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1 SUPPLEMENTARY	METHODS	

1.1 Model	for	transmission	dynamics	in	households	

Every	household	was	randomized	to	be	in	either	vaccine	group	or	control	group,	and	a	

child	was	randomly	selected	in	the	household	to	receive	TIV	vaccine	in	the	vaccine	

group	(denoted	as	vaccinated	child)	or	placebo	in	the	control	group	(denoted	as	control	

child).	We	denoted	other	household	members	as	contacts	of	the	vaccinated/control	

child.	In	the	study,	there	were	3	rounds	of	sera	collection,	occurring	in	pre-season	(R1),	

mid-season	(R2)	and	post-season	(R3).	In	the	study	plan,	all	participants	provided	sera	

in	R1	and	R3,	and	participants	in	~33%	of	randomly	selected	household	provided	sera	

in	R2.	Each	household	may	have	slightly	different	time	of	sera	collection	in	each	round	

due	to	logistic	reasons.	

For	an	individual	j	in	household	i,	we	observed	a	vector	
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We	excluded	the	antibody	titer	results	of	sera	samples	from	participants	reporting	

vaccination	during	the	study	period,	because	the	4-fold	or	greater	rises	from	those	

samples	could	be	the	results	of	vaccination.	We	assumed	that	the	infection	status	of	

these	participants	was	unknown.			

We	only	observed	final	size	data	for	this	study.	Therefore,	the	chains	of	transmission	

were	not	observed	and	inferring	the	transmission	dynamics	in	households	could	be	

difficult.	Hence,	we	used	a	direct	graph	(digraph)	approach	to	estimate	the	transmission	

dynamics	in	households1,2.	In	this	approach,	we	represented	the	potential	chain	of	

transmission	in	each	household	as	a	digraph,	and	considered	those	digraphs	as	
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augmented	data.	Then	we	jointly	inferred	the	posterior	distribution	of	parameters	and	

the	digraphs	by	using	a	data	augmentation	MCMC	approach.		

1.1.1 Overview	
Denote	G	the	digraph	representing	the	potential	transmission	chain	in	households,	y	the	

observed	data,	and	I	the	parameter	vector:	

J(L, I|<) ∝ J(<|L)J(L|I)J(I)	

Here,	J(<|L)	is	an	indicator	function	equal	to	1	if	the	infection	status	of	all	participants	

derived	from	the	digraph	G	agrees	with	the	observed	infection	status	y.	J(L|I)	is	the	

probability	of	digraph	G	given	the	parameters	I.	J(I)	is	the	prior	density	function	of	the	

model	parameters	I.		

1.1.2 The	probability	of	the	digraph	
Here,	we	omit	the	index	for	household	in	the	notation	for	simplicity.	A	household	of	size	

n	is	represented	by	a	random	directed	graph	with	n	vertices,	each	representing	a	

household	member.	Edges	are	added	to	represent	possible	transmission	events.	An	

edge	between	individual	j	and	individual	i	indicates	that	if	individual	j	gets	infected,	

then	individual	i	will	get	infected	too.	An	edge	between	the	community	and	individual	i	

indicates	that	individual	i	will	get	infected.	Those	digraphs	can	be	represented	by	a	

matrix1.	Consider	for	example	the	following	toy	example,	where	each	row	represents	a	

potential	“source”	of	transmission	while	each	column	represents	a	potential	“recipient”:	

	

	 Participant	1	 Participant	2	 Participant	3	 Participant	4	

Community	 1	 0	 0	 1	

Participant	1	 0	 1	 0	 0	

Participant	2	 0	 0	 0	 0	

Participant	3	 1	 0	 0	 0	

Participant	4	 1	 0	 0	 0	
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In	this	digraph,	participant	1	and	4	were	infected	from	the	community	and	participant	2	

was	infected	by	participant	1.	Participant	3	was	not	infected.	

In	this	approach,	the	presence	of	an	edge	is	independent	of	that	of	other	edges.	

Therefore,	it	is	possible	to	observe	both	an	edge	from	individual	j	to	individual	k	and	

one	edge	from	individual	k	to	individual	j.	For	each	digraph,	we	can	infer	the	final	

infection	status	for	every	individual	in	the	household.	We	denoted	L
$

% 	the	final	outcome	

for	individual	j	in	household	i	derived	from	digraph	L
$
.	The	relationship	between	the	

digraphs	and	parameters	is	presented	in	the	following	sections.	

1.1.3 Household	transmission	

Variable	-%; 	indicates	the	presence	of	an	edge	from	individual	j	to	individual	k,	

occurring	with	a	probability:	

J!-
%;
= 1PI6 = 1 − exp	(−U

%;
(I))	

The	formulation	of		U%;(I)	is	as	follows:	

U
%;
(I) = {λ

X&
Y(ℎ5 < 4) + U

\(
Y(ℎ5 ≥ 4)} ∗ _

;
(I),	

where	U
\&
,	U

\(
	are	parameters	that	measure	the	strength	of	transmission	in	households	

of	size	<	4	and	≥4,	respectively,	and	_
;
(I)	is	the	susceptibility	component	for	individual	

k	described	in	Section	1.2.3.	

1.1.4 The	probability	of	infection	from	the	community		
In	addition	to	within	household	transmission,	each	of	the	individual	experienced	a	

probability	of	infection	from	the	community.	Variable	-`; 	indicates	the	presence	of	an	

edge	from	the	community	to	individual	k,	occurring	with	probability	

J(-
`;
= 1|I) = 1 − exp	(−U

`;
(I))	

The	formulation	of		U`;(I)	is	as	follows:	

U
`;
(I) = a ∗ _

;
(I)	

where		a	is	a	parameter	that	measures	the	strength	of	infection	from	the	community	

and		_
;
(I)	is	the	susceptibility	component	for	individual	k	described	in	section	1.2.3.	

1.1.5 Susceptibility	component		



 SI Page 5 

For	an	individual	k,	his/her	susceptibility	was:	
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where	exp(β
&
)	was	the	relative	susceptibility	for	adults	compared	with	children.	

exp(β
(
)	and	exp(β

)
)	were	the	relative	susceptibility	for	household	contacts	with	

intermediate	HAI	titers	(1:20,	1:40)	and	higher	HAI	titers	(>1:40)	comparing	with	those	

with	HAI	titers	<1:20.	exp(β
k
)	was	the	relative	susceptibility	for	vaccinated	participants,	

compared	with	non-vaccinated	participants.	

1.1.6 Likelihood	function	for	the	digraph	
For	a	given	household,	the	contribution	to	the	likelihood	function	for	the	digraph	would	

be	as	follows:	

l(L|I) = m mJ!-
%;
= 1PI6

n
Bo

J!-
%;
= 0PI6

&pn
Bo

;q%%:%st|u
B
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Note	that	j	was	started	from	0	to	represent	the	infection	from	the	community.	

We	assumed	households	were	independent	of	each	other	so	that	the	full	likelihood	was	

just	the	product	of	all	household	likelihoods.		

1.1.7 Agreement	between	observed	data	and	digraphs	
The	second	level	of	the	model	ensured	that	the	proposed	digraph,	and	hence	the	

potential	transmission	chain,	agreed	with	the	observed	data:	

J(<|L) =mmY(L
$

%

= <
$%
)

%$

	

where	L
$

% 	the	final	outcome	for	individual	j	in	household	i	derived	from	digraph	L
$
.	

1.2 Inference	

We	used	a	data	augmentation	MCMC	approach	to	explore	the	joint	posterior	

distribution	of	the	parameter	and	digraph	space2.	We	outlined	the	algorithm	in	the	

following	sections.	

1.2.1 Priors	
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For	parameters	describing	the	strength	of	infection	in	the	community	a	and	the	

strength	of	transmission	in	households	λ
X&
,	λ
X(
,		the	prior	distribution	was	a	

Uniform(0,10)	distribution.	Then,	(2.5%,97.5%)	percentile	of	the	probability	of	

transmission,	that	is	equal	to	1 − exp	(−ℎ),	where	h	could	be	a,	λ
X&
	or		λ

X(
,	is	(0,	

0.9999).	

For	those	parameters	that	related	to	the	susceptibility,	the	priors	were	Normal(-3,3).	

The	(2.5%,97.5%)	percentile	of	the	exponential	of	this	prior	would	be	(0.0498,	20.09).	

1.2.2 Algorithms	
At	the	initial	step,	we	do	the	following.	

Because	there	was	a	small	number	of	missing	values	for	pre-season	titers	(1%),	we	first	

imputed	the	missing	values	in	antibody	titers	level	by	using	their	observed	empirical	

distribution.	We	allowed	the	distribution	to	be	different	for	children	and	adults.	

As	explained	in	previous	studies1,2,	the	data	augmentation	approach	was	restricted	to	

edges	between	participants	that	might	potentially	have	been	infected	(i.e.	with	final	

outcome	being	infected	or	unknown).	We	defined	potential	edges	as	edges	between	

participants	that	might	have	been	infected.	We	defined	a	non-edge	as	the	absence	of	a	

potential	edge.			

We	started	from	a	full	digraph,	i.e.	assuming	all	potential	edges	in	the	digraph	were	

present	and	hence	all	participants	with	unknown	infection	status	were	infected	and	

updated	the	digraph	and	the	unknown	status	in	the	MCMC	algorithm.		

	

At	each	MCMC	step,	we	did	the	following	updates:	

For	the	model	parameter	vector	I,	we	used	a	metropolis-hasting	algorithm	to	update	

each	of	the	parameters	individually.		

We	updated	the	digraph	G	and	the	unknown	infection	status	by	first	deciding	to	add	a	

potential	edge	or	delete	an	edge	with	equal	probability.		

To	add	an	edge,	we	randomly	selected	a	non-edge	from	all	the	non-edges	(including	

both	household	and	community	edges).	Next,	we	computed	the	corresponding	digraph	
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and	infection	status	for	participants	with	unknown	infection	status.	It	was	necessary	

because	addition	of	an	edge	may	change	the	infection	status	of	the	participants	with	

unknown	infection	status.	For	example,	in	the	following	digraph:	

	

	 Participants	1	 Participants	2	

Community	 0*	 0	

Participants	1:	(unknown	

infection	status)	

0	 1	

Participants	2:	(unknown	

infection	status)	

0	 0	

	

If	we	proposed	to	add	the	edge	at	0*,	then	both	participant	1	and	2	would	be	changed	

from	non-infections	to	infections.	Hence,	instead	of	just	comparing	the	likelihood	with	

this	edge	and	the	likelihood	without	this	edge,	we	needed	to	compare	the	likelihood	for	

all	household	members	in	this	household.	Addition	of	an	edge	would	not	change	the	

consistency	between	digraphs	and	observed	data	so	no	checking	was	needed.		

Suppose	the	total	number	of	potential	edges	was	A	and	the	number	of	edges	in	this	step	

is	B.	Then	the	probability	that	accepting	the	addition	of	this	edge	would	be	

min	(1,

l yL
�
zI{

l(L|I)
∗

1

| + 1

1

" − |

)	

where	l(L}|I)/l(L|I)	was	the	likelihood	ratio	of	the	current	digraph	L	(without	the	

proposed	edge)	and	the	proposed	digraph	L�	(with	the	proposed	edge	and	updated	

unknown	infection	status).	

For	deletion	of	an	existing	edge,	we	needed	to	ensure	the	digraph	would	be	consistent	

with	the	observed	data	and	therefore	every	confirmed	infection	in	the	observed	data	set	

should	have	at	least	one	edge	from	the	community	or	other	infected	household	
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members.	Otherwise,	the	deletion	would	be	directly	rejected.	After	checking	the	

consistency,	we	accepted	the	deletion	with	the	probability:	

min	(1,

l yL
�
zI{

l(L|I)
∗

1

" − | + 1

1

|

)	

where	G’	was	the	digraph	with	the	proposed	deletion	and	updated	unknown	infection	

status	and	G	was	the	digraph	without	the	proposed	deletion.	Again,	re-computing	the	

infection	status	in	the	selected	household	would	be	necessary	because	deletion	of	an	

edge	would	change	the	infection	status	of	household	members	with	unknown	infection	

status.		

After	updating	the	digraph,	we	also	updated	the	missing	antibody	titers	level	by	using	

metropolis-hasting	algorithm.		

	

1.2.3 Implementation	
The	chain	was	run	for	200,000	iterations	with	a	burn-in	of	100,000	and	a	thinning	of	10.	

The	algorithm	was	implemented	in	R	with	Rcpp	package	so	that	C++	could	be	used.	One	

run	of	the	algorithm	for	200000	iterations	took	about	60	minutes	on	a	desktop	with	

processor:	Inter®	Xeon®	CPU	W3565	@3.20GHz.		

1.3 Model	validation	

We	used	the	best	fitted	model	to	predict	the	final	size	distribution	and	summarized	in	

Supplementary	Table	5.	All	of	the	credible	intervals	can	cover	the	observed	number	of	

infections,	suggesting	that	the	model	fit	was	adequate.	

To	assess	the	performance	of	our	estimation	procedure,	we	performed	a	simulation	

study.	We	simulated	50	data	sets	with	a	structure	identical	to	that	of	the	observed	data	

(in	terms	of	age,	household	structure	and	the	availability	of	infection	status	in	each	

round),	with	parameters	equal	to	their	posterior	median.	We	then	applied	our	

estimation	procedure	to	the	simulated	data	sets	and	assessed	if	parameters	could	be	

estimated.	The	result	of	simulation	was	summarized	in	Supplementary	Table	6.	We	

found	no	important	bias	and	the	simulation	values	were	in	the	95%	credible	interval	for	

44-49	times	out	of	50	simulations	for	the	10	parameters	in	the	model.		It	suggested	that	
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our	estimation	procedure	would	be	able	to	provide	reasonable	estimates	of	the	

parameters.	

1.4 Model	Comparison	

Since	the	likelihood	of	the	observed	data	is	not	available	in	the	digraph	approach,	we	

used	an	importance	sampling	method	to	estimate	it1,3.	For	each	household,	we	simulate	

2000	datasets,	with	parameters	drawn	from	the	posterior	distribution.	Then	we	

compared	the	observed	data	and	simulated	data.	The	contribution	to	the	likelihood	of	a	

household	was	equal	to	the	proportion	of	simulated	data	with	infection	status	that	

exactly	matched	the	observed	data,	for	all	household	members.	To	avoid	the	problem	of	

0-valued	likelihood,	we	used	the	approach	developed	by	Cauchemez	et	al1.	We	assumed	

the	sensitivity	and	specificity	for	diagnosing	a	case	were	both	99.99%.	

After	using	the	above-mentioned	approach	to	estimate	the	likelihood	of	the	observed	

data,	the	DIC	was	computed	as	2�Ä − �(I̅),	where	D	is	the	deviance,	equal	to	-2*log	of	

likelihood.	

1.5 Model	prediction	

To	evaluate	indirect	protection,	we	conducted	a	simulation	study	with	parameters	

drawn	from	the	posterior	distribution.	Two	vaccine	strategies	were	evaluated:	

- Strategy	1:	vaccinating	one	child	in	each	household	(as	in	our	trial);	

- Strategy	2:	vaccinating	all	children	in	each	household.	

and	compared	to	the	strategy	of	“no	vaccination”.	

We	simulated	10,000	epidemics	in	150000	households	with	parameters	drawn	from	

their	posterior	distribution.	The	structure	of	a	simulated	household	was	identical	to	that	

of	a	household	randomly	drawn	in	the	study.	For	each	infected	individual,	the	source	of	

infection	for	this	individual	was	determined	based	on	the	recorded	digraph	with	the	

following	algorithm:	

1)	If	the	individual	only	had	edges	from	the	community	only,	the	source	of	infection	was	

the	community.	

2)	Else,	if	the	individual	only	had	edges	from	other	infected	household	members,	the	

source	of	infection	was	the	household.	
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3)	Else,	if	the	individual	was	the	only	one	with	an	edge	from	the	community,	the	source	

of	infection	was	the	community.	

4)	Otherwise,	the	source	of	infection	was	inconclusive.	For	all	simulations,	the	

maximum	proportion	of	infections	with	inconclusive	source	was	4%.	In	our	primary	

analysis,	half	of	infections	with	inconclusive	source	were	assigned	to	the	community	

and	the	other	half	to	households.	In	sensitivity	analyses,	we	considered	scenarios	where	

they	were	all	assigned	to	the	community	or	household	sources.		

For	each	strategy,	we	can	compute	a	probability	of	infection	for	a	given	group	and	from	

a	specific	source	(Supplementary	Figures	1,2	and	4).	For	a	given	group	(children	or	

adults)	and	a	given	source	of	infection	(household,	community	or	both),	the	indirect	

protection	due	to	a	vaccine	strategy	was	measured	by	the	relative	probability	(in	term	

of	ratio)	of	infection	in	that	group	and	from	that	source	under	this	vaccine	strategy,	

compared	to	the	probability	of	infection	under	no	vaccination	strategy.	

These	simulations	were	repeated	for	each	parameter	vector	randomly	drawn	from	

posterior,	hence	we	were	able	to	derive	95%	posterior	predictive	intervals	for	each	of	

these	relative	probabilities	that	correctly	captured	the	effect	of	parameter	uncertainty	

on	model	predictions.	These	relative	probabilities	were	recomputed	using	100000	

households	and	they	were	basically	the	same.	

1.6 Details	of	trial	design	

For	estimating	direct	vaccine	efficacy,	assuming	conservatively	that	10%	of	participants	

in	the	control	arm	would	be	infected	with	a	prevalent	influenza	strain4,	inclusion	of	800	

subjects	would	have	75%	power	to	detect	a	vaccine	efficacy	of	�50%,	with	a	5%	type	I	

error	rate.	An	unbalanced	randomization	scheme	was	proposed,	where	more	

participants	were	included	in	the	intervention	arm	to	enhance	acceptability.	For	

estimating	indirect	vaccine	efficacy,	recruiting	the	2,000	(assuming	an	average	

household	size	of	3.5	=	1	participant	+	2.5	household	contacts)	household	members	of	

the	800	study	participants	(1,200	in	intervention	arm,	800	in	control	arm)	was	

anticipated	to	be	sufficient	to	ensure	high	power	to	identify	indirect	vaccine	

effectiveness	values	of	interest.	While	the	infection	risk	of	influenza	in	adults	is	typically	

lower	than	in	children,	we	anticipated	an	attack	rate	of	5%	in	the	control	arm.	The	

within-household	correlation	in	infection	risks	was	reported	as	29%	in	a	previous	
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study5.	Allowing	for	within-household	correlation,	our	study	would	have	77%	power	to	

detect	indirect	vaccine	effectiveness	of	40%	or	greater,	with	a	5%	type	I	error	rate.		

Randomization	lists	were	prepared	by	a	biostatistician	(V.	J.	F).	Eligible	study	

participants	were	randomly	allocated	to	the	TIV	or	placebo	group	at	a	ratio	of	3:2	using	

a	random	number	generator	(R	software).	A	block-randomization	sequence	was	

generated,	with	randomly	permuted	block	sizes	of	5,	10,	and	15.	Blinding	of	households	

and	study	nurses	was	achieved	by	identical	repackaging	of	TIV/placebo	into	numbered	

syringes	by	a	trained	nurse	not	involved	in	vaccine	administration.	A	research	assistant	

who	had	no	access	to	the	randomization	list	allocated	unique	numbers	to	participating	

households	based	on	their	order	of	attendance	and	these	were	subsequently	matched	to	

vaccine	packages.	Allocation	of	TIV/placebo	was	concealed	to	participating	households,	

study	nurses,	and	laboratory	staff,	and	was	revealed	to	investigators	only	after	

completion	of	follow-up.	
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3 SUPPLEMENTARY	FIGURES	
	

Supplementary	Figure	1.	The	probability	of	infection	for	child	contacts	and	adult	

contacts	for	no	vaccination,	vaccine	strategy	1	(vaccinating	one	child	in	each	household)	

and	vaccine	strategy	2	(vaccinating	all	children	in	each	household).	For	each	panel,	the	

title	was	in	the	form	of	vaccine	strategy,	group	of	individuals.	It	was	conducted	under	

the	assumption	that	half	of	the	infections	with	inconclusive	source	was	infected	from	

the	community	and	another	half	was	infected	from	the	household.	95%	posterior	

predictive	intervals	are	constructed	with	10000	simulated	epidemics	based	on	the	

estimated	posterior	distribution	of	model	parameters	(Supplementary	Methods).	
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Supplementary	Figure	2.	The	probability	of	infection	for	child	contacts	and	adults	

contacts	for	no	vaccination,	vaccine	strategy	1	(vaccinating	one	child	in	each	household)	

and	vaccine	strategy	2	(vaccinating	all	children	in	each	household).	The	format	was	the	

same	as	Supplementary	Figure	1	but	it	was	conducted	under	the	assumption	that	all	

infections	with	inconclusive	source	were	infected	from	the	community.	95%	posterior	

predictive	intervals	are	constructed	with	10000	simulated	epidemics	based	on	the	

estimated	posterior	distribution	of	model	parameters	(Supplementary	Methods).	
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Supplementary	Figure	3.	The	relative	probability	of	infection	for	household	contacts	

of	vaccinated	children,	under	two	vaccination	strategies	(strategy	1:	vaccination	one	

child	per	household;	strategy	2:	vaccinating	all	children	in	the	household),	compared	

with	no	vaccination	strategy.	The	format	was	the	same	as	Figure	5	but	it	was	conducted	

with	the	assumption	that	all	infections	with	inconclusive	source	were	infected	from	the	

community.	95%	posterior	predictive	intervals	are	constructed	with	10000	simulated	

epidemics	based	on	the	estimated	posterior	distribution	of	model	parameters	

(Supplementary	Methods).	
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Supplementary	Figure	4.	The	probability	of	infection	for	child	contacts	and	adults	

contacts	for	no	vaccination,	vaccine	strategy	1	(vaccinating	one	child	in	each	household)	

and	vaccine	strategy	2	(vaccinating	all	children	in	each	household).	The	format	was	the	

same	as	Supplementary	Figure	1	but	it	was	conducted	with	the	assumption	that	all	

infections	with	inconclusive	source	were	infected	from	the	household.	95%	posterior	

predictive	intervals	are	constructed	with	10000	simulated	epidemics	based	on	the	

estimated	posterior	distribution	of	model	parameters	(Supplementary	Methods).	
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Supplementary	Figure	5.	The	relative	probability	of	infection	for	household	contacts	

of	vaccinated	children,	under	two	vaccination	strategies	(strategy	1:	vaccination	one	

child	per	household;	strategy	2:	vaccinating	all	children	in	the	household),	compared	

with	no	vaccination	strategy.	The	format	was	the	same	as	Figure	5	but	it	was	conducted	

with	the	assumption	that	all	infections	with	inconclusive	source	were	infected	from	the	

household.	95%	posterior	predictive	intervals	are	constructed	with	10000	simulated	

epidemics	based	on	the	estimated	posterior	distribution	of	model	parameters	

(Supplementary	Methods).	
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4 SUPPLEMENTARY	TABLES	
Supplementary	Table	1.	Characteristics	of	household	contacts	in	the	vaccine	trial		

Characteristic	 Placebo	group	 Vaccine	group	

No.	of	participants	 776	 1146	

Age	 		 		

		�18	years	 159	(20.5%)	 237	(20.7%)	

		>18	years	 617	(79.5%)	 909	(79.3%)	

Male	 335	(43.2%)	 502	(43.8%)	

Vaccination	 82	(10.6%)	 143	(12.5%)	

Serum	available	in			 		 		

		Round	1	 758	(97.7%)	 1129	(98.5%)	

		Round	2	 276	(35.6%)	 419	(36.6%)	

		Round	3	 714	(92%)	 1041	(90.8%)	
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Supplementary	Table	2.	Demographic	information	for	participants	in	each	round	

	 Round	1+2	 Round	2+3	 Round	1+31	

	 TIV	group	 Placebo	group	 TIV	group	 Placebo	group	 TIV	group	 Placebo	group	

Number	of	pairs	 424	 287	 424	 287	 722	 489	

Age	�18	years	 91/424	

(21%)	

59/287	

(21%)	 91/424	(21%)	 59/287	(21%)	

146/722	

(20%)	

100/489	

(20%)	

Age	>18	years	 333/424	

(79%)	

228/287	

(79%)	

333/424	

(79%)	

228/287	

(79%)	

576/722	

(80%)	

389/489	

(80%)	

Male	 188/424	

(44%)	

121/287	

(42%)	

188/424	

(44%)	

121/287	

(42%)	

314/722	

(43%)	

214/489	

(44%)	

1only	participants	with	missing	serum	in	Round	2	were	included	in	this	group	
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Supplementary	Table	3.	Timing	of	sera	collection	among	participants	

	 Round	1+2	 Round	2+3	 Round	1+31	

	 TIV	group	 Placebo	group	 TIV	group	 Placebo	group	 TIV	group	 Placebo	group	

First	serum	 	 	 	 	 	 	

Range	 Aug	15,	2009	to	

Jan	15,	2010	

Aug	15,	2009	

to	Jan	9,	2010	

Apr	2,	2010	to	

May	1,	2010	

Apr	2,	2010	to	

May	1,	2010	

Aug	15,	2009	to	

Jan	23,	2010	

Sep	11,	2009	to	

Feb	6,	2010	

Median	 Oct	17,	2009	 Oct	17,	2009	 Apr	16,	2010	 Apr	10,	2010	 Oct	31,	2009	 Oct	30,	2009	

Second	serum	 	 	 	 	 	 	

Range		 Apr	2,	2010	to	

May	1,	2010	

Apr	2,	2010	to	

May	1,	2010	

Oct	1,	2010	to	

Nov	27,	2010	

Oct	1,	2010	to	

Nov	27,	2010	

Sep	11,	2010	to	

Nov	27,	2010	

Oct	1,	2010	to	

Nov	27,	2010	

Median	 Apr	16,	2010	 Apr	10,	2010	 Oct	23,	2010	 Oct	23,	2010	 Oct	30,	2010	 Oct	29,	2010	

Days	between	the	date	of	

collections:	Median	(Range)	 182	(92,	257)	 182	(98,	259)	 196	(160,	238)	 196	(160,	238)	 370	(265,	420)	 364	(273,	427)	

1Only	participants	with	missing	serum	in	Round	2	were	included	in	this	group	
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Supplementary	Table	4.	Observed	number	of	infections,	defined	by	4-fold	or	greater	rise	for	at	least	one	paired	sera.	
	
	 Group	 Round	1+2	 Round	2+3	 Round	1+3	 All	

0-18	yrs	 TIV	 7/84	(8%)	 3/82	(4%)	 7/113	(6%)	 17/194	(9%)	

	 Control	 9/50	(18%)	 2/52	(4%)	 10/78	(13%)	 20/128	(16%)	

>18	yrs	 TIV	 18/293	(6%)	 9/285	(3%)	 15/434	(3%)	 42/717	(6%)	

	 Control	 10/201	(5%)	 5/196	(3%)	 10/308	(3%)	 25/500	(5%)	

Overall	 TIV	 25/377	(7%)	 12/367	(3%)	 22/547	(4%)	 59/911	(6%)	

	 Control	 19/251	(8%)	 7/248	(3%)	 20/386	(5%)	 45/628	(7%)	
1Only	participants	with	missing	serum	in	Round	2	were	included	in	this	group	
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Supplementary	Table	5.	Observed	and	expected	final	size	distribution	in	households		

	 	 Numbers	of	infections	

	 	 Household	contacts	of	vaccinated	children	

	 	 0	 1	 2	 3	 4	 5	 6	

Numbers	of	

household	

contacts	

1	 55	-	56.5	(53,	59)	 4	-	2.5	(0,	6)	 NA	 NA	 NA	 NA	 NA	

2	 175	-	177.6	(170,	185)	 16	-	14.8	(8,	22)	 3	-	1.5	(0,	4)	 NA	 NA	 NA	 NA	

3	 128	-	124.4	(115,	132)	 17	-	20	(13,	28)	 2	-	2.4	(0,	6)	 0	-	0.2	(0,	1)	 NA	 NA	 NA	

4	 28	-	28.9	(24,	33)	 7	-	5.9	(2,	10)	 0	-	1.1	(0,	3)	 1	-	0.2	(0,	1)	 0	-	0	(0,	0)	 NA	 NA	

5	 6	-	5.3	(3,	7)	 1	-	1.3	(0,	4)	 0	-	0.3	(0,	2)	 0	-	0	(0,	1)	 0	-	0	(0,	0)	 0	-	0	(0,	0)	 NA	

6	 3	-	2	(1,	3)	 0	-	0.6	(0,	2)	 0	-	0.3	(0,	1)	 0	-	0.1	(0,	1)	 0	-	0	(0,	0)	 0	-	0	(0,	0)	 0	-	0	(0,	0)	

	 	 Household	contacts	of	control	children	

Numbers	of	

household	

contacts	

1	 36	-	36.2	(33,	38)	 2	-	1.8	(0,	5)	 NA	 NA	 NA	 NA	 NA	

2	 111	-	109.3	(102,	115)	 10	-	11.3	(6,	18)	 1	-	1.4	(0,	4)	 NA	 NA	 NA	 NA	

3	 87	-	93	(85,	100)	 22	-	15.1	(8,	23)	 1	-	1.8	(0,	5)	 0	-	0.1	(0,	1)	 NA	 NA	 NA	

4	 21	-	18.7	(15,	22)	 1	-	3.6	(1,	7)	 1	-	0.6	(0,	2)	 0	-	0.1	(0,	1)	 0	-	0	(0,	0)	 NA	 NA	

5	 4	-	4.2	(2,	6)	 1	-	1.3	(0,	3)	 1	-	0.4	(0,	2)	 0	-	0.1	(0,	1)	 0	-	0	(0,	0)	 0	-	0	(0,	0)	 NA	

6	 0	-	0	(0,	0)	 0	-	0	(0,	0)	 0	-	0	(0,	0)	 0	-	0	(0,	0)	 0	-	0	(0,	0)	 0	-	0	(0,	0)	 0	-	0	(0,	0)	

Each	element	of	the	table	has	the	format	“observed	frequency	–	expected	(posterior	mean)	frequency	(95%	Credible	interval).	
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Supplementary	Table	6.	Simulation	study	for	the	model	for	estimating	the	cumulative	incidence	of	infection	

parameter	 Simulation	value	 Mean	 Number	of	credible	intervals	

that	cover	the	simulation	

value	(out	of	50)	

Parameter	describing	the	

probability	of	infection	in	the	

community	

!:	for	the	whole	study	period	

0.13	 0.14	 43	

Parameters	describing	the	

probability	of	transmission	in	

households	

#$%:	strength	of	transmission	in	
households	with	size	less	than	4	 0.2	 0.24	 47	

#$&:	strength	of	transmission	in	
households	with	size	equal	to	4	 0.07	 0.08	 44	

Relative	susceptibility		

(Ref	group:	children)	

'%	:	adults	
0.39	 0.35	 45	

Relative	susceptibility		

(Ref	group:	low	level	of	titers)	

'&	:	intermediate	level	of	titers	 0.48	 0.42	 48	

'(	:	high	level	of	titers	 0.42	 0.35	 50	

Relative	susceptibility		

(Ref	group:	non-vaccination)	

')	:	vaccination	
0.29	 0.25	 46	

	


