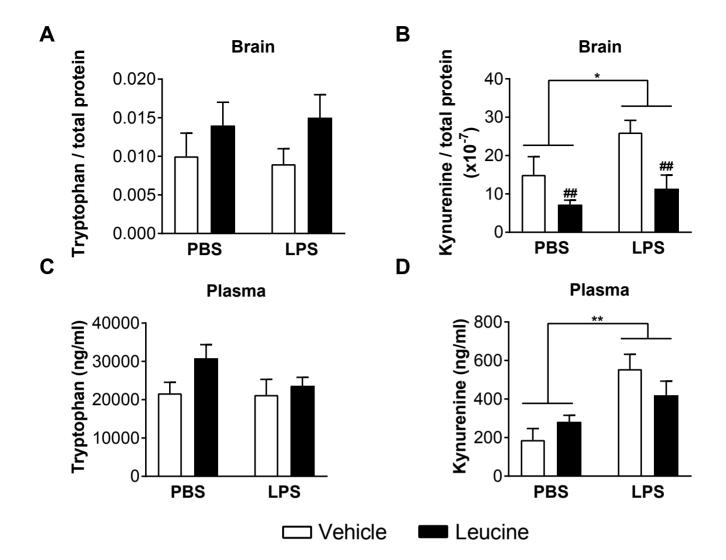
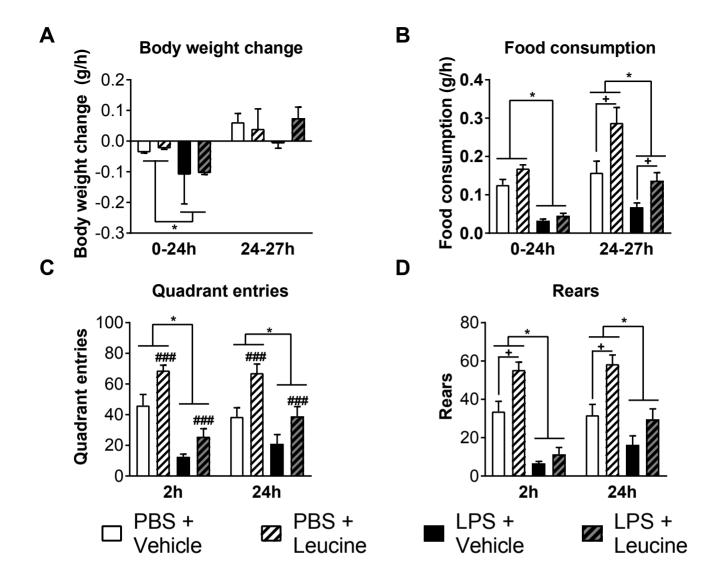
Supplementary Figure 1: Leucine reduces brain kynurenine. *A,B* Mean tryptophan and kynurenine in brains (\pm SEM) of mice treated with 50 mg/kg leucine or vehicle immediately before and 6 h after LPS or phosphate-buffered saline (PBS) (n = 5-7). *C,D* Mean tryptophan and kynurenine in plasma (\pm SEM) of mice treated with 50 mg/kg leucine or vehicle immediately before and 6 h after LPS or phosphate-buffered saline (PBS) (n = 5-7). * $p \le 0.05$, ** $p \le 0.01$ for LPS vs PBS main effects. * $p \le 0.01$, * $p \le 0.0001$ for leucine vs vehicle main effects.

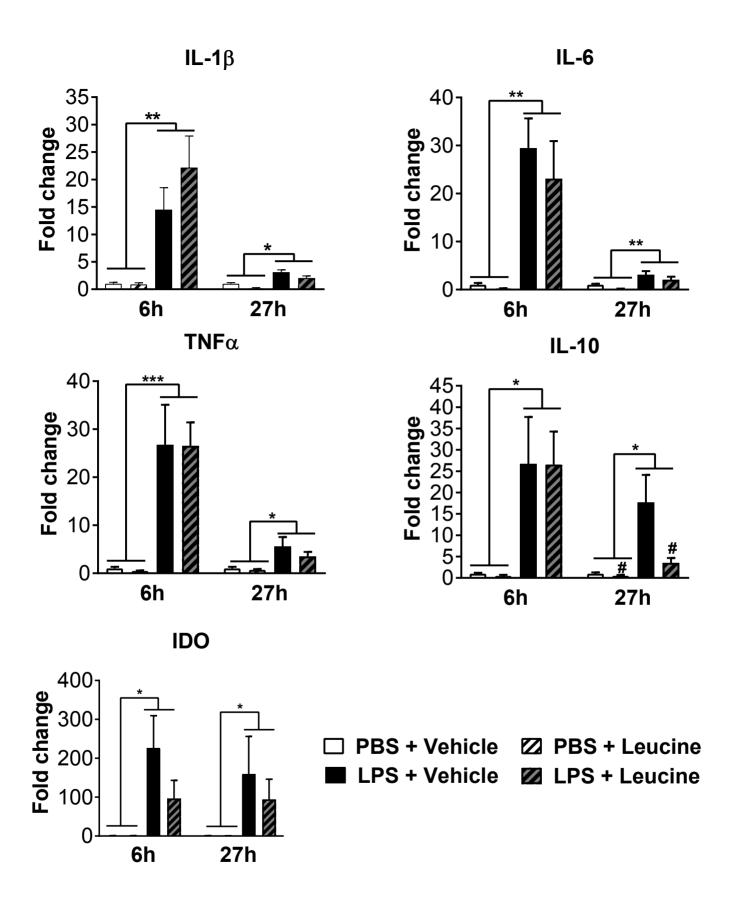
Supplementary Figure 2: LPS induces sickness. A,B Mean hourly body weight change (g/h) and food consumption (g/h) (\pm SEM) of mice treated with leucine or vehicle immediately before and 6 h after LPS or phosphate-buffered saline (PBS) (n \geq 15 per group). C,D Mean quadrant entries and rears (\pm SEM) of mice treated with leucine or vehicle immediately before and 6 h after LPS or PBS (n \geq 14 per group). $*p \leq 0.05$, for LPS vs PBS main effects. $*##p \leq 0.0001$ for leucine vs vehicle main effects. $*p \leq 0.05$ for leucine simple comparisons.

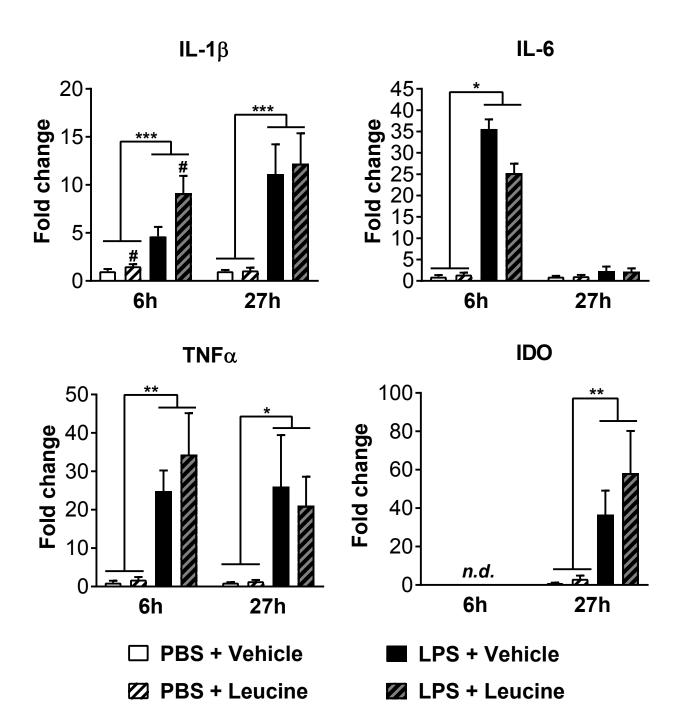

Supplementary Figure 3: LPS increases hepatic inflammation and IDO activation. Mean IL-1 β , IL-6, TNF α , IL-10, and IDO mRNA levels (fold change of control at each time point) (\pm SEM) in livers of mice treated with leucine or vehicle and LPS or phosphate-buffered saline (PBS) at 6 and 27 h after LPS (n \geq 5 per group). * $p \leq 0.05$, ** $p \leq 0.01$, *** $p \leq 0.0001$ for LPS vs PBS comparisons. * $p \leq 0.05$ for leucine main effects.

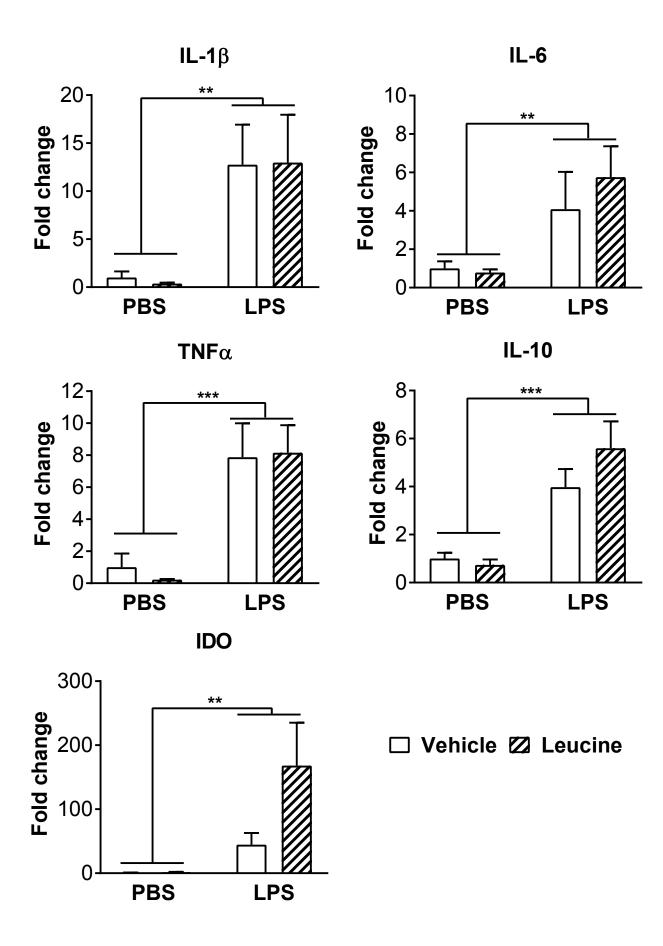
Supplementary Figure 4: LPS increases central inflammation and IDO activation. Mean IL-1 β , IL-6, TNF α , and IDO mRNA levels (fold change of control at each time point) (± SEM) in prefrontal cortices of mice treated with leucine or vehicle and LPS or phosphate-buffered saline (PBS) at 6 and 27 h after LPS (n \geq 5 per group). * $p \leq 0.05$, ** $p \leq 0.01$, *** $p \leq 0.0001$ for LPS vs PBS comparisons. * $p \leq 0.05$ for leucine main effects.


Supplementary Figure 5: LPS increases hippocampal inflammation and induces IDO activation without interference by leucine. Mean IL-1 β , IL-6, Tnf α , and IL-10 mRNA levels (fold change of control) (\pm SEM) in the hippocampi of mice treated with leucine or vehicle immediately before and 6 h after LPS or phosphate-buffered saline (PBS) 27 h after LPS (n \geq 7 per group). ** $p \leq 0.01$, *** $p \leq 0.0001$ for LPS vs PBS comparisons.

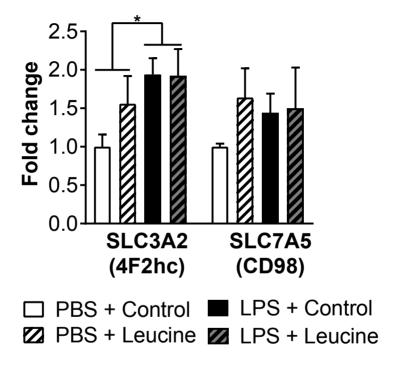
Supplementary Table 1: ANOVA statistics for all cytokine and IDO mRNA data in the liver, prefrontal cortex (PFC) and hippocampus at 6 and 27 h after LPS. n.s. = not significant; n.d. = not detectable; n.m. = not measured.


Supplementary Figure 6: LPS increases LAT1 mRNA. Mean SCL3A2 and SLC7A5 mRNA levels (fold change of control) (\pm SEM) in prefrontal cortices of mice treated with leucine or vehicle and LPS or phosphate-buffered saline (PBS) at 6 h after LPS (n = 4-5 per group).


Supplementary Figure 1.



Supplementary Figure 2.


Supplementary Figure 3.

Supplementary Table 1: Statistical information relating to cytokines assessed in the liver, prefrontal cortex and hippocampus.

	Main Effect of LPS		Main Effect of Leucine		et of Leucine	LPS x Leucine Interaction	
	6 h	27 h	6 h		27 h	6 h	27 h
Liver IL-6	$F_{(1,21)} = 18.4, p < 0.01$	$F_{(1.48)} = 16.19, p < 0.01$	n.s	n.s	n.s	n.s	
Liver IL-1β	$F_{(1,23)} = 18.5, p < 0.001$	$F_{(1,49)} = 6.13, p < 0.05$	n.s	n.s	n.s	n.s	
Liver TNFa	$F_{(1,23)} = 24.2, p < 0.000$	$1 \mathrm{F}_{(1.48)} = 10.72, \mathrm{p} < 0.01$	n.s	n.s	n.s	n.s	
Liver IL-10	See interaction column	$F_{(1,27)} = 8.53, p < 0.01$	n.s	F _(1,27)	$= 8.53, p < 0.01 F_{(1,20)} =$	= 7.53, p < 0.001 $F_{(1,27)}$	= 8.53, p < 0.01
Liver IDO	$F_{(1,20)} = 8.93, p < 0.01$	$F_{(1,50)} = 4.657, p < 0.05$	n.s	n.s	n.s	n.s	
PFC IL-6	$F_{(1,14)} = 9.69, p < 0.01$	n.s.	n.s	n.s	n.s	n.s	
PFC IL-1β	$F_{(1,15)} = 25.59, p = 0.01$	$F_{(1,31)} = 18.91, p < 0.0002$	l n.s	n.s	n.s	n.s	
PFC TNFα	$F_{(1,15)} = 19.25, p < 0.01$	$F_{(1,31)} = 6.48, p < 0.05$	n.s	n.s	n.s	n.s	
PFC IL-10	n.s.	$F_{(1,32)} = 6.88, p < 0.05$	n.s	n.s	n.s	n.s	
PFC IDO	n.d.	$F_{(1.30)} = 11.31, p < 0.01$	n.s	n.s	n.s	n.s	
Hippocampus IL-6	n.m	$F_{(1,31)} = 8.45, p < 0.01$	n.s	n.s	n.s	n.s	
Hippocampus IL-1β	n.m.	$F_{(1,29)} = 10.81, p < 0.01$	n.s	n.s	n.s	n.s	
Hippocampus TNFα	n.m.	$F_{(1,31)} = 23.32, p < 0.000$	l n.s	n.s	n.s	n.s	
Hippocampus IL-10	n.m.	$F_{(1,28)} = 26.91, p < 0.0002$	l n.s	n.s	n.s	n.s	
Hippocampus IDO	n.m.	$(F_{(1.31)} = 6.396, p < 0.01$	n.s	n.s	n.s	n.s	

Supplementary Figure 6.