SUPPLEMENTAL TABLES

Table S1. A list of genes that are differentially transcribed between Myt1+Neurog3+ and Myt1-Neurog3+ progenitor cells. Related to Figure 1. Only genes with a *p* value below 0.05 were listed. Note that for each gene, the average and SEM were provided, together with the *p*-value.

 Table S2. Lists of genes associated with DMRs between Neurog3eGFP/eGFP null and

 Neurog3eGFP/+ heterozygous cell populations. Related to Figure 5. Official genes names

 were presented.

Table S3. The number of cells counted for all quantification processes. Related toFigure 2, 4, 6. The corresponding panel was noted in each set of data.

SUPPLEMENTARY FIGURES

Figure S1. The heterogeneity of Neurog3+ cells in the developing pancreas. Related to Figure 1. (A, B) Co-immunostainning of Myt1 and Neurog3 in E10.5 and E14.5 embryonic pancreata. Arrowheads, single Ngn3+ cells. Arrows, double Neurog3+TF+ cells. (C) Quantification of Neurog3+ cells that co-express Myt1, Pax6, and Pdx1 at different stages. Error bars, SEM. (D, E) Co-immunostainning of Pax6 or Pdx1 with Neurog3 in E14.5 pancreata. Arrowheads, single Ngn3+ cells. Arrows, double Neurog+TF+ cells. Scale bars=20 µm. (F) Gating strategy for flow sorting *eGFP*-expressing cells for downstream scRNA-seq analysis. (G) Evaluation of doublet rate of scRNA-seq experiments by co-encapsulating human K562 cells with E14.5 mouse pancreatic cells. Mouse (Y-axis) or human (X-axis) βactin transcript counts are plotted for each filtered barcode representing a cell. (H) t-SNE analysis of 1,635 GFP-sorted cells from two biological replicate experiments. Black and grey represent each replicate and the degree of mixing between the two colors indicates the relative absence of batch effects. (I1-I5) Overlays of non-endocrine cell lineage specific gene markers on t-SNE, with identified populations manually annotated. Overlays represent gene expression levels on a variance normalized (Asinh) scale. (J1-5) Overlays of endocrine cell-type specific gene markers on t-SNE. Overlays represent gene expression levels on a variance normalized (Asinh) scale. There were not enough intermediate cell states connecting *Sst*-expressing cell states to the general endocrine cluster (J5). The general endocrine population was gated for downstream p-Creode analysis of endocrine differentiation.

Figure S2. *nCre* and *cCre* expression-based lineage tracing. Related to Figure 2. (A, B) Insulin staining and β-cell area quantification in control (no transgene) and *Myt1cCre; Neurog3nCre; Ai9* (*MNA*) compound mice. (C) Random blood glucose of newly-born control and *MNA* mice. (D) Intraperitoneal glucose tolerance test of control and *MNA* mice 6-week after birth. (E-G) Combinatorial lineage tracing of Myt1+Neurog3+ cells in P1 *Myt1cCre; Neurog3tg-nCre; Ai9* mice. Note that *Neurog3tg-nCre* is a BAC-based transgene, so that its presence does not interfere with Neurog3 production in progenitor cells. (E, F) Representative images of Ins, Gcg, and Sst co-staining with tdTomato production (red). (G) Quantification of lineage marked cells in P1 *Myt1cCre; Neurog3tg-nCre; Ai9* mice (n=4-5). Scale bar in F=20 µm.

Figure S3: Supervised analysis of *Myt1*⁺ and *Myt1*⁻ endocrine progenitor cells using **PLSDA on scRNA-seq data. Related to Figure 3.** (A) Gating strategy for *Myt1*⁺ and *Myt1*⁻

endocrine progenitor cells. Endocrine progenitor cells were gated from the general endocrine population in Figure S1 for cells that do not express differentiated cell product genes, such as *Ins1*, *Gcg*, *Ghrl*, *Ppy*, *Sst*, resulting in 550 total endocrine progenitor cells. Progenitors were further gated for *Myt1* positivity (151 cells – 27%) and negativity (399 cells – 73%) for downstream PLSDA analysis. (B) Variance captured of the PLSDA model constructed from *Myt1*⁺ and *Myt1*⁻ endocrine progenitor cells as a function of the number of latent variables included. (C) Calibration (cal) and cross-validation (CV) error of the PLSDA model as a function of the number of latent variables included. (D) List of the top 20 biological processes. Red font highlights the epigenetic-based processes. (E, F) t-SNE overlay of *Arx* and *Pax4* expression in flow-sorted *Neurog3*-expressing cells. Note the differential temporal expression of *Arx* (E) and *Pax4* (F) within the endocrine lineage.

Figure S4. Epigenetic manipulation on islet-cell type allocation. Related to Figure 4.

(A-G) E12.5 pancreatic buds cultured five days in DMSO or 5 μ M Adox were used for all assays. (A-D) Neurog3, Myt1, and Pdx1 production in pancreatic buds in 5 μ M Adox (A, B) or DMSO (C, D). (E-G) Ins and Gcg staining and quantification. (H-N) Effects of AzaC on islet cell allocation. E12.5 pancreatic buds cultured five days in DMSO or 2 μ M AzaC were used for all assays. (H-J) MafB/Gcg production in pancreatic buds. (J) Real-time RT-PCR of *Arx/Gcg* transcription in pancreatic buds (higher Δ CT means higher expression). (K, L) Assays for cleaved Caspase3 (Cas3), an apoptotic marker, in cultured pancreatic buds. (M, N) Cell proliferation in cultured pancreatic buds. (O-Q) Effects of *Dnmt3b* overexpression on islet cell allocation. TetO-based *Dnmt3b* overexpression (*Dnmt3b*^{OE}) was driven by *Pdx1cre* in combination with *Rosa26rTTA-ires-eGFP*, which resulted in the expression of rTTA in most

pancreatic cells. Dox was added from E10.5 until tissue collection at E16.5. Scale bars in all panels, 20 μ m.

Figure S5. Methylation status in CpG islands of pancreatic progenitors. Related to

Figure 5. *Neurog3* expressing cells sorted from E14.5 *Neurog3^{eGFP/+}* or *Neurog3^{eGFP/eGFP}* pancreata were used for DNA isolation and bisulfite sequencing for PCR (A) or sequencing (B, C). (A) Methylation CpG islands of *Pax4*, *Pax6*, *Pdx1*, *Nkx2.2*, and *Nkx6.1*, assayed via PCR-sequencing. The locations of the reported CpG islands were marked by their relative position to the transcription initiation site. Black circles indicate methylated CpG dinucleotide. (B, C) Some DMRs from genome-wide methylome assays. (B) Differentially Methylated Regions (DMRs) in *Ngn3* null and Heterozygous cells. Note that the majority of the DMRs were hypomethylated in the Ngn3 heterozygous cells. (C) The relative locations of DMRs relative most genes.

Figure S6. Methylation status near the *Nkx6.1* **and** *Arx* **loci. Related to Figure 5.** (A) Locations of several differentially methylated regions (DMRs, red rectangles) ~60 kilobases 3' to *Nkx6.1* between Ngn3-heterozygous (het) and null cells (E14.5). The hypomethylated regions (HMRs) were annotated with grey rectangles above each track. (B) The methylation states near the *Nkx6.1* transcription units. The CpG island examined via PCR-based sequencing, 5' end of *Nkx6.1* transcript, was marked with green rectangle. (C, D) Methylation states near *Arx* locus, in Ngn3 het and null cells. The green rectangle indicates the location of UR2.

Figure S7: Transcriptomic homogeneity of the E14.5 *Neurog3eGFP/eGFP* pancreas. Related to Figure 7.

t-SNE analysis of scRNA-seq data generated from E14.5 flow-sorted *Neurog3^{eGFP/eGFP}* cells overlaid with cell lineage gene markers (A-C), *Neurog3*-dependent genes (D-F), *Neurog3*independent genes (G), and genes for epigenetic modifying enzymes (H-L). (C) CD68 marks the presence of immune cells within flow-sorted GFP+ cells. Overlays represent gene expression levels on a variance normalized (Asinh) scale.

Figure S1

Figure S2

Figure S3

Figure S4

Figure S5

t-SNE 1

								cell nu	umber c	uantific	ations u	sed in e	ach figure	e grap	bh														
	beta-	Cell #	1	.6 1	3 2	4 3	7 47	/ 19	22	20	6	9	4	2	2	1	4	3	2	1	2	3	5	9	3	4	5	6	37
	trajectory	Expressio	r 0.3	2	0 0.48	5 0.	2 0.189	0.153	0.532	0.119	0.565	0.0556	0.211	0	0	0	0	0	0.2	0	0	0	0.2	0.1	0	0 0	0.4	0.2	0.2
Figure	alpha-	Cell #		7	4	9	5 11	. 10	6	7	13	10	6	3	3	2	6	12											
1H	trajectory	Expressio	r	0	0 0.10	8	0 0.271	0.501	0	0	0	0	0.272	0	0.3	0.2	0	0.1											
				Gcg+		SS+		PP+				Horm+																	
	mouse #	ins+tDT+	Ins+	tDT+	Gcg+	tDT+	SS+	tDT+	PP+		mice #	RFP+	Horm+																
	#11	1176	2222	316	2500	155	404	106	383		#1	127	432																
	#4	1114	2320	215	2013	102	247	78	387		#2	109	317																
	#1	703	1341	245	796	154	392	62	226		#3	152	390																
	#2	694	1387	159	1207	84	231	70	236		#4	73	221																
	#3	799	1098	199	1123	73	242	94	247		#5	129	233																
	#12	658	1179	187	1108	117	347				#6	120	374																
	#13	616	1123	169	930	97	214				#7	77	201																
	#14	1017	1612	137	881	79	386				#8	210	529																
	#22	1818	2956	100	683	113	226				#9	206	514																
	#23	342	957	160	1075	86	238	100	187																				
	#33	258	812	272	1268	52	257	64	279																				
Figure	#34	741	1316	139	896	181	394	150	351																				
2B5	#15	574	1095	89	897	85	301	40	151																				
				.				.		0 1.1.1																			
	mico #	inc +DT	Inci	GCg+t	Geal		mico #	Gast+t	Gasti	Gnri+t	Chrlu																		
	#1	251	769	65	201		#11	20	155	16	216																		
	#1 #2	220	374	73	360		#11 #12	40	112	14	13/																		
	#2 #3	568	762	73 61	352		#12 #13	40 26	159	19	134																		
	#J	329	792	107	1092		#13	57	192	16	104																		
	#5	260	465	129	840		#15	28	133	13	110																		
	#5 #6	164	332	45	308		#15	38	135	21	92																		
Figuro	#7	256	360	34	301		#17	50	107	8	114																		
7C3	#8	230	500	167	860					0																			
203	mice #	Mvt1+Ngr Ngn3+ mice # M					+l Ngn3+																						
	control-1	115	243		transe	ze 147	183																						
Figure	control-2	87	186		transe	ge 179	203																						
2D3	control-3	85	206		transe	ge 180	191																						
100						,	-	4																					
	mice #	beta	alpha		mice	# beta	alpha																						
	WT-1	1421	1016		Trans	ge 1622	809																						
	WT-2	1638	1233		Trans	ge 1273	987																						
					(- '																							
Figure	WT-3	1091	908		Trans	ge 1441	892																						
Figure	WT-3	1091	908		Trans	ge 1441	892																						

Supplementary Table 3

2E WT-4 976 930 Transge 1387 731

	cotnrol1			Mutan	t1		control2			mutar	nt2		contor	13	mutant3		
Figure	alpha	beta		alpha	beta		alpha	beta		alpha	beta		alpha	beta	alph) beta	
2F3	358	536		307	370		479	729		565	700		548	871	750	1022	
	E12.5							E14.5									
	bud #	alpha	beta		alpha	beta	bud #		alpha	beta		alpha	beta				
	#1	209	572		143	284		#1	275	909		586	1008				
	#2	232	395		167	265		#2	346	667		481	956				
	#3	83	351		292	387		#3	112	420		413	549				
	#4	285	492		265	446		#4	363	692		404	652				
Figure								#5	174	605		562	945				
4D		control			А	zaC			contro	AzaC							
		DNMT1	OE	control													
	mice #	alpha	beta	mice #	alpha	beta											
	1	722	437	1	930	640											
	2	548	394	2	322	463											
	3	95	78	3	425	441											
Figure	4	1324	1157	4	1542	710											
4G	5	322	359	5	397	272											
		dCas9-T	G	Control													
	1	alpha	beta	1	alpha	beta											
	2	2508	1902	2	1254	822											
	3	1277	749	3	1811	1410											
	4	1670	651	4	1593	1222											
Figure	5	3562	1603	5	2762	2797											
6E3	6	1319	571														

S