Supporting Information

for

Triazole-linked transition state analogs as selective inhibitors against V. cholerae sialidase

Teri J. Slack,^{#a} Wanqing Li,^{#a} Dashuang Shi,^b John B. McArthur,^a Gengxiang Zhao,^b Yanhong Li,^aAn Xiao,^a Zahra Khedri,^a Hai Yu,^a Yang Liu,^{b,&} and Xi Chen^{a,*}

^aDepartment of Chemistry, University of California-Davis, One Shields Avenue, Davis, CA 95616, USA

^bCenter for Genetic Medicine Research, Children's National Medical Center, 111 Michigan Ave, NW, Washington DC 20012, USA

[#] These authors contributed equality to this work.

- [&] Current address: Division of Immunotherapy, Institute of Human Virology, University of Maryland, Baltimore, MD 21201, United States
- * Corresponding author. Tel: +1 530 754 6037; fax: +1 530 752 8995. *E-mail address:* <u>xiichen@ucdavis.edu</u> (X. Chen).

Table of Contents

Figure S1. Multiple sequence alignment (MSA) of sialidases tested in the current study......S2

Figure S1. Multiple sequence alignment (MSA) of sialidases tested in the current study. The MSA was generated using CLC Sequence Viewer 7.0 and constructed with an open gap cost of 5.0, gap extension cost of 1.0, and cheap end gap cost. The site of interest is marked with an asterisk "*" on the top.

						*		
V cholerae	GSNWQTGSTL	PIPER	WKSSSI	LETLEPSEAD	MVELQNGD	- LLLTARLDE	NQIVNGVNYS	PROOFLSKDG 65
CpNanH	GETWTMGNKV	PNS		NTSENM	VIEL - DG	ALIMSTRYDY	S G	YRAAYISHDL 26
SpNanA	GKTWHAGEAN	NDNRQVDGQK	HSSTM NN	KRAQNT - EST	VVQLNNG	DVKLEMR	GL TG	DLOVATSKDG 60
SpNanB	GQTW	K	KSSASIPFEN	ATAEAQ	MVELRDG	VIRTEER	TT TG	KIAYMTSRDS 57
SpNanC	GASW	K	VKVVPLP-SS	WSAEAQ	FVELSPG	MIQAYMR	TN NG	KIAYLTSKDA 53
A ureafaciens	GNTWHKGANN	GDRMD		ENK	TVELSDG	RVELNSR	DNANQG	YRKVAVSTDG 31
BiNanH2	GATWHAGTPN	GDHMD		ENK	VVELSDG	RVMLNSR	SSDGNG	CRYNALSRDG 26
hNEU2	GRTWARGHEV		· · · · · · · · · · · ·	AQDTLECQ	VAEVETGEOR	VVTLNAR	SHL - RA	RVQAQSTND - 25
Consensus	GATWHAG V			A E X Q	VVELSDG	VVLLNXR	SN NG	XRXVATSKDG
Conservation		000000000						

¹H and ¹³C NMR spectra of (propargyl)-A (**3**)

¹H and ¹³C NMR spectra of (propargyl)-AdE (4)

¹H and ¹³C NMR spectra of E-(propargyl)-AKE (**5**)

¹H and ¹³C NMR spectra of (TriazoNeu5Ac2en)-A (6)

