
Bayesian multiple logistic regression for case-control
GWAS – Supplemental Methods
Saikat Banerjee1, Lingyao Zeng2, Heribert Schunkert2 and Johannes Söding1,*
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1 Correction of covariates and population substruc-
ture

Covariates such as age, sex, lipid levels, etc. are treated as a separate hypothetical locus
in B-LORE. For N patients with J covariates, we create a covariate matrix X′ ∈ RN×J
and append it to the genotype matrix X ∈ RN×I of I SNPs. The total data matrix after
the concatenation has rows

(
xT,x′T

)
∈ RI+J . Unlike the SNP loci, we do not use the

point-normal prior for variable selection in the covariate locus, but use a normal prior.
This is done by simply setting π = 0 and σ = σ′ for the covariate locus, and estimating
σ′ from the data (see below: section Factorization over loci). We calculate the posterior
inclusion probability (PIP) for each covariate.

To correct for non-causal correlations of genotype with disease via population sub-
structure, we perform a singular value decomposition (SVD) of the genotype matrix
X =

∑
s λsu

T
sβs, where λs are the singular values sorted in decreasing order, βs ∈ RI

the singular vectors or principal components and us ∈ RN are the loadings of the
singular vectors. We store the loadings multiplied by the singular values of the first S
(e.g. S = 3 . . . 10) principal components as covariates, x′n = (λ1u1,n, . . . , λSuS,n)T for
each patient. The number of loadings used for the population substructure correction
can be controlled by using the --pca option in B-LORE.

B-LORE uses pre-selected SNPs, and hence the PCA can only use these SNPs. A
genome-wide PCA can also be performed by external tools and the principal components
can be added as covariates.

2 Motivation of quasi-Laplace approximation

The quasi-Laplace approximation, as discussed in the main text, is a key concept in
the methodology of B-LORE. We approximate the product of the likelihood of β and a
regularizer with a Gaussian distribution.

p (φ | X,β) N
(
β | 0, σ̃2I

)
∝ N

(
β | β̃, Λ̃−1

)
. (1)

The logarithm of the left-hand side, which we call regularized log likelihood,

log Lreg (β) = log p (φ | X,β) + log N
(
β | 0, σ̃2I

)
(2)

is a quadratic function (log N
(
β | 0, σ̃2I

)
) with respect to any of the βi, plus the sum

of N concave functions. The approximation can be motivated from its validity in the
limit of N � 1 and equal number of cases and controls. The Hessians of the concave
functions must all have negative or zero diagonal elements and therefore their sum will
grow roughly proportionally with the number of patients N . In contrast to the second
derivatives, the third and higher partial derivatives will take both positive and negative
signs. If the number of diseased and control patients is roughly equal, p(φn | xn,β)
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will mostly lie near (1/N)
∑
n I(φn = 1) ≈ 0.5, and therefore βTxn will be roughly as

often positive as negative. Therefore the third partial derivatives will tend to be close
to zero and have no preferred signs. The same is true of the higher derivatives. The
magnitudes of the third and higher derivatives will grow only as

√
N because their signs

fluctuate around 0 for all patients. The second derivatives will increasingly dominate
over the higher derivatives as N gets larger, and the log likelihood will be increasingly
better approximated by a quadratic function, or in other words, by the logarithm of a
multivariate Gaussian. As we see from the results, the above approximation could be
extended to GWAS with strongly differing numbers of cases and controls.

3 Integration of the marginal likelihood

We optimize the hyperparameters by maximizing the marginal likelihood function, which
is obtained by integrating over the effect sizes β:

mL (π, σ) = p (φ | X, π, σ)

=

∫
p (φ | β,X, π, σ) p (β | π, σ) dβ

=
∑
c

p (c | π, σ)

∫
p (φ | X,β) N

(
β | 0,diag

(
σ2

c

))
dβ

=
∑
c

p (c | π, σ)

∫
p (φ | X,β) N

(
β | 0, σ̃2I

) N (β | 0,diag
(
σ2

c

))
N (β | 0, σ̃2I )

dβ

∝
∑
c

p (c | π, σ)

∫
N
(
β | β̃, Λ̃−1

) N (β | 0,diag
(
σ2

c

))
N (β | 0, σ̃2I )

dβ (3)

where we have used the quasi-Laplace approximation of Eq. (1) in the last step. We can
analytically evaluate the integral in Eq. (3) because the logarithm of the integrand is
now a quadratic function of β. We make use of the following equality, which we prove in
Appendix A:∫

N
(
β | µ1,Λ

−1
1

) N (β | µ2,Λ
−1
2

)
N
(
β | µ3,Λ

−1
3

) dβ =
N
(
0 | µ1,Λ

−1
1

)
N
(
0 | µ2,Λ

−1
2

)
N
(
0 | µ123,Λ

−1
123

)
N
(
0 | µ3,Λ

−1
3

) (4)

where

Λ123 := Λ1 + Λ2 −Λ3 (5)

µ123 := Λ−1123 (Λ1µ1 + Λ2µ2 −Λ3µ3) (6)

Identifying Λ1 = Λ̃, Λ2 = diag
(
σ2

c

)−1
, Λ3 = 1

σ̃2 I , µ1 = β̃, µ2 = 0, µ3 = 0 and defining

Λc := Λ̃ + diag
(
σ2

c

)−1 − 1

σ̃2
I = Λ123 (7)

βc := Λ−1c

(
Λ̃β̃
)

= µ123 (8)

we obtain

mL (π, σ) ≈
∑
c

p (c | π, σ)
N
(
0 | β̃, Λ̃

−1)
N
(
0 | 0,diag

(
σ2

c

))
N
(
0 | βc,Λ

−1
c

)
N (0 | 0, σ̃2I )

(9)

The upper left and lower right Gaussians do not depend on π, σ or c and can be pulled
into a constant factor D′, yielding

mL (π, σ) = D′
∑
c

p (c | π, σ)
1

|Λc|
1
2 |diag (σ2

c)|
1
2

exp

(
1

2
βT
cΛcβc

)
(10)

2/6



4 Estimation of σ̃

We use an iterative estimation procedure to find optimum regularization parameter σ̃.
For the quasi-Laplace approximation to hold well, we need to find σ̃ that make the
regularizer almost as good a prior as the full two-component mixtures prior. This can be
achieved by optimizing (with respect to σ̃) a simplified marginal likelihood in which the
regularizer replaces the full prior.

We start by setting σ̃ = 0.01. We then find improved estimates of σ̃ by setting
σ̃ := σ (note equivalence to σ̃2I = diag

(
σ2

c

)
), which corresponds to only one single

causality configuration c = {1, 1, · · · , 1} in which all SNPs are causal – and maximising
the likelihood in Eq. (10) with respect to σ. We iterate a few times reesitmating improved
values for σ every time using the new, updated estimates of σ̃.

5 Calculation of summary statistics

As discussed in the main text, we intend to learn the mode β̃ and precision Λ̃ of
the regularized likelihood given by Eq. (1). Given σ̃, we maximize the regularized log
likelihood of Eq. (2) with respect to β using the gradient-based optimisation method
L-BFGS. The partial derivatives are:

∂

∂vi
log Lreg (β) =

N∑
n=1

(φn − pn)xni −
βi
σ̃2

(11)

where pn = p(φn = 1 | xn,β). The solution of this optimisation, β̃, is the mean and
mode of the Gaussian. The term −βi/σ̃2 pulls βi towards zero. It prevents the maximum
likelihood solutions β∗i to assume large values in the absence of strong evidence for a
SNP-disease coupling, e.g. when two SNPs are in near-perfect linkage desequilibrium
and therefore very highly anti-correlated.

To find the precision matrix, we note that it should be equal to the negative Hessian
matrix −H of the regularized log likelihood at β̃. Using the derivative of the logistic
function lf(x) = 1/(1 + e−x) given by,

d lf(x)

dx
= lf(x)(1− lf(x)), (12)

we obtain the matrix elements of the Hessian H,

∂2

∂vi∂vj
log Lreg

(
β̃
)

= −
N∑
n=1

p
(
φn = 1 | xn, β̃

)
p
(
φn = 0 | xn, β̃

)
xnixnj −

δij
σ̃2

= −
N∑
n=1

p̃n (1− p̃n)xnixnj −
δij
σ̃2

(13)

where p̃n = p
(
φn = 1 | xn, β̃

)
. The equation shows that strongly correlated SNPs will

have high coupling coefficients in the Hessian matrix. The precision matrix of the
Gaussian distribution in our quasi-Laplace approximation is therefore,

Λ̃ =

N∑
n=1

p̃n (1− p̃n) xnxT
n + diag

(
1

σ̃2

)
(14)

which is the sum of two matrices, one proportional to a weighted sample covariance matrix
of the x1, . . . , xI and the precision matrix of the regularization prior. For comparison,
the covariance matrix from LD is ΛLD =

∑N
n=1 xnxT

n
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6 Factorization over loci

If the covariance matrix of the genotype XTX is block-diagonal, then it is obvious from
Eq. (14) that Λ̃ is also block-diagonal. This allows us to factorise the marginal likelihood
in equation Eq. (10), writing cl for the binary configuration vector corresponding to the Il
SNPs of locus l and σc,l, Λc,l and βc,l for the subvectors and submatrices corresponding
to only the SNPs of locus l:

mL (π, σ, σ′) = D′
∑
c

L+1∏
l=1

p (cl | π, σ)

exp

(
1

2
βT
c,lΛc,lβc,l

)
|Λc,l|

1
2

∣∣∣diag
(
σ2

c,l

)∣∣∣ 12 (15)

For notational brevity, we defined a virtual locus l = L+ 1 for the confounding variables,
xL+1 = x′. We allow only one configuration cL+1 := {1, 1, · · · , 1} so that ‖cL+1‖ := J
and define p (cL+1 | π, σ) := 1 and σc,L+1 := σ′I .

Finally, we denote all possible configurations in locus l as cl, which allows us to write

mL (π, σ, σ′) = p (φ | X, π, σ, σ′) = D′
L+1∏
l=1

∑
cl

p (cl | π, σ, σ′)Fl (cl, π, σ, σ′) (16)

with

Fl (cl, π, σ, σ
′) =

exp

(
1

2
βT
c,lΛc,lβc,l

)
|Λc,l|

1
2

∣∣∣diag
(
σ2

c,l

)∣∣∣ 12 (17)

7 Branch and bound algorithm to restrict the sum
over c to non-negligible terms

The sums over cl in Eq. (16) run over 2Il terms. In the following we propose a method that
omits terms in the sum over cl that do not stand a chance of contributing significantly to
it. We denote the total number of significant configurations chosen for locus l as Cl. For
any given configuration cl, the number of causal SNPs is simply the norm of the z -state,
given by ‖cl‖ = k. We progressively increase the allowed number of causal SNPs k upto
an allowed maximum of kmax. At every step of ‖cl‖ = k, the total number of possible
configurations is given by Ck, out of which we select only significant configurations C′k to
be appended to Cl.

We define the unnormalised posterior probabilities as

p̃ (cl | φ,X, π, σ) := p (cl | π, σ)Fl (cl, π, σ) (18)

The algorithm is initialized with k = 0 and k = 1:

S0 = p̃ (cl = 0 | φ,X, π, σ)

S1 =
∑
‖cl‖=1

p̃ (cl | φ,X, π, σ)

C1 = C′1 =
{

c ∈ {0, 1}I : ‖cl‖ = 1
}

(19)

At every step with k > 1 we use all the possible configurations Ck to compute

Sk =
∑
cl∈Ck

p̃ (cl | φ,X, π, σ) (20)

To determine the significant configurations C′k, we sort all the Ck configurations by
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decreasing posterior probability and keep appending to C′k until∑
cl∈C′k

p̃ (cl | φ,X, π, σ) ≥ 0.98Sk (21)

We combine these C′k configurations with all the Il−k SNPs into new Ck+1 configurations.
We again select C′k+1 configurations out of all the available Ck+1 configurations, and this
continues iteratively. We stop the iteration when Sk+1 < 0.02Sk, because the terms with
even higher ‖cl‖ will not contribute significantly to the total sum over all configurations.
The posterior probabilities are then approximated as

p (cl | φ,X, π, σ) =
p̃ (cl | φ,X, π, σ)

kmax∑
k=0

Sk

(22)

Since risk loci will usually only contain a few causal SNPs, this procedure should normally
stop without needing to compute millions of terms.

Appendix A

We show that the following result holds for any three D-dimensional Gaussian distribu-
tions N

(
β | µ1,Λ

−1
1

)
, N

(
β | µ2,Λ

−1
2

)
, and N

(
β | µ3,Λ

−1
3

)
,∫

N
(
β | µ1,Λ

−1
1

) N (β | µ2,Λ
−1
2

)
N
(
β | µ3,Λ

−1
3

) dβ =
N
(
0 | µ1,Λ

−1
1

)
N
(
0 | µ2,Λ

−1
2

)
N
(
0 | µ123,Λ

−1
123

)
N
(
0 | µ3,Λ

−1
3

) (23)

where

Λ123 := Λ1 + Λ2 −Λ3 (24)

µ123 := Λ−1123 (Λ1µ1 + Λ2µ2 −Λ3µ3) (25)

We start by writing out the Gaussian functions explicitly:∫
N
(
β | µ1,Λ

−1
1

) N (β | µ2,Λ
−1
2

)
N
(
β | µ3,Λ

−1
3

) dβ =
|Λ1|

1
2 |Λ2|

1
2

|Λ3|
1
2 (2π)

D
2

×
∫

exp

(
−1

2

[
(β − µ1)

T
Λ1 (β − µ1) + (β − µ2)

T
Λ2 (β − µ2)− (β − µ3)

T
Λ3 (β − µ3)

])
dβ

(26)

To perform the integral, we need to write the terms within the exp function as a Gaussian.
For that purpose, we need to sort them into quadratic, linear and constant terms in β,

(β − µ1)
T

Λ1 (β − µ1) + (β − µ2)
T

Λ2 (β − µ2)− (β − µ3)
T

Λ3 (β − µ3)

= βT (Λ1 + Λ2 −Λ3)β − 2
(
µT

1Λ1 + µT
2Λ2 − µT

3Λ3

)
β + µT

1Λ1µ1 + µT
2Λ2µ2 − µT

3Λ3µ3

= βTΛ123β − 2µT
123Λ123β + µT

1Λ1µ1 + µT
2Λ2µ2 − µT

3Λ3µ3

=
(
βT − µT

123

)
Λ123 (β − µ123)− µT

123Λ123µ123 + µT
1Λ1µ1 + µT

2Λ2µ2 − µT
3Λ3µ3
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We can insert this expression into Eq. (26) and perform the integration over the Gaussian
function,∫

N
(
β | µ1,Λ

−1
1

) N (β | µ2,Λ
−1
2

)
N
(
β | µ3,Λ

−1
3

) dβ
=
|Λ1|

1
2 |Λ2|

1
2

|Λ3|
1
2 (2π)

D
2

×
∫

exp

(
−1

2

(
βT − µT

123

)
Λ123 (β − µ123)

)
dβ

× exp

(
−1

2

[
µT

1Λ1µ1 + µT
2Λ2µ2 − µT

3Λ3µ3 − µT
123Λ123µ123

])
=

(
|Λ1| |Λ2|
|Λ123| |Λ3|

) 1
2

exp

(
−1

2

[
µT

1Λ1µ1 + µT
2Λ2µ2 − µT

3Λ3µ3 − µT
123Λ123µ123

])
=
N
(
0 | µ1,Λ

−1
1

)
N
(
0 | µ2,Λ

−1
2

)
N
(
0 | µ123,Λ

−1
123

)
N
(
0 | µ3,Λ

−1
3

) (27)

This proves the proposition in Eq. (23).
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