
Solutions to: A primer on the use of probability generating functions in
infectious disease modeling

Joel C. Miller

1 Introduction
Exercise 1.1 Except for the Poisson distribution handled in Example 1.1, derive the PGFs shown in
Table 1 directly from the definition f(x) =

∑
i rix

i.
For the negative binomial, it may be useful to use the binomial series:

(1 + δ)η = 1 + ηδ +
η(η − 1)

2!
δ2 + · · ·+ η(η − 1) · · · (η − i+ 1)

i!
δi + · · ·

using η = −r̂ and δ = −px.

Solution 1.1

a. Uniform: p(λ) = 1, so the PGF is simply 0 + 0 + · · ·+ 1xλ + 0 + 0 + · · · = xλ.

b. Binomial: We have ri =
(
n
i

)
piqn−i. So

∑
i

rix
i =

∑
i

(
n

i

)
piqn−ixi

= (px+ q)n

by the binomial theorem.

c. Geometric: We have ri = qip. So ∑
i

rix
i =

∑
i

pqixi

= p
∑
i

(qx)i

=
p

1− qx

by the sum of a geometric series.

d. Negative binomial: We have ri =
(
i+r̂−1
i

)
qr̂pi. So

∑
i

rix
i =

∑
i

(
i+ r̂ − 1

i

)
qr̂pixi

= qr̂
∑
i

(
i+ r̂ − 1

i

)
pixi

= qr̂(1− px)−r̂

=

(
q

1− px

)r̂
Exercise 1.2 Consider the binomial distribution with n trials, each having success probability p = λ/n.
Using Table 1, show that the PGF for the binomial distribution converges to the PGF for the Poisson
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distribution in the limit n→∞, if λ is fixed.

Solution 1.2 We have (px+ q)n where p = λ/n and q = 1− p. Taking n to be large gives

lim
n→∞

(q + px)n = lim
n→∞

(
1 +

λ(x− 1)

n

)n
= eλ(x−1)

2 Discrete-time spread of a simple disease: early time

Exercise 2.1 Monotonicity of αg

a. By considering the biological interpretation of αg, explain why the sequence of inequalities 0 = α0 ≤
α1 ≤ · · · ≤ 1 should hold. That is, explain why α0 = 0, why the αi form a monotonically increasing
sequence, and why all of them are at most 1.

b. Show that αg therefore converges to some non-negative limit α that is at most 1 and that α = µ(α).

c. Use Property A.9 to show that if µ(0) 6= 0 there exists a unique α < 1 solving α = µ(α) if and only if
R0 = µ′(1) > 1.

d. Assuming µ(0) 6= 0, use Property A.9 to show that if R0 > 1 then αg converges to the unique α < 1
solving α = µ(α), and otherwise αg converges to 1.

Solution 2.1

a. In generation 0 there is an infected individual. So the disease is not extinct. Thus α0 = 0. If the
outbreak is extinct at generation g, it remains extinct at later generations. So αg ≤ αg−1. The
eventual extinction probability is at most 1.

b. Any sequence of numbers that is increasing and bounded from above must have a limit that is at most
that bound. So it converges to some limit α. Since µ(αg) = αg+1, we conclude that µ(αg) must
converge to the same limit. Thus since µ is continuous, µ(α) = α.

c. The assumptions of Property A.9 hold, with R0 playing the role of f ′(1). The property states that if
R0 ≤ 1 the only solution is α = 1, while if R0 > 1 there is exactly one other solution in (0, 1).

d. The second part of Property A.9 states that for R0 > 1, the solution must converge to this unique
α < 1. If R0 ≤ 1, the above observations show that it must converge to a solution to α = µ(α), and
the only possible choice is α = 1.

Exercise 2.2 Use Theorem 2.2 to prove Theorem 2.1.

Solution 2.2 We only need the first two parts of Theorem 2.2. We have α = limg→∞ αg = limg→∞ µ(αg).
Because µ is continuous we have limg→∞ µ(αg) = µ(limg→∞ αg) = µ(α).

So α = µ(α).

Exercise 2.3 Show that if µ(0) = 0, then limg→∞ αg = 0. By referring to the biological interpretation of
µ(0) = 0, explain this result.

Solution 2.3 Let µ(0) = 0 and consider the smallest g ≥ 0 such that αg+1 6= 0 (if it exists). Then
αg+1 = µ(αg) = µ(0) = 0. So no such g exists.

Biologically, µ(0) = 0 means that every individual has at least one offspring. Thus if we start with one
individual, we can never end up with zero.

Exercise 2.4 Find all PGFs µ(y) with R0 ≤ 1 and µ(0) = 0. Why were these excluded from Theorem 2.2?
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Solution 2.4 If µ(y) =
∑∞
i=0 pix

i is a PGF and µ(0) = 0, then p0 = 0 and µ(y) =
∑∞
i=1 pix

i so R0 =
µ′(1) =

∑∞
i=1 ipi. This is ≥∑∞i=1 pi = 1, with equality only if pi = 0 for i > 1. Thus the only such function

is µ(y) = y.
This corresponds to each individual having exactly one offspring. So starting with one infection, at each

generation there will remain exactly one infection, and there is no chance for extinction. All other cases
with R0 ≤ 1 have a nonzero chance of having zero offspring, and thus extinction is possible (and in fact
inevitable).

Exercise 2.5 Larger initial conditions
Assume that disease is introduced with m infections rather than just 1, or that it is not observed by

surveillance until m infections are present. Assume that the offspring distribution PGF is µ(y).

a. If m is known, find the extinction probability.

b. If m is unknown but its distribution has PGF h(y), find the extinction probability.

Solution 2.5 Let α be the extinction probability from one individual.

a. The extinction probability given m initial infections is αm.

b. Let h(x) =
∑
m qmx

m. The probability of extinction is
∑
m qmα

m = h(α).

Exercise 2.6 Extinction probability
Consider a disease in which p0 = 0.1, p1 = 0.2, p2 = 0.65, and p3 = 0.05 with a single introduced

infection.

a. Numerically approximate the probability of extinction within 0, 1, 2, 3, 4, or 5 generations up to five
significant digits (assuming an infinite population).

b. Numerically approximate the probability of eventual extinction up to five significant digits (assuming
an infinite population).

c. A surveillance program is being introduced, and detection will lead to a response. But it will not be
soon enough to affect the transmissions from generations 0 and 1. From then on p0 = 0.3, p1 = 0.4,
p2 = 0.3, and p3 = 0. Numerically approximate the new probability of eventual extinction after an
introduction in an unbounded population [be careful that you do the function composition in the right
order – review Properties A.1 and A.8].

Solution 2.6 Define µ1(y) =
∑
i piy

i = 0.1 + 0.2y + 0.65y2 + 0.05y3.

a. The extinction probability after 0 generations is α0 = 0 and for g > 0, the extinction probability after
g generations is αg = µ1(αg−1). So by iteratively applying µ1 to 0 we get

α0 = 0

α1 = µ1(α0) = 0.1

α2 = µ1(α1) = 0.12655

α3 = µ1(α2) ≈ 0.13582

α4 = µ1(α3) ≈ 0.13928

α5 = µ1(α4) ≈ 0.14060

b. Repeatedly applying µ1 to the result quickly yields convergence to α ≈ 0.14143.

c. Let µ2(y) = 0.3+0.4y+0.3y2. Assuming that there are still infected individuals when the intervention

is introduced. For each of them, the probability that all offspring die out is limg→∞ µ
[g]
2 (0) ≈ 0.9688.

The distribution of the number infected when the intervention is introduced is µ1(µ1(y)). So the
probability of extinction is µ1(µ1(0.9688)) ≈ 0.9185.
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Exercise 2.7 We look at two inductive derivations of Φg(y) = µ[g](y). They are similar, but when adapted
to the continuous-time dynamics we study later, they lead to two different models. We take as given that
Φg−1(y) gives the distribution of the number of infections caused after g−1 generations starting from a single
case. One argument is based on discussing the results of outcomes attributable to the infectious individuals
of generation g− 1 in the next generation. The other is based on the outcomes indirectly attributable to the
infectious individuals of generation 1 through their descendants after another g − 1 generations.

a. Explain why Property A.8 shows that Φg(y) = Φg−1(µ(y)).

b. (without reference to a) Explain why Property A.8 shows that Φg(y) = µ(Φg−1(y)).

Solution 2.7 a. The PGF for the number infected in generation g−1 is Φg−1(y). Each of the individuals
who are infected in generation g− 1 make some sort of contribution (possibly 0) to generation g. The
PGF for this contribution is µ(y). Thus by Property A.8, the PGF for the combination of steps from
generation 0 to g − 1 and from g − 1 to g is given by Φg−1(µ(y)).

b. The PGF for the number infected in generation 1 is µ(y). If we trace the contributions of these
individuals to generation g, we find that the distribution is the same as for the contribution of a
generation 0 individual to generation g−1. So by Property A.8, the PGF for the combination of steps
from generation 0 to 1 and from 1 to g is µ(Φg−1(y)).

Exercise 2.8 Use Theorem 2.3 to prove the first part of Theorem 2.2.

Solution 2.8 The probability that there are no infections at generation g is given by Φg(0) (The expansion
eliminates all terms except the coefficient of y0).

Simply observing Φg(0) = µ[g](0) finishes the proof.

Exercise 2.9 How does Corollary 2.1 change if we start with k infections?

Solution 2.9 The first part is simply multiplied by k.
For 〈I〉g, the numerator is multiplied by k. The denominator is the probability that the disease persists

to generation g. This becomes 1− αkg . This is because to be extinct, all k introductions must independently

go extinct, which occurs with probability αkg .

Exercise 2.10 Assume the PGF of the offspring size distribution is µ(y) = (1 + y + y2)/3.

a. What offspring size distribution yields this PGF?

b. Find the PGF Ωg(z) for the number of completed infections at 0, 1, 2, 3, and 4 generations [it may
be helpful to use a symbolic math program once g > 2.].

c. Check that for these cases, once g > r, the coefficient of zr does not change.

Solution 2.10

a. Each individual causes 0, 1, or 2 transmissions with equal probability.

b. (i) We have Ω0(z) = 1 [there are no completed infections at generation 0].

(ii) We have Ω1(z) = zµ(1) = z [which means that there is a single completed infection at generation
1].

(iii) We have

Ω2(z) = zµ(Ω1(z))

= zµ(z)

=
z + z2 + z3

3
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(iv) We have

Ω3(z) = zµ(Ω2(z))

= z
1 + Ω2(z) + Ω2(z)2

3

=
9z + 3z2 + 4z3 + 5z4 + 3z5 + 2z6 + z7

27

=
z

3
+
z2

9
+ · · ·

(v) and finally

Ω4(z) = zµ(Ω3(z))

= z
1 + Ω3(z) + Ω3(z)2+

3

=
1

2187

(
729z + 243z2 + 162z3 + 162z4 + 216z5 + 105z6 + 154z7

+ 121z8 + 79z9 + 52z10 + 37z11 + 22z12 + 10z13 + 4z14 + z15
)

=
z

3
+
z2

9
+ · · ·

c. • For r = 0, we see that from Ω1(z) onwards, the coefficient of z0 is 0.

• For r = 1, we see that from Ω2(z) onwards, the coefficient of z is 1/3

• For r = 2, we see that from Ω3(z) onwards, the coefficient of z2 is 1/9.

Exercise 2.11 By setting y = 1, use Theorem 2.5 to prove Theorem 2.4.

Solution 2.11 We expect that Πg(1, z) = Ω(z). This can be checked by noting that for given r, the sum∑
i πi,r(g)1izr is zr

∑
i πi,r(g) = zrωr(g).

So Theorem 2.5 states that Πg(1, z) = zµ(Πg−1(1, z)) which becomes Ωg(z) = zµ(Ωg−1(z)).

Exercise 2.12 Redo example 2.10 if r̂ is a real number, rather than an integer. It may be useful to use
the Γ–function, which satisfies Γ(x+ 1) = xΓ(x) for any x and Γ(n+ 1) = n! for integer n.

Solution 2.12 The key observation is that r̂j(r̂j+ 1) · · · (r̂j+ j− 2)/(j− 1)! becomes Γ(r̂j+ j− 1)/Γ(r̂j−
1)(j − 1)!. Thus we replace

(
r̂j+j−2
j−1

)
in the expression to yield

1

j

Γ(r̂j + j − 2)

Γ(r̂j − 1)(j − 1)!
qr̂jpj−1

Exercise 2.13 Except for the negative binomial case done in example 2.10, derive the probabilities in
Table 6.

a. For the Poisson distribution, use Property A.2.

b. For the Uniform distribution, use Property A.2.

c. For the Binomial distribution, use the binomial theorem: (a+ b)c =
∑c
i=0

(
c
i

)
aibc−i.

d. For the Geometric distribution, follow example 2.10 (noting that p and q interchange roles).

Solution 2.13 For each we need to find the coefficient of yj−1 in [µ(y)]j and then divide it by j.
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a. [µ(y)]j = ejλ(y−1) The coefficient of yj−1 is

1

(j − 1)!

(
d

dy

)j−1

ejλ(y−1)

∣∣∣∣∣
y=0

=
1

j − 1
(jλ)j−1ejλ(y−1)

∣∣∣∣
y=0

=
(jλ)j−1

(j − 1)!
e−λj

Taking 1/j times this yields (λj)j−1

j! e−λj.

b. Note that for this to make sense λ must be a non-negative integer. We have [µ(y)]j = yλj. The first
case we consider is j = 1, λ = 0. Then we have [µ(y)]j = 1. Taking zero derivatives, setting y = 0,
and dividing by (j − 1)! = 1 and j = 1 yields 1.

Now consider λ ≥ 1. Then λj > j − 1. So after taking j − 1 derivatives, we still have a factor of y,
which when we set y = 0 yields 0.

Now consider λ = 0, but j > 1. We have [µ(y)]j = 1. Taking j − 1 ≥ 1 derivatives yields 0.

c. We have [µ(y)]j = (q + py)jn. By the binomial theorem, the coefficient of yj−1 is
(
jn
j−1

)
qjn−j+1pj−1.

Taking 1/j times this yields the result

d. We have [µ(y)]j = (p/(1− qy))
j
. Following the same steps as in the negative binomial distribution,

but taking r̂ = 1 and interchanging p and q, we end up with 1
j

(
2j−2
j−1

)
pjqj−1.

Exercise 2.14 To help model continuous-time epidemics, section 3 will use a modified version of µ, which
in some contexts will be written as µ̂(y, z). To help motivate the use of two variables, we reconsider the
discrete case. We think of a recovery as an infected individual disappearing and giving birth to a recovered
individual and a collection of infected individuals. Look back at the discrete-time calculation of Ωg and Πg.
Define a two-variable version of µ as µ(y, z) = z

∑
i riy

i = zµ(y).

a. What is the biological interpretation of µ(y, z) = zµ(y)?

b. Rewrite the recursive relations for Ωg using µ(y, z) rather than µ(y).

c. Rewrite the recursive relations for Πg using µ(y, z) rather than µ(y).

The choice to use µ(y, z) versus µ(y) is purely a matter of convenience.

Solution 2.14

a. After a generation, an individual contributes µ(y) new infections and 1 new recovery. This is captured
by µ(y, z) = zµ(y).

b. Ωg(z) = µ(Ωg−1(z), z).

c. Πg(y, z) = µ(Πg−1(y, z), z).

Exercise 2.15 Consider Example 2.11. Assume that a third outbreak is observed with 4 infections. Cal-
culate the probability of Θ1 and Θ2 given the data starting

a. with the assumption that P (Θ1) = P (Θ2) = 0.5 and X consists of the three observations j = 7, j = 8,
and j = 4.

b. with the assumption that P (Θ1) = 0.6546 and P (Θ2) = 0.3454 and X consists only of the single
observation j = 4.

c. Compare the results and explain why they should have the relation they do.
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Solution 2.15

a. There are now three observations j = 7, j = 8, and j = 4. Adapting the result in the example, we
have

f(Θ) =

 ∑
j=7,8,4

log((r̂j + j − 2)!)− log(j!)− log((r̂j − 1)!) + r̂j log q + (j − 1) log p

+ log 0.5 .

We find f(Θ1) ≈ −11.3978 and f(Θ2) ≈ −12.0858. So f̂(Θ1) = 0 and f̂(Θ2) = −0.688. Then
g(Θ1) = 1 and g(Θ2) = 0.5026. We finally have

P (Θ1|X) = 0.6655, P (Θ2|X) = 0.3345

b. The difference appears at the beginning:

f(Θ1) = (log((r̂4 + 4− 2)!)− log(4!)− log((r̂4− 1)!) + r̂4 log q + (4− 1) log p) + log 0.6546

and

f(Θ2) = (log((r̂4 + 4− 2)!)− log(4!)− log((r̂4− 1)!) + r̂4 log q + (4− 1) log p) + log 0.3454 .

Plugging in for r̂, we get f(Θ1) = −3.326 and f(Θ2) = −4.014. Once we find f̂ we find that it takes
the same value as in the previous part, and so the results follow.

c. If we update our beliefs with all of our observations, we should get the same final outcome. This should
depend on whether we do it all at once, or sequentially (or even what order we do it sequentially).

Exercise 2.16 Assume that we know a priori that the offspring distribution for a disease has a negative
binomial distribution with p = 0.02. Assume that our a priori knowledge of r̂ is that it is an integer
uniformly distributed between 1 and 80 inclusive. Given observed outbreaks of sizes 1, 4, 5, 6, and 10:

a. For each r̂, calculate P (r̂|X) where X is the observed outbreak sizes. Plot the result.

b. Find the probability that R0 = µ′(1) is greater than 1.

Solution 2.16 The PGF is
(

0.98
1−0.02x

)r̂
. We start off with P (Θ) = 1/80 for all integers from 1 to 80.

Given r̂ and p = 0.02, the probability of observing a particular size j is 1
j

(
r̂j+j−2
j−1

)
0.98r̂j0.01j−1.

a. So P (X|Θ) means the probability of observing sizes 1, 4, 5, 6, and 10 in five outbreaks given the value
r̂. For simplicity, we note that 1 · 4 · 5 · 6 · 10 = 1200 and 1 + 4 + 5 + 6 + 10 = 26 This is

P (1, 4, 5, 6, 10|r̂) =
1

1200
0.9826r̂0.0226−5

(
r̂ − 1

0

)(
4r̂ + 2

3

)(
5r̂ + 3

4

)(
6r̂ + 4

5

)(
10r̂ + 8

9

)
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Following the steps we get

0 10 20 30 40 50 60 70 80
r̂

0.00

0.01

0.02

0.03

0.04

0.05

P
ro

b
a
b
ili

ty

b. By summing the probabilities over all r̂ for which R0 > 1, we find the probability that R0 > 1 is 0.181

3 Continuous-time spread of a simple disease

Exercise 3.1 Extinction Probability
Let β and γ be given with µ̂(y) = (βy2 + γ)/(β + γ).

a. Analytically find solutions to y = µ̂(y).

b. Assume β < γ. Find all solutions in [0, 1].

c. Assume β > γ. Find all solutions in [0, 1].

Solution 3.1

a. y(β + γ) = βy2 + γ so
βy2 − (β + γ)y + γ = 0

By the quadratic formula

y =
β + γ ±

√
(β + γ)2 − 4βγ

2β

The radical becomes
√
β2 − 2βγ + γ2 = (β − γ). So

y =
β + γ ± (β − γ)

2β
= {1, γ/β}

.

b. If β < γ, then only 1 is in the interval.

c. If γ > β then both are in the interval.

Exercise 3.2 Consistency with discrete-time formulation.
Although we have argued that a transmission in the continuous-time disease transmission case can be

treated as if a single infected individual has two infected offspring and then disappears, this is not what
actually happens. In this exercise we look at the true offspring distribution of an infected individual before
recovery, and we show that the ultimate predictions of the two versions are equivalent.

Consider a disease in which individuals transmit at rate β and recover at rate γ. Let pi be the probability
an infected individual will cause exactly i new infections before recovering.

a. Explain why p0 = γ/(β + γ).

b. Explain why pi = βiγ/(β + γ)i+1. So pi form a geometric distribution.
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c. Show that µ(y) =
∑
i piy

i can be expressed as µ(y) = γ/(β + γ − βy). [This definition of µ without
the hat corresponds to the discrete-time definition]

d. Show that the solutions to y = µ(y) are the same as the solutions to y = µ̂(y) = (βy2 + γ)/(β + γ).
So the extinction probability can be calculated either way. (You do not have to find the solutions to
do this, you can simply show that the two equations are equivalent).

Solution 3.2

a. The event is either a recovery or a transmission, and the rates are γ and β. So the probability of
recovery is the rate of recovery divided by the total rate.

b. While the individual is susceptible, the probability that the next event is a transmission is β/(β + γ).
So the probability that the first i events are transmissions is βi/(β+γ)i. The probability that the next
event is a recovery is γ/(β + γ). The product of these is the probability that the first i events are
transmissions and the next event is a recovery.

c. Let r = β/(β + γ). Then pi = (1 − r)ri. Then
∑
i piy

i is a geometric series: (1 − r)∑i(ry)i =
(1− r)/(1− ry). Multiplying by 1 = (β + γ)/(β + γ) gives the result.

d. The solutions to y = µ(y) are the solutions to y(β + γ − βy) = γ. The solutions to y = µ̂(y) =
(βy2 + γ)/(β + γ) are the solutions to y(β + γ) = βy2 + γ. By moving βy2 to the other side of either
equation we see that the equations are equivalent.

Exercise 3.3 Relation with R0

Take µ(y) = γ/(β + γ − βy) as given in exercise 3.2 and µ̂ = (βy2 + γ)/(β + γ).

a. Show that µ′(1) 6= µ̂′(1) in general.

b. Show that when R0 = µ′(1) = 1, then µ′(1) = µ̂′(1) = 1. So both are still threshold parameters.

Solution 3.3

a. µ′(y) = γβ/(β + γ − βy)2, so µ′(1) = γβ/γ2 = β/γ. Similarly µ̂′(y) = 2γy/(β + γ), so µ̂′(1) =
2γ/(β + γ). These are generally unequal.

b. When R0 = 1, we have β = γ. So µ′(1) = γ/γ = 1 and µ̂′(1) = 2γ/(γ+ γ) = 1. So the two are equal.

Exercise 3.4 Revisiting eventual extinction probability.
We revisit the results of exercise 3.1 using Eq. (17) (without solving it).

a. By substituting for µ̂(α), show that α̇ = (1− α)(γ − βα).

We have α(0) = 0. Taking this initial condition and expression for α̇, show that

b. α→ 1 as t→∞ if β < γ (i.e., R0 < 1) and

c. α→ γ/β as t→∞ if β > γ (i.e., R0 > 1).

d. Set up (but do not solve) a partial fraction integration that would give α(t) analytically.

Solution 3.4

a. We have

α̇ = (β + γ)

(
βα2 + γ

β + γ
− α

)
= βα2 + γ − α
= (1− α)(γ − βα)

Starting from α(0) = 0, we see that α̇(0) = γ > 0. So α will increase and approach the smallest positive
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equilibrium value. The two equilibria are at α = 1 and α = γ/β.

b. If β < γ, then the smaller equilibrium is α = 1.

c. If β > γ, then the smaller equilibrium is α = γ/β.

d. We have
dα
dt

(1− α)(γ − βα)
= 1

So using separation of variables, we have∫
1

(1− α)(γ − βα)
dα =

∫
1dt

Using partial fractions this becomes∫
A

1− α +
B

γ − βα dα =

∫
1 dt

where A and B are chosen such that the sum in the integrand has a numerator of 1. Once A and B
are found, both sides can be integrated analytically.

Exercise 3.5 This exercise is intended to help with understanding the backward Kolmogorov equations.
Let φi(t) denote the probability of having i active infections at time t given that at time 0 there was a

single infection [φ1(0) = 1]. We have φ0(t) = α(t). We extend the derivation of Eq. (16) to φ1. Assume
φ0(t0) and φ1(t0) are known.

a. Following the derivation of Eq. (16), approximate φ0(∆t), φ1(∆t), and φ2(∆t) for small ∆t.

b. From biological grounds explain why if there are 0 infections at time ∆t then there are also 0 infections
at time t0 + ∆t.

c. If there is 1 infection at time ∆t, what is the probability of 1 infection at time t0 + ∆t?

d. If there are 2 infections at time ∆t, what is the probability of 1 infection at time t0 + ∆t?

e. Write φ1(t0 + ∆t) in terms of φ0(t0), φ1(t0), φ1(∆t), and φ2(∆t).

f. Using the definition of the derivative, find an expression for φ̇1 in terms of φ1(t) and φ2(t).

Solution 3.5

a. We have

φ0(∆t) = γ∆t+ O(∆t)

φ1(∆t) = 1− (β + γ)∆t+ O(∆t)

φ2(∆t) = β∆t+ O(∆t)

b. If the disease is extinct at time ∆t, then it remains extinct.

c. This equals the probability of having 1 infection at time t0 if there is one infection at time 0. So it is
is φ1(t0).

d. One of the infections has to have its descendants go extinct within t0 units of time, and the other
must have 1 descendant after t0 units of time. So this is φ0(t0)φ1(t0) + φ1(t0)φ0(t0) = 2φ0(t0)φ1(t0)

e. So [using the additional fact that the probability of 3 or more infections at time ∆t is O(∆t)]

φ1(t0 + ∆t) = φ1(∆t)φ1(t0) + 2φ2(∆t)φ0(t0)φ1(t0) + O(∆t)
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f. So

φ̇1(t) = lim
∆t→0

φ1(t+ ∆t)− φ1(t)

∆t

= lim
∆t→0

φ1(∆t)φ1(t) + 2φ2(∆t)φ0(t)φ1(t) + O(∆t)− φ1(t)

∆t

= lim
∆t→0

[1− (β + γ)∆t]φ1(t) + 2β∆tφ0(t)φ1(t) + O(∆t)− φ1(t)

∆t

= lim
∆t→0

−(β + γ)∆tφ1(t) + 2β∆tφ0(t)φ1(t) + O(∆t)

∆t
]

= −(β + γ)φ1(t) + 2βφ0(t)φ1(t)

Exercise 3.6 In this exercise we derive the PGF version of the forward Kolmogorov equations by directly
calculating the rate of change of the probabilities of the states. Define φj(t) to be the probability that there
are j active infections at time t.

We have the forward Kolmogorov equations:

φ̇j = β(j − 1)φj−1 + γ(j + 1)φj+1 − (β + γ)jφj .

a. Explain each term on the right hand side of the equation for φ̇j.

b. By expanding Φ̇(y, t) = ∂
∂t

∑
j φjy

j, arrive at Equation (18).

Solution 3.6

a. If there are j infected individuals, then a new transmission will result in j + 1 total infections and
occurs at total rate βj. This appears as a loss to φj at rate jβφj, but a gain at rate (j−1)βφj−1 from
the smaller state. Similarly a recovery will result in j − 1 total infections and occurs at total rate γj.
No other possibilities are considered in our model. This appears as a loss at rate jγφj and a gain at
rate (j + 1)γφj+1.

b. We convert this into an equation for the PGF:

∂

∂t
Φ(y, t) =

∂

∂t

∑
j

φj(t)y
j

=
∑
j

φ̇j(t)y
j

=
∑
j

β(j − 1)φj−1y
j + γ(j + 1)φj+1y

j − (β + γ)jφjy
j

= β
∑
j

(y2 − y)
∂

∂y
φj−1y

j−1 + γ
∑
j

∂

∂y
φj+1y

j+1 − (β + γ)
∑
j

y
∂

∂y
φjy

j

= [β(y2 − y) + γ − (β + γ)y
∂

∂y
Φ(y, t)

= (β + γ) [µ̂(y)− y]
∂

∂y
Φ(y, t)

Exercise 3.7 In this exercise we follow [3, 6] and derive the PGF version of the backward Kolmogorov
equations by directly calculating the rate of change of the probabilities of the states. Define φki(t) to be the
probability of i infections at time t given that there were k infections at time 0. Although we assume that
at time 0 there is a single infection, we will need to derive the equations for arbitrary k.

a. Explain why

φki(t+ ∆t) = φki(t)− k(β + γ)φki(t)∆t+ k(βφ(k+1)i(t) + γφ(k−1)i(t)) + O(∆t)
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for small ∆t.

b. By using the definition of the derivative φ̇ki = lim∆t→0
φki(t+∆t)−φki(t)

∆t , find φ̇ki

Define Φ(y, t|k) =
∑
i φkiy

i to be the PGF for the number of active infections assuming that there are k
initial infections.

c. Show that
Φ̇(y, t|1) = −(β + γ)Φ(y, t|1) + βΦ(y, t|2) + γΦ(y, t|0)

d. Explain why Φ(y, t|k) = Φ(y, t|1)k.

e. Complete the derivation of Equation (19).

Solution 3.7

a. If ∆t is very small then to leading order either 0 or 1 event occurs in the first ∆t units of time

• The probability of 0 events if we start with k infections is 1− k(β + γ)∆t+ O(∆t). In this case
the probability of i infections at time t+ ∆t is the same as the probability of i infections at time
t given the initial condition.

• The probability of 1 event occurring and it being an infection is kβ∆t + O(∆t). In this the
probability of i infections at time t+ ∆t is the same as the probability of i infections at time t if
we start with k + 1 infections, φ(k+1)i.

• The probability of 1 event occurring and it being a recovery is kγ∆t + O(∆t). Following the
previous case, this corresponds to starting with k − 1 infections, φ(k−1)i.

Adding these together gives the result.

b.
φ̇ki = −k(β + γ)φki + kβφ(k+1)i + kγφ(k−1)i

c.

Φ̇(y, t|1) =
∑
i

φ̇1iy
i

=
∑
i

−(β + γ)φ1iy
i + βφ2iy

i + γφ0iy
i

= −(β + γ)Φ(y, t|1) + βΦ(y, t|2) + γΦ(y, t|0)

d. This follows from k applications of Property A.6.

e. So we use Φ(y, t|2) = Φ(y, t|1)2 and Φ(y, t|0) = 1 to give

Φ̇(y, t|1) = −(β + γ)Φ(y, t|1) + βΦ(y, t|1)2 + γ

= (β + γ)

[
βΦ(y, t|1)2 + γ

β + γ
− Φ(y, t|1)

]
= (β + γ)[ ˆµ(Φ(y, t|1))− Φ(y, t|1)]

Replacing Φ(y, t|1) with Φ(y, t) completes the derivation.

Exercise 3.8 Define Φ(y, t|k) to be the PGF for the probability of having i infections at time t given k
infections at time 0.

a. Explain why Φ(y, t|k) = [Φ(y, t)]k.

12



b. Show that if we substitute Φ(y, t|k) = [Φ(y, t)]k in place of Φ(y, t) in Eq. (18) the equation remains
true with the initial condition yk.

c. Show that if we substitute Φ(y, t|k) = [Φ(y, t)]k in place of Φ(y, t) in equation (19) we do not get a
true equation.

So Eq. (18) applies regardless of the initial condition, but Eq. (19) is only true for the specific initial
condition of one infection.

Solution 3.8

a. This follows from k applications of Property A.6.

b. On the left hand side, the substitution yields

∂

∂t
Φ(y, t)k = kΦ(y, t)k−1 ∂

∂t
Φ(y, t)

and on the right hand side we get

(β + γ)[µ̂(y)− y]
∂

∂y
Φ(y, t)k = kΦ(y, t)k−1(β + γ)[µ̂(y)− y]

∂

∂y
Φ(y, t)

The kΦ(y, t)k−1 term on each side cancel, and we have a correct equation.

c. On the left hand side the substitution yields

∂

∂t
Φ(y, t)k = kΦ(y, t)k−1 ∂

∂t
Φ(y, t)

as before, but on the right hand side we get

(β + γ)[µ̂(Φ(y, t)k)− Φ(y, t)k] = βΦ(y, t)2k + γ − (β + γ)Φ(y, t)k

There is no common term we can cancel to get back to the original equation.

Exercise 3.9 Let Φ(y, t|k) be the PGF for the number of infections assuming there are initially k infections.
Derive the backward Kolmogorov equation for Φ(y, t|k). Note that some of the Φs in the derivation above
would correspond to Φ(y, t|1) and some of them to Φ(y, t|k).

Solution 3.9 We have

Φ̇(y, t|k) =
∑
i

φ̇kiy
i

=
∑
i

[
−k(β + γ)φki + kβφ(k+1)i + kγφ(k−1)i

]
yi

= −k(β + γ)Φ(y, t|k) + kβΦ(y, t|k + 1) + kγΦ(y, t|k − 1)

Exercise 3.10 Comparison of the formulations

a. Using Eq. (18) derive an equation for α̇ where α(t) = Φ(0, t). What, if any, additional information
would you need to solve this numerically?

b. Using Eq. (19), derive Equation (17) for α̇ where α(t) = Φ(0, t). What, if any, additional information
would you need to solve this numerically?

Solution 3.10
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a. We know that α(0) = 0. Substituting into Equation (18)

α̇(t) = (β + γ)[µ̂(0)− 0]
∂

∂y
Φ(0, t)

= γ
∂

∂y
Φ(0, t)

= γφ1(t)

We would also need to know the probability of having one infection at any given time.

b. Again, we know that α(0) = 0. Substituting into Equation (19) yields

α̇ = (β + γ)[µ̂(α)− α]

We would not need any additional information to solve this

Exercise 3.11 Full solution

a. Show that Eq. (19) can be written

∂

∂t
Φ(y, t) = (γ − βΦ(y, t))(1− Φ(y, t))

b. Using partial fractions, set up an integral which you could use to solve for Φ(y, t) analytically (you do
not need to do all the algebra to solve it).

Solution 3.11

a. If we substitute for µ̂, we get

∂

∂t
Φ(y, t) = (β + γ)

(
β[Φ(y, t)]2 + γ

β + γ
− Φ(y, t)

)
= β[Φ(y, t)]2 + γ − (β + γ)Φ(y, t)

and

(γ − βΦ(y, t))(1− Φ(y, t)) = γ − γΦ(y, t)− βΦ(y, t) + β[Φ(y, t)]2

= β[Φ(y, t)]2 − (β + γ)Φ(y, t) + γ

So these are equal.

b. We have ∫
1

(γ − βΦ(y, t))(1− Φ(y, t))
dΦ(y, t) =

∫
dt

We write the first integrand as 1
(γ−βΦ(y,t))(1−Φ(y,t)) = A

γ−βΦ(y,t) + B
1−Φ(y,t) and must solve for A and

B. Then this is integrable.

Exercise 3.12 Argue from their definitions that Φ(y, t) = Π(y, z, t)|z=1.

Solution 3.12 We have Φ(y, t) =
∑
i φi(t)y

i where φi(t) is the probability of i infections at time t. Simi-
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larly

Π(y, z, t)|z=1 =
∑
i,r

πi,ry
izr

∣∣∣∣∣∣
z=1

=
∑
i

∑
r

πi,ry
i1r

=
∑
i

(
yi
∑
r

πi,r

)

and because
∑
r πi,r = φi, the result follows.

Exercise 3.13 Derive Theorem 3.3 from Theorem 3.4.

Solution 3.13 Note that Φ(y, t) = Π(y, 1, t). Setting z = 1 into the equation for Π yields the equation for
Φ.

Exercise 3.14 Derive Theorem 3.5 from Theorem 3.4.

Solution 3.14 Note that for z < 1, Ω∞(z) = limt→∞Π(0, z, t) and for z = 1 it is 1.
As t→∞, we must have ∂

∂tPi(0, z, t) = 0 since the system approaches a disease-free state and thus all
coefficients converge to a constant. For this to hold, Equation (22) yields

lim
t→∞

µ̂(Π(0, z, t), z) = lim
t→∞

Π(0, z, t)

Substituting with Ω∞ completes the result.

Exercise 3.15 Equivalence of continuous and discrete final size distributions.
Show by direct substitution that if Ω∞(z) = µ̂(Ω∞(z), z) then Ω∞(z) = zµ(Ω∞(z)) where µ(y) =

γ/(β + γ − βy) is the PGF for the offspring distribution found in Exercise 3.2.

Solution 3.15 We take

Ω∞(z) = µ̂(Ω∞(z), z)

=
β[Ω∞(z)]2 + γz

β + γ

So

(β + γ)Ω∞(z) = β[Ω∞(z)]2 + γz

Ω∞(z)[β + γ − βΩ∞(z)] = γz

Ω∞(z) =
γz

β + γ − βΩ∞(z)

Exercise 3.16 We revisit the derivations of the usual mass action SIR ODEs. Following Example 3.3,

a. Derive [Ṡ] in terms of [SI].

b. Derive [İ] in terms of [SI] and [I].

c. Using [S] + [I] + [R] = N , derive [Ṙ].

Solution 3.16
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a. We have

[Ṡ] =
∂

∂t

∂

∂x
Ξ(x, y, t)

∣∣∣∣
x=y=1

=
∂

∂x

∂

∂t
Ξ(x, y, t)

∣∣∣∣
x=y=1

=
∂

∂x

(
β(y2 − xy)

N

∂

∂x

∂

∂y
Ξ(x, y, t) + γ(1− y)

∂

∂y
Ξ(x, y, t)

)∣∣∣∣
x=y=1

= −βy
N

∂

∂x

∂

∂y
Ξ(x, y, t) +

β(y2 − xy)

N

∂2

∂x2

∂

∂y
Ξ(x, y, t) + γ(1− y)

∂

∂x

∂

∂y
Ξ(x, y, t)

∣∣∣∣
x=y=1

= − β
N

∂

∂x

∂

∂y
Ξ(1, 1, t)

= − β
N

[SI]

b. We have

[İ] =
∂

∂t

∂

∂y
Ξ(x, y, t)

∣∣∣∣
x=y=1

=
∂

∂y

(
β(y2 − xy)

N

∂

∂x

∂

∂y
Ξ(x, y, t) + γ(1− y)

∂

∂y
Ξ(x, y, t)

)∣∣∣∣
x=y=1

=
β(2y − x)

N

∂

∂x

∂

∂y
Ξ(x, y, t) +

β(y2 − xy)

N

∂

∂x

∂2

∂y2
Ξ(x, y, t)− γ ∂

∂y
Ξ(x, y, t) + γ(1− y)

∂2

∂y2
Ξ(x, y, t)

∣∣∣∣
x=y=1

=
β

N

∂

∂x

∂

∂y
Ξ(1, 1, t)− γ ∂

∂y
Ξ(1, 1, t)

=
β

N
[SI]− γ[I]

c. As [Ṡ] + [İ] + [Ṙ] = 0, we conclude

[Ṙ] = −[Ṡ]− [İ] = γ[I]

4 Large-time dynamics

Exercise 4.1 Ancestor distribution for homogeneous well-mixed population.
Consider an SIR disease in a well-mixed population having N individuals and a given R0. Let v be a

randomly chosen individual from the directed graph created by placing edges from each node to all those
nodes they would transmit to if infected.

a. Show that if the average number of offspring is R0, then so is the average number of infectors.

b. If there are exactly R0N edges in the directed graph and each recipient is chosen uniformly at random
from the population (independent of any previous choice), argue that the number of transmissions v
receives has a binomial distribution with R0N trials and probability R0/N . (technically we must allow
edges from v to v)

c. Argue that if R0 remains fixed as N → ∞, then the number of transmissions v receives is Poisson
distributed with mean R0.

Solution 4.1

a. From Graph Theory, the average in-degree must equal the average out-degree.
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Alternately we can note that the average number of edges coming out of a node is the total number of
edges divided by N , so the total number of edges is expected to be R0N . Then the average number of
edges in is also the total number divided by N , that is, R0.

b. Individual v receives a given transmission with probability 1/N . There are R0N edges, each of which
could reach v with probability 1/N . So this defines a binomial distribution.

c. As N increases, the probability a particular edge goes to v is 1/N , while the number of edges is R0N .
This defines a Poisson distribution with mean R0.

Exercise 4.2 Explain why for large N the probability v is still susceptible at generation g if she was initially
susceptible is χ(S(g − 1)/N).

Solution 4.2 Consider the directed graph created by placing an edge from a node to each node it would
infect if given the opportunity. v is susceptible at generation g iff v was initially susceptible, and no ancestor
of v was infected by generation g − 1.

The probability a randomly chosen ancestor was susceptible at generation g − 1 is S(g − 1)/N . If pi is
the probability of having i ancestors, then the probability of being susceptible at generation g is

∑
i

pi

(
S(g − 1)

N

)i
but this is just χ(S(g − 1)/N).

Exercise 4.3 Use Theorem 4.2 to derive a result like Theorem 4.1, but with nonzero ρ.

Solution 4.3 We have limg→∞ S(g) = limg→∞(1− ρ)Nχ(S(g − 1)/N) or S(∞) = (1 − ρ)Nχ(S(∞)/N).
Substituting r(∞) = (N − S(∞)/N) yields

r(∞) = 1− (1− ρ)χ(1− r(∞))

Exercise 4.4 Final size relations
Consider the continuous time SIR dynamics as given in System (35)

a. Assume κ = 1 for all individuals, and write down the corresponding equations for S, I, R, and θ.

b. At large time I → 0, so S(∞) = N − R(∞). But also S(∞) = S(0)ψ(θ(∞)). By writing θ(∞) in
terms of R(∞), derive a recurrence relation for r(∞) = R(∞)/N in terms of r(∞) and R0 = β/γ.

c. Comment on the relation between your result and Theorem 4.1

Solution 4.4

a. ψ(x) is simply x and 〈K〉 = 1. We have

S = N(1− ρ)θ

I = N

(
1− (1− ρ)θ +

γ

β
ln θ

)
R = −γN

β
ln θ

θ̇ = −βI
N
θ

b. Exponentiating the equation for R yields

θ(∞) = exp(−βR(∞)/γN)

= exp(−R0r(∞))
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So we have θ(∞) in terms of r(∞). Now

r(∞) = 1− S(∞)/N

= 1−N(1− ρ)θ(∞)/N

= 1− (1− ρ)θ(∞)

= 1− (1− ρ)e−R0r(∞)

c. This generalizes the result of Theorem 4.1 for arbitrary ρ.

Exercise 4.5 Other relations

a. Using the equations from Exercise 4.4, derive the peak prevalence relation, an expression for the
maximum value of I. [at the maximum İ = 0, so we start by finding θ so that Ṡ + Ṙ = 0.]

b. Similarly, find the peak incidence relation, an expression for the maximum rate at which infections
occur, −Ṡ.

Solution 4.5

a. If Ṡ + Ṙ = 0, then

N(1− ρ)θ̇ − γN

β

1

θ
θ̇ = 0

Factoring out Nθ̇ and taking R0 = β/γ, we are left

(1− ρ)− 1

R0θ
= 0

So

θ =
1

R0(1− ρ)

Then peak prevalence is

N

(
1− 1

R0
+

1

R0
ln

1

R0(1− ρ)

)
= N

(
1− 1

R0
− 1

R0
lnR0(1− ρ)

)

b. At peak incidence −Ṡ takes a maximum. That is, −θ̇ is a maximum. So we need d
dtIθ = 0. That is,

0 =
d

dt

(
θ − (1− ρ)θ2 +

θ

R0
ln θ

)
= θ̇ − (1− ρ)2θθ̇ +

θ̇

R0
ln θ +

1

R0
θ̇

Factoring out θ̇ yields

0 = 1− 2(1− ρ)θ +
ln θ

R0
+

1

R0

So

θ =
1 + (ln θ + 1)/R0

2(1− ρ)

This needs to be solved numerically. Then plugging this result for θ in −Ṡ = −(1−ρ)βN
(

1− (1− ρ)θ + 1
R0

ln θ
)
θ

yields the peak incidence.

Exercise 4.6 Alternate derivation of su.
If the rate of transmissions to u is βIκu/N 〈K〉, then the expected number of transmissions u has received
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is βκu
∫ t

0
I(τ) dτ/N 〈K〉 and this is Poisson distributed.

a. Let fu(x) be the PGF for the number of transmissions u has received. Find an expression for fu(x)

in terms of the integral
∫ t

0
I(τ)dτ .

b. Explain why fu(0) is the probability u is still susceptible.

c. Find fu(0).

Solution 4.6

a. f is the PGF for the Poisson distribution

fu(x) = exp

(
βκu

∫ t
0
I(τ) dτ

N 〈K〉 (x− 1)

)

b. The probability of still be susceptible is the probability of having received 0 transmissions, which in
turn is the coefficient of x0 in the series expansion of fu(x). This is found by setting x = 0.

c. fu(0) = exp
(
−βκu

∫ t
0
I(τ) dτ

N〈K〉

)
Exercise 4.7 Alternate derivation of Theorem 4.3 in the homogeneous case.

The usual homogeneous SIR equations are

Ṡ = −βIS/N
İ = βIS/N − γI
Ṙ = γI

We will derive system (35) for fixed κ = 1 from this system through the use of an integrating factor. Set

θ = e−β
∫ t
0
I(τ)dτ/N .

a. Show that θ̇ = −βIθ/N and so θ̇/θ = −βṘ/Nγ.

b. Using the equation for Ṡ add βIS/N to both sides and then divide by (the factor 1/θ is an integrating
factor). Show that the expression on the left hand side is d

dtS/θ and so

d

dt
S/θ = 0 .

c. Solve for R in terms of θ.

d. Solve for S in terms of θ.

e. Solve for I in terms of θ using S + I +R = N .

This equivalence was found in [35] and [20].

Solution 4.7

a. By direct observation

θ̇ = −βI(t)

N
e−β

∫ t
0
I(τ)dτ/N = −βIθ/N

and dividing by θ and susbtituting Ṙ = γI gives

θ̇/θ = −βṘ/Nγ
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b. The operations yield
Ṡ/θ + βIS/Nθ = 0

So

d

dt
S/θ =

Ṡ

θ
− Sθ̇/θ2

= −βIS/Nθ − SβIθ/Nθ2

= 0

c. Since Ṙ = Nγ
β θ̇/θ we have R = R(0) + Nγ

β ln θ

d. Since d
dtS/θ = 0, we have S = S(0)θ.

e. So I = N − S(0)θ −R(0)− Nγ
β ln θ.

Exercise 4.8 Alternate derivation of Theorem 4.3.
Consider now a population having many subgroups of susceptibles denoted by κ with the group κ receiving

transmissions at rate βκI/N per individual. Once infected, each individual transmits with rate β 〈K〉 and
recovers with rate γ. These assumptions lead to

Ṡκ = −βκ I

N 〈K〉Sκ

İ = −γI + β
I

N 〈K〉
∑
κ

κSκ

Ṙ = γI

Following Exercise 4.7, set θ = e−β
∫ t
0
I(τ) dτ/N and derive system (35) from these equations by use of an

integrating factor.

Solution 4.8 We write

Ṡκ + βκ
I

N 〈K〉Sκ = 0

and multiply by 1/θκ. Then
d

dt

Sκ
θκ

= 0

and
Sκ(t) = Sκ(0)θκ

We assume that ψ(x) =
∑
κ P (κ)xκ. where P (κ) = Nκ/N . Starting with a fraction 1 − ρ randomly

infected yields our expression for S =
∑
κ Sκ(t).

Since Ṙ = γI and θ̇ = −βIθ/N , we can substitute to find Ṙ = −γNθ̇/θβ. This can be integrated to find
R in terms of θ.

Then simply set I = N − S −R to complete the calculation.

5 Multitype populations

Exercise 5.1 Consider a vector-borne disease for which each infected individual infects a Poisson-distributed
number of vectors, with mean λ. Each infected vector causes i infections with probability pi = πi(1− π) for
some π ∈ [0, 1]. This scenario corresponds to human infection lasting for a fixed time with some constant
transmission rate to vectors, and each vector having probability π of living to bite again after each bite and
transmitting with probability 1 if biting.
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a. Let αg|1 and αg|2 be the probability that an outbreak would go extinct in g generations starting with an

infected human or vector respectively. Find the vector-valued function ~ψ(~x) = (ψ1(~x), ψ2(~x)). That
is, what are the PGFs ψ1(x1, x2) and ψ2(x1, x2)?

b. Set λ = 3 and π = 0.5. Find the probability of an epidemic if one infected human is introduced or if
one infected vector is introduced.

c. For the same values, find the probability of an epidemic if one infected vector is introduced.

d. Find ψ2(ψ1(0, x), 0). How should we interpret the terms of its Taylor Series expansion?

Solution 5.1

a. • ψ1(x1, x2) = eλ(x2−1) (independent of x1)

• ψ2(x1, x2) = 1−π
1−πx1

(independent of x2)

b. ~ψ(~x) =
(
e3(x2−1), 1

2−x1

)
. Starting with ~x = (0, 0), and iterating until convergence we have ~x =

(0.2868, 0.5837). So the epidemic probability is 0.7132 starting from a human and 0.4163 starting
from a vector.

Exercise 5.2 Starting from the equations

Ṡi = − Si
Ni

∑
j

βijIj

İi = −γiIi +
Si
Ni

∑
j

βijIj

Ṙi = γiIi

use integrating factors to derive System (37).

Solution 5.2

a. We have

Ṡi = − Si
Ni

∑
j

βijIj

Ṡi +

(∑
j βijIj

Ni

)
Si = 0

d

dt
Sie

ξi = 0

Si = Si(0)e−ξi

where ξ̇i =
∑
j βijIj/Ni.

It is straightforward to add Ṙi = γiIi and Ii = Ni − Si −Ri.
Exercise 5.3 Assume the population is grouped into subgroups of size Ni with N =

∑
iNi and the i-th

subgroup has a parameter κi representing their rate of contact with others. Take

βji = κj
κiNi∑
`N`κ`

β

to be the transmission rate from type i individuals to a single type j individual, and assume all infected
individuals recover with the same rate γ.

Define θ = e−β(
∑
j κj

∫ t
0
Ij(τ) dτ)/

∑
j κjNj and define the PGF ψ(x) =

∑
i
Ni
N xi. Let S =

∑
i Si, I =
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∑
i Ii, and R =

∑
Ri.

a. Explain what assumptions this model makes about interactions between individuals in group i and j.

b. Show that

S = Nψ(θ)

I = N − S −R
Ṙ = γI

θ̇ = −βθ
∑
j κjIj∑
j κjNj

with θ(0) = 1.

c. Explain why
∑
j κjIj∑
j κjNj

= 1−
∑
j κjSj∑
j κjNj

−
∑
j κjRj∑
j κjNj

.

d. Show that
∑
j κjSj∑
j κjNj

= θψ′(θ)
ψ′(1) .

e. Show that d
dt

∑
j κjRj∑
j κjNj

= −(γ/β) θ̇θ , and solve for
∑
j κjRj∑
j κjNj

in terms of θ assuming Rj = 0 for all j.

f. Thus conclude that

θ̇ = −βθ + β
θ2ψ′(θ)

ψ′(1)
− θγ ln θ

Solution 5.3

a. People in group i interact with others at rate κi, and they choose their partners at random at each
time from the entire population with probability proportional to the partner’s interaction rate.

b. This can be derived directly from an integrating factor or by simply substituting in and checking that
the ODEs are satisfied.

c. If we move the S and R terms to the right hand side, the numerator becomes
∑
j κj(Ij + Sj +Rj) =∑

j κjNj.

d. We have Sj = Njθ
κ
j So

κjSj = κjθ
κj

= θ
d

dθ
θκj

Thus summing the terms in the numerator gives θψ′(θ). The denominator can be foundsimilarly.

e. If we substitute γIj for Ṙj and compare with the θ̇ equation the ODE is shown. Then integrating both
sides gives

∑
j κjRj/

∑
j κjNj = (γ/β) ln θ.

f. We simply substitute the results of d and e into c. Then substitute this into the θ̇ equation from b.

A Important properties of PGFs

Exercise A.1 Prove Property A.2 [write out the sum and show that the derivatives eliminate any rm for
m < n, the leading coefficient of the result is n!rn, and the later terms are all zero].
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Solution A.1 We first find(
d

dx

)n
f(x) =

(
d

dx

)n∑
m

rmx
m

=
∑
m

(
d

dx

)n
rmx

m

=
∑
m

m(m− 1) · · · (m− n+ 1)rmx
m−n

• if m < n, one of the terms in the product m(m− 1) · · · (m− n+ 1) is zero.

• if m = n then m(m− 1) · · · (m− n+ 1) becomes n!, and xm−n is simply 1.

• if m > n, then there is a nonzero factor in front and a factor of xm−n.

When we evaluate this derivative at x = 0, the terms which are already zero remain zero, the m = n term
remains unchanged, and the other terms all have 0 raised to a positive power so they become zero.

Thus we are left rn.

Exercise A.2 Verification of Equation (38):
In this exercise we show that the formula in Equation (38) yields rn. Assume that the integral is

performed on a circle of radius R ≤ 1 about the origin.

a. Write f(z) =
∑
m rmz

m and rewrite
∫ 1

0
f(Re2πiu)
Rne2nπiu du as a sum∫ 1

0

f(Re2πiu)

Rne2nπiu
du =

∑
m

rm

∫ 1

0

Rm−ne2(m−n)πiu du

b. Show that for m = n the integral in the summation on the right hand side is 1.

c. Show that for m 6= n, the integral in the summation on the right hand side is 0.

d. Thus conclude that the integral on the left hand side must yield rn.

Solution A.2

a. Substituting we have ∫ 1

0

f(Re2πiu)

Rne2nπiu
du =

∫ 1

0

∑
m rm(Re2πiu)m

Rne2nπiu
du

=
∑
m

rm

∫ 1

0

Rm−ne2(m−n)πiu du

b. For m = n, both Rm−n and e2(m−n)πiu become 1. Thus we have
∫ 1

0
1du = 1.
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c. For m 6= n, the integral becomes∫ 1

0

Rm−ne2(m−n)πiu du = Rm−n
∫ 1

0

e2(m−n)πiu du

= Rm−n
∫ 1

0

e2(m−n)πiu du

= Rm−n
1

2(m− n)πi

(
e2(m−n)πi1 − e2(m−n)πi0

)
= Rm−n

1

2(m− n)πi
(1− 1)

= 0

where in the last step we use the fact that e2Nπi = cos 2Nπ + i sin 2Nπ = 1 for any integer N .

d. So the integral
∫ 1

0
f(Re2πiu)
Rne2nπiu du becomes∫ 1

0

f(Re2πiu)

Rne2nπiu
du = 0r0 + 0r1 + · · ·+ 0rn−1 + 1rn + 0rn+1 + · · ·

= rn

Exercise A.3 Let f(z) = ez = 1 + z+ z2/2 + z3/6 + z4/24 + z5/120 + · · · . Write a program that estimates
r0, r1, . . . , r5 using Equation (39) with R = 1. Report the values to four significant figures for

a. M = 2

b. M = 4

c. M = 5

d. M = 10

e. M = 20.

f. How fast is convergence for different rn?

Solution A.3 The script integral exercise.py which is given as a supplementary file perfoms these
calculations.

a. M = 2:

r0 ≈ 1.543

r1 ≈ 1.175

r2 ≈ 1.543

r3 ≈ 1.175

r4 ≈ 1.543

r5 ≈ 1.175
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b. M = 4:

r0 ≈ 1.042

r1 ≈ 1.008

r2 ≈ 0.5013

r3 ≈ 0.1669

r4 ≈ 1.042

r5 ≈ 1.008

c. M = 5:

r0 ≈ 1.008

r1 ≈ 1.001

r2 ≈ 0.5002

r3 ≈ 0.1667

r4 ≈ 0.04167

r5 ≈ 1.008

d. M = 10:

r0 ≈ 1.000

r1 ≈ 1.000

r2 ≈ 0.500

r3 ≈ 0.1667

r4 ≈ 0.04167

r5 ≈ 0.008333

e. M = 20:

r0 ≈ 1.000

r1 ≈ 1.000

r2 ≈ 0.5000

r3 ≈ 0.1667

r4 ≈ 0.04167

r5 ≈ 0.008333

f. Convergence is quite fast, and predicts rn quite well once M > n.

Exercise A.4 The derivation in example A.1 was based on looking at what happened after a single flip
and then looking g − 1 flips into the future in the inductive step. Derive αg = f(αg−1) by instead looking
g − 1 flips into the future and then considering one additional step. [the distinction between this argument
and the previous one becomes useful in the continuous-time case where we use the ‘backward’ or ‘forward’
Kolmogorov equations.]

Solution A.4 As in the example, we take αg to be the probability of failure within the first g flips, with
α0 = 0 and α1 = 1− p = f(0).

If the first flip does not come up as “failure”, then the probability that failure occurs within the following
g − 1 flips is (by definition) αg−1. So the probability of failure within the first g flips is the probability of
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failure in the first flip plus the probability of success time αg−1. That is:

αg = (1− p) + pαg−1 = f(αg−1)

Exercise A.5 Consider a fair six-sided die with numbers 0, 1, . . . , 5, rather than the usual 1, . . . , 6. We
roll the die once. Then we look at the result, and roll that many copies (if zero, we stop), then we look at
the sum of the result and repeat. Define

f(x) =
1 + x+ · · ·+ x5

6
=

{
x6−1

6(x−1) x 6= 1

1 x = 1

Define αg to be the probability the process stops after g iterations (with α0 = 0 and α1 = 1/6).

a. Find an expression for αg, the probability that by the g’th iteration the process has stopped, in terms
of f(x).

b. Rephrase this question in terms of the extinction probability for an infectious disease.

Solution A.5

a. The probability of dying out after g iterations is the sum over all i of the probability that the first roll
is an i and the process dies out after g− 1 iterations. By thinking of each die that rolls an i as having
i “offspring” we can assign each individual a collection of descendants. The process goes extinct after
g iterations if all the dice in the second roll have no offspring after g − 1 iterations.

6∑
i=0

1

6
αig−1 = f(αg−1) = f [g](0)

b. This is equivalent to a disease for which each individual causes 0, 1, 2, 3, 4, or 5 new infections with
equal probability. So the extinction probability for such a disease is f [g](0).

Exercise A.6 Note that if we interchange p and q in the PGF of the negative binomial distribution in
Table 1, it is simply the PGF of the geometric distibution raised to the power r̂. A number chosen from the
negative binomial can be defined as the number of successful trials (each with success probability p) before
the r̂th failure.

Using this and Property A.8, derive the PGF of the negative binomial.

Solution A.6 We re-express the negative binomial by interchanging what we count as a failure and success.
We seek the number of failures that occur before the r̂th success. We say a success occurs with probability
p̂ and failure with probability q̂ = 1− p̂ (which satisfy p̂ = q, q̂ = p).

The result for the geometric distribution says that the number of failures between each success has PGF
p̂/(1 − q̂x). We need the sum of r̂ of these. So by Property A.8, we have that the negative binomial has
PGF [p̂/(1− q̂x)]r̂. Replacing p̂ by q and q̂ by p completes the result.

Exercise A.7 Sicherman dice [18, 17].
To motivate this exercise consider two tetrahedral dice, numbered 1, 2, 3, 4. When we roll them we get

sums from 2 to 8, each with its own probability, which we can infer from this table:

� � � �

� 2 3 4 5

� 3 4 5 6

� 4 5 6 7

� 5 6 7 8

However another pair of tetrahedral dice, labelled 1, 2, 2, 3 and 1, 3, 3, 5 yields the same sums with the same
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probabilities:

� � � �

� 2 3 3 4

� 4 5 5 6

� 4 5 5 6

	 6 7 7 8

We now try to find a similar pair for 6-sided dice. First consider a pair of standard 6-sided dice.

a. Show that the PGF of each die is f(x) = (x+ x2 + x3 + x4 + x5 + x6)/6.

b. Fill in the tables showing the possible sums from rolling two dice (fill in each square with the sum of
the two entries) and multiplication for two polynomials (fill in each square with the product of the two
entries):

� � � � 	 


�

�

�

�

	




x1 x2 x3 x4 x5 x6

x1

x2

x3

x4

x5

x6

.

c. Explain the similarity.

d. Show that each step of the following factorization is correct:

f(x) =
x(1 + x+ x2 + x3 + x4 + x5)

6

=
x(1 + x+ x2)(1 + x3)

6

=
x(1 + x+ x2)(1 + x)(1− x+ x2)

6
.

This cannot be factored further, and indeed it can be shown that a property similar to prime numbers holds.
Namely, any factorization of f(x)f(x) as h1(x)h2(x) has the property that each of h1 and h2 can be factored
into some powers of these “prime” polynomials times a constant.

We seek two new six-sided dice (each different) such that the sum of a roll of the two dice has the same
probabilities as the normal dice. The two dice have positive integer values on them (so no fair adding a
constant c to everything on one die and subtracting c on the other). Let h1(x) and h2(x) be their PGFs.

e. Explain why we must have h1(x)h2(x) = [f(x)]2.

f. If the dice have numbers a1, . . . , a6 and b1, . . . , b6, show that their PGFs are of the form h1(x) =∑
i x

ai/6 and h2(x) =
∑
i x

bi/6 where all ai and bi are positive integers.

g. Given the properties we want for the dice, find h1(0) and h2(0).
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h. Given the properties we want for the dice, find h1(1) and h2(1).

i. Using the values at x = 0 and x = 1, explain why h1(x) = x(1 + x + x2)(1 + x)(1 − x + x2)b/6 and
h2(x) = x(1 + x+ x2)(1 + x)(1− x+ x2)2−b/6 where b is 0, 1, or 2.

j. The case b = 1 gives the normal dice. Conside b = 0 (b = 2 gives the same final result). Find h1(x).
h2(x) = 1

6 (x+ x3 + x4 + x5 + x6 + x8)

k. Create the table for the two dice corresponding to h1(x) and h2(x) and verify that the sums occur with

the same frequency as a normal pair:

Solution A.7

a. Because each i in 1, 2, . . . , 6 has probability 1/6, we have f(x) =
∑6
i=1(1/6)xi.

b.

1 2 3 4 5 6

1 2 3 4 5 6 7

2 3 4 5 6 7 8

3 4 5 6 7 8 9

4 5 6 7 8 9 10

5 6 7 8 9 10 11

6 7 8 9 10 11 12

x1 x2 x3 x4 x5 x6

x1 x2 x3 x4 x5 x6 x7

x2 x3 x4 x5 x6 x7 x8

x3 x4 x5 x6 x7 x8 x9

x4 x5 x6 x7 x8 x9 x10

x5 x6 x7 x8 x9 x10 x11

x6 x7 x8 x9 x10 x11 x12

.

c. Multiplication of two powers of x results in addition of the exponents.

d. We have

x(1 + x+ x2)(1 + x3) = x(1 + x+ x2 + x3 + x4 + x5)

= x+ x2 + x3 + x4 + x5 + x6

and

(1 + x)(1− x+ x2) = 1− x+ x2 + x− x2 + x3

= 1 + x3

e. Since the PGF of the sum of the two dice is equal to the product of the PGFs of the two dice, we must
have h1(x)h2(x) = [f(x)]2.

f. For each die, the probabilities of the sides are 1/6. So they take the form
∑
i x

ai/6 and
∑
i x

bi/6.

g. Because each ai and bi is positive
∑
i 0ai/6 and

∑
i 0bi/6 are both 0.

h.
∑
i 1ai/6 = 1 and

∑
i 1bi/6 = 1.
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i. Because h1(0) = h2(0) = 0, both of them must have a factor of x. Because h1(1) = h2(1) = 1 and
the denominators are 6, the numerators when x = 1 must be 6. So there must be a factor of 2 and
3 in the numerator. This requires that each has a single factor of (1 + x+ x2) and (1 + x). Because
1− x+ x2 is 1 when x = 1, they could have a factor of (1− x+ x2)2−b for b = 0, 1, or 2.

j. Taking b = 0 we have

h1(x) = x(1 + x+ x2)(1 + x)/6

=
x(1 + 2x+ 2x2 + x3)

6

=
x+ x2 + x2 + x3 + x3 + x4

6

The calculation for h2(x) is not asked for in the question, but it is

h2(x) = h1(x)(1− x+ x2)(1− x+ x2)

= h1(x)(1− x+ x2 − x+ x2 − x3 + x2 − x3 + x4)

=
x+ 2x2 + 2x3 + x4

6
(1− 2x+ 3x2 − 2x3 + x4)

=
1

6

(
x− 2x2 + 3x3 − 2x4 + x5

+ 2x2 − 4x3 + 6x4 − 4x5 + 2x6

+ 2x3 − 4x4 + 6x5 − 4x6 + 2x7

+ x4 − 2x5 + 3x6 − 2x7 + x8
)

=
1

6
(x+ x3 + x4 + x5 + x6 + x8)

k.

1 2 2 3 3 4

1 2 3 3 4 4 5

3 4 5 5 6 6 7

4 5 6 6 7 7 8

5 6 7 7 8 8 9

6 7 8 8 9 9 10

8 9 10 10 11 11 12

The sums all occur with the same frequency as a normal pair.

If we didn’t calculate h2(x) in the previous part, we could have inferred the values from knowing what
the first die was and what values would be needed to match the normal pair.

Exercise A.8 Early-time outbreak dynamics

a. Consider normal dice. The PGF is f(x) = (x+x2 +x3 +x4 +x5 +x6)/6. Consider the process where
we roll a die, take the result i, and then roll i other dice and look at their sum. What is the PGF of
the resulting sum in terms of f?

b. If an infected individual causes anywhere from 1 to 6 infections, all with equal probability, find the
PGF for the number of infections in generation 2 if there is one infection in generation 0. [you can
express the result in terms of f ]

c. And in generation g (assuming depletion of susceptibles is unimportant)?
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Solution A.8

a. By Property A.8, the PGF is f(f(x)).

b. This is equivalent to the dice-rolling example. It is f(f(x)).

c. More generally for generation g, we have f [g](x).

Exercise A.9 Understanding cobweb diagrams
From figure 10 the origin of the term “cobweb” may be unclear. Because of properties of PGFs, the

more interesting behavior does not occur for our applications. Here we investigate cobweb diagrams in more
detail for non-PGF functions. Since we use f(x) to denote a PGF, in this exercise we use z(x) for an
arbitrary function.

a. Consider the line z(x) = 2(1 − x)/3. Starting with x0 = 0, show how the first few iterations of
xi = z(xi−1) can be found using a cobweb diagram (do not explicitly calculate the values).

b. Now consider the line z(x) = 2(1− x). The solution to z(x) = x is x = 2/3. Starting from an initial
x0 close to (but not quite equal to) 2/3, do several iterations of the cobweb diagram graphically.

c. Repeat this with the lines z(x) = 1/4 + x/2 starting at x0 = 0 and z(x) = −1 + 3x starting close to
where x = z(x).

d. What is different when the slope is positive or negative?

e. Can you predict what condition on the slope’s magnitude leads to convergence to or divergence from
the solution to x = z(x) when z is a line?

So far we have considered lines z(x). Now assume z(x) is nonlinear and consider the behavior of cobweb
diagrams close to a point where x = z(x).

f. Use Taylor Series to argue that (except for degenerate cases where z′ is 1 at the intercept) it is only
the slope at the intercept that determines the behavior sufficiently close to the intercept.

Solution A.9

a. For z(x) = 2(1−x)/3 with x0 = 0, the cobweb diagram spirals in towards 0.4, the solution to x = z(x).

0.0 0.2 0.4 0.6 0.8 1.0

x

0.0

0.2

0.4

0.6

0.8

1.0

y

b. For z(x) = 2(1 − x) with x0 = 0.664, the cobweb diagram spirals away from 2/3, the solution to
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x = z(x).

0.0 0.2 0.4 0.6 0.8 1.0 1.2

x

−0.5

0.0

0.5

1.0

1.5

2.0

y

c. For z(x) = 1/4 + x/2, the cobweb diagram steps in to x = 1/2, the solution x = z(x).

0.0 0.2 0.4 0.6 0.8 1.0

x

0.0

0.2

0.4

0.6

0.8

1.0

y

For z(x) = −1+3x, the cobweb diagram steps away from x = 1/2, the solution x = z(x).

−400−350−300−250−200−150−100−500 50

x

−1200

−1000

−800

−600

−400

−200

0

200

y
d. When the slope is positive, each successive value is on the same side of the intercept. When it is

negative the values alternate.

e. If we take x∗ to be the solution x∗ = z(x∗), then when |z′(x∗)| > 1 the values diverge from x∗, while
when |z′(x∗)| < 1 they converge.

f. Sufficiently close to the intersection where x∗ = z(x∗), we can locally treat z(x) as a line. If z′(x∗) is 1
at this intersection, this line lies on top of z(x) = x and the correction to the line makes a difference.
For all other values the nonlinear terms can be neglected.

Exercise A.10 Structure of fixed points of f(x).
Consider a PGF f(x) =

∑
i rix

i, and assume r0 > 0.

a. Show that f(1) = 1 and f(0) > 0.

b. Show that f(x) is convex (that is f ′′(x) ≥ 0) for x > 0. [hint ri ≥ 0 for all i]

c. Thus argue that if f ′(1) ≤ 1, then x = f(x) has only one solution to x = f(x) in [0, 1], namely
f(1) = 1. It may help to draw pictures of f(x) and the function y = x for x in [0, 1].

d. Explain why if there is a point x0 6= 1 where f(x0) = x0 and f(x) > x for x in some region (x0, x1)
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then 0 < f ′(x0) < 1.

e. Thus show that if f ′(1) > 1 then there are exactly two solutions to x = f(x) in [0, 1], one of which is
x = 1.

Solution A.10

a. f(1) =
∑
i ri1

i =
∑
i ri = 1 because the ri form a probability distribution and f(0) =

∑
i ri0

i = r0 > 0.

b. f ′′(x) =
∑
i i(i− 1)rix

i−2. Because ri ≥ 0 and x ≥ 0 this sum is ≥ 0. [the inequality is strict if any
ri > 0 for i ≥ 2].

c. Note first that f(1) = 1. If f ′(1) ≤ 1, then for all x in 0 ≤ x < 1, we have f ′(1) < 1. So because the
line y = x has a larger slope, it lies strictly below f(x) for all x in [0, 1). [a more rigorous argument
can be made using the mean value theorem: assume some x0 in [0, 1) has f(x0) = x0. Then by the
mean value theorem there is an x̂ ∈ (x0, 1) where f ′(x̂) is equal to the slope of the line connecting the
points (x0, f(x0)) and (1, f(1)). This line is y = x, and has slope 1, so f ′(x̂) = 1. No such x̂ exists,
so the assumption that such an x0 exists must be false.]

d. f ′(x0) > 0 because f ′(x0) =
∑
i irix

i−1 and unless r0 = 1, this is strictly positive. If r0 = 1, then
f(x) = 1 and no such x0 exists. To show f ′(x0) < 1, note that for f(x) to be less than x for x > x0,
but equal to x for x = x0, it must have smaller slope than that of y = x [a more rigorous proof uses
the mean value theorem to show that there is an x̂ ∈ (x0, x1) with slope < 1 and so since f ′′(x) > 0,
we have f ′(x0) < f ′(x̂) < 1.].

e. Again we start with the observation that f(1) = 1. Because f ′(x) > 1 at x = 1, there must be a
region (x̂, 1) such that if x ∈ (x̂, 1) then f(x) < x as it has greater slope than the line y = x [again,
a more rigorous proof would use the mean-value theorem, and the fact that f ′(x) is continuous at 1].
However, for the curve f(x) to reach f(0) > 0 at x = 0, it must somewhere cross the line [rigorously,
we can use the intermediate value theorem applied to the function f(x)− x with the point x = 0 and
some x = x1 ∈ (x0, 1)]. At the point x0 where f(x) crosses y = x, our previous result shows that
f ′(x0) < 1. So for x ∈ (0, x0) we have f ′(x) < 1 as well. Thus f(x) cannot cross y = x at any other
point in (0, x0) [again, the mean value theorem does this more rigorously: if it did cross again, then
we could prove some x̂ ∈ (0, x0) where f ′(x̂) = 1].

Exercise A.11 Alternate derivation of Equation (40)
An alternate way to derive Equation (40) is through directly calculating ṙi.

a. Explain why ṙi = −∑m λmiri +
∑
m λm(i−m+ 1)ri−m+1.

b. Taking ḟ(x, t) =
∑
i ṙix

i, derive Equation (40).

Solution A.11

a. We simply look at the rate ri is decreasing due to events that move the system out of state i plus
the rate it increases due to events that move the system into state i. The total rate moving out is∑
m λmiri. The total rate in is

∑
m λm(i−m+ 1)ri−m+1.
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b.

ḟ(x, t) =
∑
i

ṙix
i

=
∑
i

(
−
∑
m

λmiri +
∑
m

λm(i−m+ 1)ri−m+1

)
xi

= −
∑
i

∑
m

λmirix
i +
∑
i

∑
m

λm(i−m+ 1)ri−m+1x
i

= −Λ
∑
i

irix
i +
∑
m

λm
∑
i

(i−m+ 1)ri−m+1x
i

= −Λx
∑
i

irix
i−1 +

∑
m

λmx
m
∑
i

(i−m+ 1)ri−m+1x
i−m

= −Λx
∂

∂x

∑
i

rix
i +
∑
m

λmx
m ∂

∂x

∑
i

ri−m+1x
i−m+1

= −Λx
∂

∂x
f(x, t) +

∑
m

λmx
m ∂

∂x
f(x, t)

= −Λx
∂

∂x
f(x, t) + Λh(x)

∂

∂x
f(x, t)

= Λ(h(x)− x)
∂

∂x
f(x, t)

Exercise A.12 In many cases interactions between two individuals of the same type are important. These
may occur with rate i(i − 1) or i2 depending on the specific details. Assume we have only a single type of
individual with PGF f(x, t) =

∑
i ri(t)x

i.

a. If a collection of events to replace two individuals with m individuals occur with rate βmi(i − 1),

find how write a PDE for f . Your final result should contain ∂2

∂x2 f(x, t). Use B =
∑
m βm and

g(x) =
∑
m βmx

m/B. Follow the derivation of Equation (40).

b. If instead the events replace two individuals with m individuals and occur with rate βmi
2, find how to

incorporate them into a PDE for f . Your final result should contain ∂
∂x

(
x ∂
∂xf(x, t)

)
or equivalently

∂
∂xf(x, t) + x ∂2

∂x2 f(x, t).

Solution A.12

a. Let βmi(i − 1) denote the rate at which the system goes from a state with i individuals to i − 2 + m
individuals (that is, two individuals are replaced by m). Then

f(x, t+ ∆t) =
∑
i

ri(t)

[∑
m

(βmi(i− 1)∆t)xi+m−2 +

(
1−

∑
m

βmi(i− 1)∆t

)
xi

]
+ O(∆t)

=
∑
i

rix
i +
∑
m

βm(∆t)(xm − x2)
∑
i

rii(i− 1)xi−2 + O(∆t)

= f(x, t) + B∆t[g(x)− x2]
∑
i

rii(i− 1)xi−2 + O(∆t)

= f(x, t) + B∆t[g(x)− x2]
∂2

∂x2
f(x, t) + O(∆t)

Plugging this into
∂

∂t
f(x, t) = lim

∆t→0

f(x, t+ ∆t)− f(x)

∆t
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yields
∂

∂t
f(x, t) = B[g(x)− x2]

∂2

∂x2
f(x, t)

b. The proof is almost the same as the previous case: Let βmi
2 denote the rate at which the system goes

from a state with i individuals to i − 2 + m individuals (that is, two individuals are replaced by m).
Then

f(x, t+ ∆t) =
∑
i

ri(t)

[∑
m

(βmi
2∆t)xi+m−2 +

(
1−

∑
m

βmi
2∆t

)
xi

]
+ O(∆t)

=
∑
i

rix
i +
∑
m

βm(∆t)(xm − x2)
∑
i

rii
2xi−2 + O(∆t)

= f(x, t) + B∆t[g(x)− x2]
∑
i

rii
2xi−2 + O(∆t)

= f(x, t) + B∆t[g(x)− x2]
1

x

∂

∂x
x
∂

∂x
f(x, t) + O(∆t)

Plugging this into
∂

∂t
f(x, t) = lim

∆t→0

f(x, t+ ∆t)− f(x)

∆t

yields
∂

∂t
f(x, t) = B[g(x)− x2]

1

x

∂

∂x
x
∂

∂x
f(x, t)

Exercise A.13 Consider a chemical system that begins with some initial amount of chemical A. Let i
denote the number of molecules of species A. A molecule of A spontaneously degrades into a molecule of
B, with rate ξ per molecule. Let j denote the number of molecules of species B. Species B reacts with A at
rate ηij to produce new molecules of species B. The reactions are denoted

A 7→ B

A+B 7→ 2B

Let ri,j(t) denote the probability of i molecules of A and j molecules of B at time t. Let f(x, y, t) = ri,j(t)x
iyj

be the PGF. Find the Forward Kolmogorov Equation for f(x, y, t).

Solution A.13

∂

∂t
f(x, y, t) = ξ(x−1y − 1)x

∂

∂x
f(x, y, t) + η(x−1y − 1)xy

∂

∂x

∂

∂y
f(x, y, t)

=

(
ξ(y − x)

∂

∂x
+ η(y2 − xy)

∂

∂x

∂

∂y

)
f(x, y, t)

Exercise A.14 In this exercise we generalize Property A.12 for the case where there are two types of
individuals A and B with counts i and j.

Assume events occur spontaneously with rate λm,ni to remove an individual of type A and replace it with
m of type A and n of type B, or they occur spontaneously with rate ζm,nj to remove an individual of type
B and replace it with m of type A and n of type B.

Set Λ =
∑
m,n λm,n and Z =

∑
m,n ζm,n. Let f1,0(x, y, t) denote the outcome beginning with one indi-

vidual of type A and f0,1(x, y, t) denote the outcome beginning with one individual of type B.

a. Write f1,0(x, y,∆t) and f0,1(x, y,∆t) in terms of h(x, y) =
∑
m,n λm,nx

myn/Λ and g(x, y) =
∑
m,n ζm,nx

myn/Z.

b. Use Property A.8, write f1,0(x,∆t+ t) and f0,1(x,∆t+ t) in terms of f1,0 and f0,1 evaluated at t and
∆t. The answer should resemble Equation (42).

c. Derive expressions for ∂
∂tf1,0(x, y, t) and ∂

∂tf0,1(x, y, t).
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d. Use this to derive Equation (22).

Solution A.14

a.

f1,0(x, y,∆t) =
∑
i

ri,j(0)xi

(
1−

∑
m,n

iλm,n∆t+
∑
m,n

iλm,nx
m−1yn

)
+ O(∆t)

= x

(
1−

∑
m,n

λm,n∆t+
∑
m,n

λm,nx
m−1yn

)
+ O(∆t)

= x− x(∆t)
∑
m,n

λm,n +
∑
m,n

λm,nx
myn + O(∆t)

= x+ (∆t)Λ[h(x, y)− x] + O(∆t)

Similarly
f0,1(x, y,∆t) = y + (∆t)Z[g(x, y)− y] + O(∆t)

b. We find
f1,0(x, y,∆t+ t) = f1,0(f1,0(x, y, t), f0,1(x, y, t),∆t)

and
f0,1(x, y,∆t+ t) = f0,1(f1,0(x, y, t), f0,1(x, y, t),∆t)

c. We now have

∂

∂t
f1,0(x, y, t) = lim

∆t→0

f1,0(x, y,∆t+ t)− f1,0(x, y, t)

∆t

= lim
∆t→0

f1,0(f1,0(x, y, t), f0,1(x, y, t),∆t)− f1,0(x, y, t)

∆t

= lim
∆t→0

f1,0(x, y, t) + (∆t)Λ[h(f1,0(x, y, t), f0,1(x, y, t))− f1,0(x, y, t)] + O(∆t)− f1,0(x, y, t)

∆t

= Λ[h(f1,0(x, y, t), f0,1(x, y, t))− f1,0(x, y, t)] + lim
∆t→0

O(∆t)

∆t

= Λ[h(f1,0(x, y, t), f0,1(x, y, t))− f1,0(x, y, t)]

Similarly
∂

∂t
f0,1(x, y, t) = Z[g(f1,0(x, y, t), f0,1(x, y, t))]

d. To derive Equation (22), we take infected individuals to be type A and recovered individuals to be type
B. We replace x with ỹ, and y with z̃. We will drop the tildes later.

The events that can happen are that a single infected individual can be replaced by 2 infected individuals
(with rate β per infected individual) or by 1 recovered individual (with rate γ per infected individual).
So Λ = (β + γ), and h(ỹ, z̃) = (βỹ2 + γz̃)/(β + γ). There are no events that can happen to recovered
individuals, so Z = 0 and g could be anything.

So

∂

∂t
f1,0(ỹ, z̃, t) = (β + γ)

[
βf1,0(ỹ, z̃, t)2 + γf0,1(ỹ, z̃, t)

β + γ
− f1,0(ỹ, z̃, t)

]
∂

∂t
f0,1(ỹ, z̃, t) = 0
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Since f0,1(ỹ, z̃, t) is constant and initially it is simply z̃, we conclude that it is always z̃. Thus we get

∂

∂t
f1,0(ỹ, z̃, t) = (β + γ)

[
βf1,0(ỹ, z̃, t)2 + γz̃

β + γ
− f1,0(ỹ, z̃, t)

]
Then replacing f1,0 by Π, ỹ by y and z̃ by z and replacing

βf1,0(ỹ,z̃,t)2+γz̃
β+γ by µ̂(Π(y, z, t), z) completes

the result.

B Proof of Theorems 2.7 and 3.6
Exercise B.1 If we do not think of an infected individual as disappearing and being replaced by two infected
individuals when a transmission happens, but rather, we count up all of the transmissions the individual
causes, we get a geometric distribution with q = β/(β + γ). The details are in Exercise 3.2. Use this along
with Theorem 2.7 and Table 6 (which was derived in exercise 2.13) to give a different proof of Theorem 3.6.

Solution B.1 The offspring distribution is geometric with q = β/(β + γ).
The result in Table 6 predicts j infections with probability

1

j

(
2j − 2

j − 1

)(
γ

β + γ

)j (
β

β + γ

)j−1

=
1

j

γjβj−1

(β + γ)2j−1

(
2j − 2

j − 1

)
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