respectively (see structures in the supplement xyz file).

Table S13. Relative enthalpies and relative enthalpies difference (in parenthesis) with respect to fac_1 -[Cr(OH)₃W₆O₂₂]⁶⁻ with different level of theory.

Anion	∆H _{PBE0} (kcal mol ⁻¹)	ΔΗ _{ΡΒΕ} (ΔΗ _{ΡΒΕ-} ΔΗ _{ΡΒΕ0}) (kcalˈmol ⁻¹)	ΔH _{B3LYP} (ΔH _{PBE-} ΔH _{PBE0}) (kcal'mol ⁻¹)
<i>fac</i> ₁ -[Cr(OH) ₃ W ₆ O ₂₁] ⁶⁻	0	0	0
mer-[Cr(OH) ₃ W ₆ O ₂₁] ⁶⁻	+3.7	+2.9	+3.3
	10.7	(+0.8)	(+0.4)
fac_2 -[Cr(OH) ₃ W ₆ O ₂₁] ⁶⁻	+7.4	+6.6	+7.7
	±7.4	(+0.8)	(+0.3)

All structures were optimised and the vibrational modes were calculated with the indicated exchangecorrelation functional, the def2-TZVP basis set, and PCM as solvent model.

Table S14. Spin angular momentum, enthalpy, entropy and Gibbs free energy for the different protonation states of $[Cr(OH)_xW_6O_{24-x}]^{(9-x)-}$ (x = 0 – 6).

Species	S ^{2,a}	ε (a.u.)	H (a.u.)	S (cal/mol.K)	G (a.u.)
[CrW ₆ O ₂₄] ⁹⁻	3.7730	-3253.84188071	-3253.724951	218.781	-3253.828901
$[Cr(\mu_3-OH)_1W_6O_{23}]^{8-b}$	3.7718	-3254.37144161	-3254.241943	217.040	-3254.345065
$[Cr(\mu_2 - OH)_1W_6O_{23}]^{8-b}$	3.7742	-3254.35329294	-3254.224070	219.700	-3254.328457
$[Cr(O_tH)_1W_6O_{23}]^{8-b}$	3.7723	-3254.36408191	-3254.235001	217.989	-3254.338574
<i>iso1-</i> [Cr(OH) ₂ W ₆ O ₂₂] ⁷⁻	3.7703	-3254.89078691	-3254.749180	221.059	-3254.854212
<i>iso2-</i> [Cr(OH) ₂ W ₆ O ₂₂] ⁷⁻	3.7696	-3254.89074360	-3254.749020	220.503	-3254.853788
<i>iso</i> 3-[Cr(OH) ₂ W ₆ O ₂₂] ⁷⁻	3.7714	-3254.88522730	-3254.743162	218.743	-3254.847094
<i>fac</i> ₁-[Cr(OH) ₃ W ₆ O ₂₁] ⁶⁻	3.7685	-3255.40019215	-3255.246100	220.793	-3255.351006
<i>mer-</i> [Cr(OH) ₃ W ₆ O ₂₁] ⁶⁻	3.7692	-3255.39438401	-3255.240089	223.137	-3255.346109
<i>fac</i> ₂ -[Cr(OH) ₃ W ₆ O ₂₁] ⁶⁻	3.7707	-3255.38841724	-3255.234251	225.706	-3255.341491

<i>iso1-</i> [Cr(OH) ₄ W ₆ O ₂₀] ⁵⁻	3.7682	-3255.88732093	-3255.720542	225.180	-3255.827532
<i>iso</i> 2-[Cr(OH) ₄ W ₆ O ₂₀] ⁵⁻	3.7694	-3255.88112230	-3255.714315	227.054	-3255.822196
<i>i</i> so3-[Cr(OH) ₄ W ₆ O ₂₀] ⁵⁻	3.7680	-3255.88705351	-3255.720318	226.077	-3255.827734
<i>iso4-</i> [Cr(OH) ₄ W ₆ O ₂₀] ⁵⁻	3.7694	-3255.88122944	-3255.714308	225.626	-3255.821510
$Cr(OH)_5W_6O_{19}]^{4-}$	3.7678	-3256.36282439	-3256.183209	227.963	-3256.291522
$Cr(OH)_{6}W_{6}O_{18}]^{3-}$	3.7672	-3256.82566019	-3256.632425	228.456	-3256.740972
H ^{+, [6]}	-	-	-0.43805	-	-0.42068

Free energies are not symmetry corrected. ${}^{a}S^{2}$ is the square of the total spin angular momentum. *Iso*_n (n=1-4) refers to the different isomer of each protonation state using the same nomenclature as in the supplemental information. ${}^{b}\mu_{3}$ -O, μ_{2} -O and O_t denote when the proton is localized on a triply-bridging oxygen (μ_{3} -O), doubly-bridging oxygen (μ_{2} -O) or terminal oxygen (O_t) atom, respectively. Structures of all isomers for each protonated state are provided in a separate multi-xyz file.

Table S15. Relative enthalpies with respect to the *iso1* (two protonated μ_3 -O atoms from one side of the anion) isomer of $[Cr(OH)_2W_6O_{22}]^7$ (see structures of isomers in the supplemental xyz file).

Anion	ΔH (kcal ⁻¹)
<i>i</i> so1-[Cr(OH) ₂ W ₆ O ₂₂] ⁷⁻	0
<i>iso</i> 2-[Cr(OH) ₂ W ₆ O ₂₂] ⁷⁻	+0.1
<i>i</i> so3-[Cr(OH) ₂ W ₆ O ₂₂] ⁷⁻	+3.8

Table S16. Relative enthalpies with respect to the *iso1* (three protonated μ_3 -O atoms on the same side and one protonated μ_3 -O atom on the opposite side of the anion) isomer of $[Cr(OH)_4W_6O_{20}]^{5-}$ (see structures of isomers in the supplemental xyz file).

Anion	ΔH (kcal·mol ⁻¹)
<i>iso1-</i> [Cr(OH) ₄ W ₆ O ₂₀] ⁵⁻	0
$iso2-[Cr(OH)_4W_6O_{20}]^{5-}$	+3.9
<i>i</i> so3-[Cr(OH) ₄ W ₆ O ₂₀] ⁵⁻	+0.1
$iso4-[Cr(OH)_4W_6O_{20}]^{5-}$	+3.9

Figure S15. Experimental (blue) and simulated (black) X-ray diffraction patterns of A) Na_3CrW_6 -(tris- C_2H_5)₂·13H₂O; B) $Na_3K_3CrW_6$ -tris- C_2H_5 ·17H₂O; C) Na_5CrW_6 -tris- NH_3 ·17H₂O; D) $Na_4(TMA)_2CrW_6$ -tris- CH_2OH ·19H₂O

References

- 1 Bruker SAINT V8.32B Copyright © 2005-2015 Bruker AXS.
- 2 Sheldrick, G. M. 1996. SADABS. University of Göttingen, Germany.
- 3 Sheldrick, G. M. A short history of SHELX. Acta Cryst. A, 2008, A64, 112-122.
- 4 Dolomanov, O. V.; Bourhis, L. J.; Gildea, R. J.; Howard, J. A. K.; Puschmann, H. OLEX2: a complete structure solution, refinement and analysis program. *J. Appl. Cryst.*, **2009**, *42*, 339-341.
- 5 Huebschle, C. B.; Sheldrick, G. M.; Dittrich, B. ShelXle: a Qt graphical user interface for SHELXL. *J. Appl. Cryst.*, **2011**, *44*, 1281-1284.
- 6 Liu, W.; Lin, Z.; Bassil, B. S.; Al-Oweini, R.; Kortz, U. Synthesis and Structure of Hexatungstochromate(III), [H₃Cr^{III}W₆O₂₄]⁶⁻. CHIMIA, **2015**, *69*, 537-540.
- 7 Gumerova, N. I.; Roller, A.; Rompel, A. [Ni(OH)₃W₆O₁₈(OCH₂)₃CCH₂OH]⁴⁻: the first trisfunctionalized Anderson-type heteropolytungstate. *Chem. Commun.*, **2016**, 52, 9263-9266.
- 8 Brown, I. D.; Altermatt, D. Bond-valence parameters obtained from a systematic analysis of the Inorganic Crystal Structure Database. *Acta Cryst. B*, **1985**, *41*, 244-247.
- 9 Brese, N. E.; O'Keeffe, M. Bond-valence parameters for solids. *Acta Cryst. B*, **1991**, *47*, 192-197.