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Section S1. Diversity and degree equivalence

Recall that diversity is defined as

k
(0)
c =

X

p

Mcp (1)

and the degree of a node in a graph defined by a similarity matrix S is

di =
X

j

Sij (2)

We want to show that these are equivalent. We defined S = MU
�1
M

0. Note
that U

�1
M

0 is row-stochastic and D
�1
M is also row-stochastic. Therefore,

any row of fM = D
�1
MU
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0 adds up to 1 and hence every row i ofMU
�1
M

0

must add up to Dii.

Section 2. Relationship between the ECI and PCI

Proposition 1 (see Definition 2 on p. 342 in Hill [12]). A country’s ECI is

equal to the average PCI of products that the country has revealed comparative

advantage in.

Proof. Recall that
fM = D

�1
MU

�1
M

0 (3)

The ECI is one of the solutions ey to the following eigensystem

fMey = e�ey (4)
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To calculate the PCI for all products, we are interested in the second eigen-
vector of the matrix cM , which is given by

cM = U
�1
M

0
D

�1
M (5)

Hence, PCI is one of the solutions by to the following eigensystem:

cMby = b�by (6)

To prove the proposition, take Eq. (4), the eigensystem for ECI, and substi-
tute in Eq. (3)
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which is equivalent to the eigensystem for PCI

U
�1
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0
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Mby = b�by (10)

for
ey = D

�1
Mby (11)

as required.

Therefore, the ECI can be immediately obtained from the PCI by using M .



Section S3. Interpretation of ECI as a di↵usion
map and relationships to correspondence analysis
and kernel principal component analysis

A di↵usion map is a dimensionality reduction method that generates repre-
sentations of complex data sets in a lower-dimensional Euclidean space by
iterating the Markov matrix associated with the data [ ]. Since fM can
be seen as a Markov transition matrix

For example, if we let the nodes in graph S represent states in a Markov
transition matrix, the probability that a random walk beginning in state i

reaches state j in the next step is given by fMij. Now consider two random
walks beginning in states i and j. How “far” the random walks are from
each other at time t tells us something about the similarity of nodes i and j

in graph S. Let vector xi(t) denote the probability distribution over states
reached at time t by a random walk beginning in state i. Then define the
di↵usion map distance to be proportional to

(xi(t)� xj(t))
0
D

�1((xi(t)� xj(t)) (12)

Each states at time t can be represented as a point in an n-dimensional
Euclidean space with coordinates

(|�t
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where �j is the eigenvalue associated with the jth largest eigenvector fM and

y
[n]
i is the i

th entry of the n
th largest eigenvector of fM [ ]. The distance

between the points is precisely the di↵usion map distance.

8, 31

14

(see section “The ECI and PCI” in the

main paper), the ECI can also be  used to construct a basic diffusion map that indicates

how a random walker beginning at a particular node (or Markov chain “state”)

will move through the system [14]. 



In fig. S1, we apply the diffusion map to country export data. By using
the second and third coordinates of the di↵usion map, we visualize countries
in a two-dimensional plane at di↵erent t. Since the second largest eigenvalue
is dominant, we rescale the axis by its value. As t goes to infinity, the di↵usion
map distance captures the distance between the stationary probabilities of
states in the random walk and is well approximated by the second-largest
eigenvector of fM i.e. ECI [ ].

A B Ct = 1 t = 5 t = 10

Fig S1 Application of di↵usion map interpretation to country export
data.

There is also an equivalence between the Ncut criterion and correspondence

analysis (CA) [ ]. Simple (multiple) CA is a classic tool in multivariate
analysis that studies relationships between two (two or more) categorical
variables, such as countries and products, via singular value decomposition
[ 1 , 1 S represents the Pearson
correlation matrix. Performing simple correspondence analysis is equivalent
to computing the basic di↵usion map when t = 1 [ ].

Finally, di↵usion maps are also related to kernel Principal Component Anal-

ysis (PCA). Define

K(t) = fM t
D

�1fM 0t (13)

which is a symmetric, positive-definite matrix known as the di↵usion map

kernel. Denote w
[n] to be an eigenvector of K associated with µn, the

n
th largest eigenvalue. Each state at time t can be represented in an n-

dimensional Euclidean space with coordinates
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9, 0, 12 3]. In this setting, the similarity matrix
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This is not only a vector representation of each in the principal component
space, but also the distance between the points is exactly the di↵usion map
distance.

A clear summary of relationships between di↵erent spectral methods for com-
puting a low-dimensional embedding of undirected weighted graphs can be
found in [ , Table 10.1, p. 439].

S ECI and PCI rankings for regional data

In this section, we show the top and bottom ECI and PCI rankings for UK
local authorities (table S1), UK industries (table S2), US states (table S3)
and US occupations (table S4).

ECI Rank Local Authority ECI Rank Local Authority
1 Tower Hamlets 371 Angus
2 City of London 372 Aberdeenshire
3 Islington 373 Allerdale
4 Westminster 374 Erewash
5 Southwark 375 Ribble Valley
6 Camden 376 Kirklees
7 Hammersmith and Fulham 377 Barnsley
8 Kensington and Chelsea 378 Dumfries and Galloway
9 Hackney 379 Neath Port Talbot

10 Cambridge 380 North Lincolnshire

Table S1 Top and bottom 10 U K local authorities ranked by ECI.

PCI Rank Industry PCI Rank Industry
1 Reinsurance 249 Manufacture of articles of fur
2 Fund management activities 250 Manufacture of other products of first processing of steel
3 Television programming and broadcasting activities 251 Manufacture of basic iron and steel and of ferro-alloys
4 Trusts, funds and similar financial entities 252 Processing and preserving of meat and production of meat products
5 Manufacture of magnetic and optical media 253 Manufacture of refractory products
6 Legal activities 254 Manufacture of cement, lime and plaster
7 Activities auxiliary to financial services 255 Preparation and spinning of textile fibres
8 Market research and public opinion polling 256 Weaving of textiles
9 Accounting, bookkeeping and auditing activities 257 Mining of hard coal

10 Advertising 258 Manufacture of coke oven products

Table S2 Top and bottom 10 industries ranked by PCI.

ection S4.
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ECI Rank US State ECI Rank US State
1 California 41 Wisconsin
2 New Jersey 42 Ohio
3 Maryland 43 Tennessee
4 Massachusetts 44 Michigan
5 New York 45 South Carolina
6 Connecticut 46 Alabama
7 Colorado 47 Arkansas
8 Virginia 48 Indiana
9 Washington 49 Mississippi

10 Arizona 50 Kentucky

Table S3 Top and bottom 10 U.S. states ranked by ECI.

PCI Rank Occupation PCI Rank Occupation
1 Lawyers, and judges, magistrates, and other judicial workers 444 Metal workers and plastic workers, nec
2 Actors, Producers, and Directors 445 Laborers and Freight, Stock, and Material Movers, Hand
3 Editors, News Analysts, Reporters, and Correspondents 446 Assemblers and Fabricators, nec
4 Software Developers, Applications and Systems Software 447 Other production workers including semiconductor processors
5 Financial Analysts 448 Welding, Soldering, and Brazing Workers
6 Accountants and Auditors 449 Millwrights
7 Securities, Commodities, and Financial Services Sales Agents 450 Driver/Sales Workers and Truck Drivers
8 Computer Scientists and Systems Analysts 451 Grinding, Lapping, Polishing, and Buffing Machine Tool Setters
9 Personal Financial Advisors 452 Cutting, Punching, and Press Machine Setters

10 Managers, nec (including Postmasters) 453 Extruding, Forming, Pressing, and Compacting Machine Setters

Table S4 Top and bottom 10 occupations ranked by PCI.

S Eigengap heuristic analysis

The eigengap heuristic involves choosing the number of k clusters such that
the largest eigenvalues �1, ...,�k of fM are large, while �k+1 is relatively small.
In fig. , we show the largest six eigenvalues of the fM matrix calculated
for data on exports, UK regional industrial concentrations, and US state
occupational concentrations respectively. In all three cases, the largest gap
occurs between the first and second eigenvalue (|�2 � �1|). According to the
eigengap heuristic, this suggests that from a spectral clustering perspective

.

.

ection S5.

 S2

In section “Applying the spectral clustering interpretation to economic 
data” in the main paper, we showed that similarity networks constructed 
from the export and regional datasets did not partition well into two 
clusters. Here we analyse what is known as the eigengap heuristic , which is a 
standard methodology used in spectral clustering analysis for determining 
the number of clusters present in the graph [35].  



the graphs considered in this paper are likely to only contain one cluster.
However, it is also important to note that the eigengap heuristic usually only
works well if the data contains well-pronounced clusters - which is not the
case here.

Fig S2 Top largest eigenvalues of the fM matrix for data on exports, U.K
regional industrial concentrations,      and U.S.    s tate occupational concentrations.

S Robustness of empirical results to
alternative RCA thresholds

In principle, the use of the RCA measure to calculate the binary M matrix
can be particularly sensitive to the chosen threshold above which a country
is considered to have a revealed comparative advantage in a product. For
the empirical results shown in the main paper we have followed the most
common approach and used a threshold of 1. While the choice of threshold
will have no bearing on the mathematical interpretation of the ECI and
PCI, in this section we show to the extent to which empirical results for the
country-export data are influenced by di↵erent RCA thresholds.

..  
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In Panel A of fig. S3, we show how the empirical correlation between the
ECI and per capita GDP change for di↵erent RCA thresholds. Correlations
are highest between thresholds of 0.5 and 2. Panel B shows the correlation
between the ECI and country diversity for di↵erent RCA thresholds.

When the RCA threshold is zero, there are some products that are com-
petitively exported by all countries. This means that the multiplicity of
the largest eigenvalue is greater than one. In this case, since the eigenvector
corresponding to the largest eigenvalue is proportional to diversity, the eigen-
vector corresponding to the second-largest eigenvalue is also proportional to
diversity. Therefore, when the RCA threshold is zero, there is a perfect
correlation between ECI and diversity.

A B

Fig S3
Panel A) Pearson correlation between the ECI and country

per capita GDP for di↵erent RCA export thresholds. Panel B) Pearson
correlation between the ECI and diversity for di↵erent RCA export thresholds

Figure S4 examines how the pattern of specialization revealed by the ECI
and PCI changes for di↵erent RCA thresholds. Here we compare binary M

matrices, each sorted by ECI and PCI, using RCA thresholds of 0.5, 1 and
2. The pattern becomes more triangular for the lower RCA threshold (Panel
A), largely because the ECI ordering is becoming closer to the ordering given
by diversity (see Panel B of fig. S3). The higher RCA threshold (Panel

. . Robustness of ECI versus GD/ / P/ / / / / / / / / / / / / cap  relationship to varying the RCA
  expor  t threshold.
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C) shows a similar pattern of specialization to the original pattern shown in
Panel B.
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A CRCA threshold = 0.5 RCA threshold = 1 RCA threshold = 2

We also follow the approach taken in [ ] and examine how the correlation
between the ECI, per capita GDP and diversity change using a “per capita”
version of RCA (RCA POP ), given by

RCA POPcp =
xcp/ncP

c xcp/
P

c nc
(15)

where xcp is country c’s exports of product p, nc is the population of country
c and Mcp = 0 otherwise.

33

Fig. S4.Country-product M matrix with rows sorted by the ECI and
columns sorted by the PCI constructed using di↵erent RCA thresholds.
Panel A) RCA threshold = 0.5; Panel B) RCA threshold = 1; Panel
C) RCA threshold = 2;



A B

Fig S5. 

Pearson correlation between the ECI and country

per capita GDP for di↵erent per capita RCA thresholds. Panel B) Pear-
son correlation between the ECI and diversity for di↵erent per capita RCA
thresholds

Our results suggest that regardless of whether the per capita or original RCA
version is applied, a threshold of 1 gives a strong correlation to per capita
GDP. Moreover, the correlation between diversity and the ECI decreases as
the RCA threshold is increased.
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