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Web Appendix A: Data Simulation for Piecewise Constant Propor-
tional Hazards Model
In this appendix we provide an explicit recipe for how to generate the observed datasets for the interim
and final analysis opportunities. Let n be the total sample size, ρ be the randomization probability for
the treated group, πcov be the distribution for the covariates, πstrat be the distribution for the stratification
factor, πenr be the distribution for enrollment times, and πcsr be the distribution for censorship times.
Before constructing the interim dataset D1 and final dataset D2, one must simulate the complete dataset
D containing event times and censorship times for all subjects. The complete dataset contains all data,
observed and unobserved, and should not be confused with the final dataset which only contains observed
data. We simulate the complete data for subject i as follows:

1. Simulate the enrollment time r̃i from πenr.

2. Simulate the treatment indicator zi from Bernoulli (ρ).

3. Simulate the covariates xi from πcov.

4. Simulate the stratum si from πstrat.

5. Compute φi = exp
(
ziγ + xTi β

)
and θi,k = λsi,kφi for k = 1, ...,Ksi .

6. Simulate the event time t̃i as follows:

(i) Set k = 1.

(ii) Simulate t̃i ∼ Exponential (θi,k) + tsi,k−1.

(iii) If t̃i > tsi,k then increment k by one and return to step (ii), otherwise terminate.

7. Simulate the censorship time c̃i from πcsr.

8. Calculate the complete data observation time ỹi = min
(
t̃i, c̃i

)
and event indicator ν̃i = I

(
t̃i ≤ c̃i

)
.

9. Calculate the complete data elapsed time ẽi = r̃i + ỹi.

Next, we describe how to determine Dj from the complete dataset D. To obtain Dj , we proceed as follows:

1. Determine the time Tj of event number νj in the complete dataset D.

2. Remove any subject with r̃i ≥ Tj .

3. For all remaining subjects,

(i) if ẽi > Tj , set yi = Tj − r̃i and νi = 0.

(ii) if ẽi ≤ Tj , set yi = ỹi and νi = ν̃i.
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Web Appendix B: Justification for Baseline Hazard Perturbation
For the example design application using the proportional hazards model that is presented in the paper, we
computed the type I error rate and power over a discrete set of possible new trial parameter values. The set
of parameter values was obtained by fixing the hazard ratio regression parameters at their respective histor-
ical data posterior means and uniformly perturbing the historical data posterior means for all the baseline
hazard parameters (ranging from a 45% hazard reduction to a 45% hazard increase). By choosing w0 so
that the type I error rate and power are bounded over this discrete subspace of the parameter space, one
would hope the type I error rate and power are bounded over the entire parameter space. In this appendix,
we present our rationale and simulation results that illustrate that this property holds for the proportional
hazards model with piecewise constant baseline hazard and discuss the generalized linear regression model
case.

Rationale for focusing on a discrete subspace of the overall parameter space

For this discussion we focus on ensuring bounded control of the type I error rate. The process of ensuring
bounded control of power is completely analogous. Let Ω represent the subspace of the null parameter space
that satisfies γ = γ0 and let Ω∆ = {θ : E [W | D0, a0,θ] = ∆,θ ∈ Ω}. Thus Ω∆ is the set of all θ resulting in
the same expected value forW where the expectation is taken with respect to D1 (the data at the time of the
interim analysis opportunity). It is straightforward to see that {Ω∆ : ∆ ∈ [0,∞)} is a partition of Ω. Let θ+

∆

be the parameter value that corresponds to the maximum type I error rate among the set θ ∈ Ω∆. If the type
I error rate is acceptable at θ+

∆, then it will be acceptable for all θ ∈ Ω∆ (i.e., all θ that produce the same
expected degree of prior-data conflict) by nature of the adaptive design. Thus, if the design ensures that
the type I error rate is acceptable for all θ+

∆, this suggests that the type I error rate is acceptably bounded
over the entire parameter space Ω. Assuming one could identify θ+

∆j
for some set {∆j : j = 1, ..., J} where

∆1 is small, ∆j < ∆j+1, and ∆J is larger than any reasonable value of w0, one could ensure approximate
bounded control of the type I error rate over the entire parameter space by ensuring bounded control over
the set {θ+

∆j
: j = 1, ..., J}. The key challenge is to identify that set.

A simulation study justifying uniform perturbation of the baseline hazard

We devised a simulation study to illustrate that for any ∆, θ+
∆ can be identified by perturbing the intercept

for the regression model. In the context of the proportional hazards model with piecewise constant baseline
hazard, this corresponds to a uniform perturbation of all components of the baseline hazard. Since data from
the SAVOR trial are not publicly available, for this appendix we simulated control data from a hypothetical
historical trial. These data and the SAS programs used for this simulation are available as noted in the paper.

We simulated subject-level data from a two-stratum proportional hazards model with exponential baseline
hazard λ1 = 0.020 in the lower risk stratum and λ2 = 0.035 in the higher risk stratum. In terms of the like-
lihood for the data, this model is equivalent to a proportional hazards model with a single stratum and two
baseline hazard components. We considered a hazard ratio regression model with two parameters, denoted as
β1 and β2, corresponding to one semi-continuous covariate (values uniformly distributed between -0.6 and 0.6
with 0.2 step size) and one binary covariate (values 0 or 1 equally likely), respectively. We set β1 = β2 = 0.4.
We simulated a historical trial with n0 = 6000 control subjects and administratively censored the data such
that ν0 = 605 events were observed. Posterior means for the baseline hazard parameters λ1 and λ2 were 0.018
and 0.034, respectively. Historical posterior means for the hazard ratio regression parameters β1 and β2 were
0.385 and 0.451, respectively. The sufficient statistics for the simulated historical dataset are given in Table 1.

Next, using this historical dataset we identified acceptable design parameters for a new trial (a hypothetical
CVOT) having the same inferential goals as the example application in the paper (i.e., to rule out a hazard
ratio of 1.3 for treatment versus control). For the new trial, we simulated a total enrollment of n1 = 5000
subjects with a linearly increasing enrollment rate over three years. We took ν1 = 306 and ν2 = 612 as the
target number of events at which the interim and final analysis opportunities would occur, respectively. This
choice for ν1 corresponds to a 50% reduction in the required number of events compared to a non-adaptive
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Table 1: Sufficient Statistics for Simulated Historical Dataset
—– Covariate —– —– Baseline Hazard —–

Continuous Binary Stratum # 1 Stratum # 2
-0.6 0 4 373.98 17 480.74
-0.4 0 13 792.09 25 826.12
-0.2 0 12 841.95 30 780.38
0.0 0 12 851.20 31 737.08
0.2 0 13 778.46 27 730.99
0.4 0 13 783.50 22 814.55
0.6 0 10 408.15 18 350.95
-0.6 1 7 413.71 13 386.24
-0.4 1 16 711.04 38 835.56
-0.2 1 23 810.80 29 640.34
0.0 1 33 883.36 36 678.12
0.2 1 19 798.65 34 670.04
0.4 1 26 768.33 41 662.64
0.6 1 18 370.69 25 338.99

trial (ν1/ν2 = 0.50). We identified a0 = 0.52 by solving the equation ν2 − ν1 = a0 · ν0 which results in an
effective number of events at the interim analysis equal to ν2. We set the tolerability bounds for the type I
error rate and power to be (δe, δp) = (0.025, 0.05). For our simulations to determine w0, we set the new trial
hazard ratio regression parameters equal to their posterior means. For the baseline hazard parameters, we
considered perturbations of the posterior means ranging from a 45% decrease to a 45% increase with a step
size of 1%, uniformly perturbing both baseline hazard parameters by the same amount at a given time. The
value w0 = 0.45 (ew0 = 1.57) was determined to be optimal.

Having identified the optimal decision rule for early stoppage in the trial using the discrete subspace of
the overall parameter space, we then evaluated the type I error rate (γ = log 1.3) and power (γ = 0) over
the entire nuisance parameter space using a grid of values for ψ constructed by considering all possible
perturbations of the historical posterior means with the most extreme perturbation to any one parameter
being a 35% increase or decrease. These perturbations include perturbations to single parameters as well
as collections of parameters (e.g., decrease λ1 by 5% and decrease β1 by 10%). Perturbed parameter values
that produced a very large value of a0 · (`(ψ̂|D0) − `(ψ|D0)) were discarded since they would necessarily
produce a large expected value for the statistic W .

Figure 1 presents the estimated type I error rate for every value of θ that we considered based on a design
that always stops at the interim analysis opportunity as well as the optimal design that discards the prior
information whenW > 0.45. Vertical cross sections in this plot correspond to sets Ω∆ and for any such cross
section one can see that all points fall within or below the confidence bands for the type I error rate curve
associated with uniform baseline hazard perturbation. Figure 2 contains analogous information for power.
Note that all points fall within or above the confidence bands for the power curve associated with uniform
perturbation of the baseline hazard. The confidence bands are included to give the reader some idea of the
margin of error associated with 100,000 simulation studies per point estimate.

A note on generalized linear models

Uniformly perturbing the baseline hazards essentially amounts to perturbing the overall intercept for the
regression model in the sense that one could parametrize the baseline hazard in terms of α0 and α1 such
that λ1 = exp (α0) and λ2 = exp (α0 + α1). We are essentially perturbing α0. Thus, in the context of
a generalized linear regression model, the appropriate perturbation would be to simply perturb the model
intercept while keeping all other regression parameters fixed at their historical posterior means. We also
performed simulation studies based on a linear regression model (data not shown), further confirming the
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Figure 1: Plot of type I error rate by E [W | D0, a0,θ]. Each point corresponds to a different value of θ.
Vertical cross sections correspond to different sets Ω∆. Each point estimate is based on 100,000 simulation
studies. The type I error rate curve for uniform baseline hazard perturbations was smoothed using LOESS
methods. The shaded region around the LOESS curve corresponds to pointwise 95% confidence bands. The
degree of perturbation in the baseline hazard is annotated alongside each point estimate for uniform baseline
hazard perturbations.

appropriateness of perturbing the overall model intercept to obtain the discrete subspace of the overall
parameter space to be used for design simulations.
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Figure 2: Plot of power by E [W | D0, a0,θ]. Each point corresponds to a different value of θ. Vertical cross
sections correspond to different sets Ω∆. Each point estimate is based on 100,000 simulation studies. The
power curve for uniform baseline hazard perturbations was smoothed using LOESS methods. The shaded
region around the LOESS curve corresponds to pointwise 95% confidence bands. The degree of perturbation
in the baseline hazard is annotated alongside each point estimate for uniform baseline hazard perturbations.
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