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Experimental paradigm 
In our linguistic variant of the classic Posner paradigm, participants listened to two competing, 

dichotically presented sentences and were probed on the sentence-final word in one of the two sentences 

(Fig. 2A). Crucially, sentence presentation was preceded by two different visual cues that informed 

participants about the to-be-probed side (spatial cue) and the semantic category of the two sentence-

final nouns (semantic cue). Each cue could be informative or uninformative and the combination of 

individual cue levels followed a 2x2 design and varied on a trial-by-trial level. 

Each trial started with the visual presentation of a fixation cross in the middle of the screen (jittered 

duration, mean 1.5 s, range 0.5–3.5 s) followed by the presentation of the spatial cue in the form of a 

circle segmented equally into two lateral halves. An informative cue provided information about the 

side (left ear vs. right ear) of the to-be-probed sentence-final word depending on which half of the circle 

(left or right) was black. In contrast, an uninformative cue was grey in both halves, and thus did not 

provide information about the side of the to-be-probed sentence-final word. As such, while the 

informative spatial cue invoked selective attention, the uninformative spatial cue invoked divided 

attention. The spatial cue was presented for one second. 

After 500 ms of a blank screen, the trial was continued by the visual presentation of the semantic cue in 

the form of a single word. This word specified a general (natural vs. man-made) or one of 20 specific 

semantic categories. The semantic category cue applied to both sentence-final nouns, and allowed the 

generation of semantic prediction about the upcoming sentence-final noun. The semantic cue was 

presented for one second. The two cues were presented in a fixed order. Following a second jittered 

period, the two sentences were presented dichotically along with a fixation cross displayed in the middle 

of the screen. Finally, after a jittered retention period, a visual response array appeared on the left or 

right side of the scene, presenting four word choices. Participants had four seconds to identify the final 

word of the probed ear, indicated by the side at which the response array was presented (L/R). Among 

the four alternative were the two actually presented nouns as well as two distractor nouns from the same 

cued semantic category. 

Before the fMRI measurement, participants completed a short practice session of the listening task 

outside the scanner room to make sure they understood the task. Next, participants were placed in the 

scanner and went through a short sound volume adjustment to ensure balanced hearing between left and 

right ears at a comfortable level. 

On a separate day before the imaging session, the older participants (>35 yrs) underwent a general 

screening procedure, detailed audiometry, and a battery of cognitive tests and personality profiling (see 

ref. [7], main text, for details). Only participants with normal hearing or age-adequate mild-to-moderate 

hearing loss were invited for the imaging session. 

 

Sentence materials and recordings 
Speech stimuli consisted of 240 pairs of short German declarative sentences of fixed syntactic structure. 

All sentences were five words long. They always began with a first name, followed by sequence of a 

transitive verb, a temporal adverb, a case- and gender-ambiguous numeral and finally a plural noun (e.g., 

“Anna zeichnete gestern drei Stühle”; literal translation “Anna drew yesterday three chairs”). The 

number of syllables at each sentence position was held constant to control for overall sentence length. 

Different sentence contexts (i.e., consisting of the first four words) were constructed by filling each 

position with one of ten possible alternatives. The ten possible words for each position were chosen in 

a way that they would yield equally plausible but unpredictable combinations with the other context 

words, and importantly, with each of the 120 different sentence-final nouns. Of all theoretically possible 

sentence permutations, we created 240 sentence pairs that differed at every word position. The task-

relevant, sentence-final nouns belonged to two overarching general semantic categories: natural and 

man-made. In each of the two general categories there were ten specific subcategories (e.g., pets, fruits, 

vegetables in the natural, or instruments, furniture, tools in the man-made category) that each consisted 

of six highly representative members derived from a pre-experiment questionnaire study. Each noun 

was used four times across the final pool of sentence pairs, but always combined with different sentence 

contexts. 

A trained female speaker of standard German recorded the individual sentences in a sound-attenuated 

recording chamber (sampling rate, 44 kHz). Root mean square (RMS) intensity (–26 dB Full Scale, FS) 

was equalized across all individual sentences. When combining the sentence recordings per pair, we 
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temporally aligned them by the onset of the two sentence-final nouns to ensure their simultaneous 

presentation. Sentence presentation was masked by continuous speech-shaped noise at a signal-to-noise-

ration of 0 dB. Noise onset (with a 50 ms linear onset ramp) preceded sentence onset by 200 ms. Final 

speech stimuli had an average length of 2512 ms (range: 2183 to 2963 ms). All participants listened to 

the same 240 sentence pairs but in subject-specific randomized order. In addition, across participants 

we balanced the assignment of sentences to the right and left ear, respectively. 

MRI data acquisition 

Functional MRI data were collected by means of a Siemens MAGNETOM Skyra 3T scanner using a 

64-channel head/neck coil and an echo-planar image (EPI) sequence [repetition time (TR) =1000 ms; 

echo time (TE) =25 ms; flip angle (FA) =60°; acquisition matrix =64×64; field of view (FOV) =192 mm 

× 192 mm; voxel size =3×3×3 mm; slice spacing =3 mm]. Each image volume had 36 oblique axial 

slices parallel to the anterior commissure-posterior commissure (AC-PC) line, and was acquired with an 

acceleration factor of 2. Structural images were collected using a magnetization prepared rapid gradient 

echo (MP-RAGE) sequence [TR =1900 ms; TE =2.44 ms; FA =9°; 1-mm isotropic voxel; 192 sagittal 

slices]. Although the acoustic noise associated with continuous imaging makes an auditory task more 

difficult, we used the same sequences for resting state and task with a comparable background scanner 

noise, which would cancel out in the task versus rest contrast. 

Definition of graph-theoretical network metrics 

Global network efficiency. In a graph-theoretical sense, global network efficiency is a measure of 

information processing capacity of a network. For a given graph 𝐺 comprised of 𝑁 nodes, global 

efficiency 𝐸𝑔𝑙𝑜𝑏𝑎𝑙  summarizes the capacity of the network for parallel processing across distributed 

nodes. This metric is estimated by the inverse of the harmonic mean of the shortest path lengths (i.e. the 

smallest number of intervening connections) between each pair of nodes 𝐿𝑖,𝑗: 

𝐸𝑔𝑙𝑜𝑏𝑎𝑙 =
1

𝑁(𝑁−1)
∑

1

𝐿𝑖,𝑗
𝑖≠𝑗∈𝐺  (Eq.1) 

An efficient network is characterized by having a short average minimum-path between all pairs of 

nodes. Such a network is considered to have high efficiency in parallel (or global) information 

processing [1]. 

Local network efficiency. By slightly zooming out from a given node within a graph, the nearest 

neighbors of that node which are directly connected to each other form a cluster. This local integration 

can be quantified based on the local efficiency of node , 𝐸𝑙𝑜𝑐𝑎𝑙(𝑖), which is mathematically equivalent to 

global efficiency (Eq.1) but is computed on the immediate neighborhood of node 𝑖. On the whole-brain 

level, mean local efficiency can be quantified by averaging local efficiency across all nodes: 

𝐸𝑙𝑜𝑐𝑎𝑙 =  
1

𝑁
∑ 𝐸𝑙𝑜𝑐𝑎𝑙(𝑖)𝑖∈𝐺  (Eq.2) 

Network modularity. Modularity describes the decomposability of a network into non-overlapping sub-

networks, characterized by having relatively dense intra-connections and relatively sparse inter-

connections. Rather than an exact computation, modularity of a given network is estimated using 

optimization algorithms [2, 3]. The extent to which a network partition exhibits a modular organization 

is measured by a quality function, the so-called modularity index (𝑄). We used a common modularity 

index originally proposed in [4], and employed its implementation in the Brain Connectivity Toolbox 

[5] which is based on the modularity maximization algorithm known as Louvain [6]. The modularity 

index is defined as: 

𝑄 =  
1

2𝑊
∑ [𝐴𝑖,𝑗 − 𝛾

𝑘𝑖𝑘𝑗

2𝑊
] 𝛿(𝑐𝑖, 𝑐𝑗)𝑖,𝑗  (Eq.3) 

𝑄 ranges between –1 and 1. In Eq. 3, 𝐴𝑖,𝑗 represents the weight (zero or one if binary) of the links 

between node 𝑖 and 𝑗, 𝑘𝑖=∑ 𝐴𝑖,𝑗𝑗  is the sum of the weights of the links connected to node 𝑖, and 𝑐𝑖  is the 

community or module to which node 𝑖 belongs. The 𝛿-function 𝛿(𝑢,𝑣) is 1 if 𝑢 = 𝑣 and 0 otherwise, 

and 𝑊 =  
1

2
∑ 𝐴𝑖,𝑗𝑖,𝑗 . Similar to previous work [7-9], the structural resolution parameter 𝛾 [10, 11] was 

set to unity for simplicity. The maximization of the modularity index 𝑄 gives a partition of the network 

into modules such that the total connection weight within modules is as large as possible, relative to a 

commonly used null model whose total within-module connection weights follows 
𝑘𝑖𝑘𝑗

2𝑊
. Thus, a “good" 
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partition with 𝑄 closer to unity gives network modules with many connections within and only few 

connections between them; in contrast, a “bad" partition with 𝑄 closer to zero gives network modules 

with no more intra-module connections than expected at random [12]. Thus, higher 𝑄 reflects higher 

functional segregation on the intermediate level of network topology [5, 13]. Due to stochastic 

initialization of the greedy optimization, the module detection algorithm was applied 100 times for each 

brain graph, and the highest 𝑄 value obtained was used as the modularity index in the subsequent 

statistical analyses. 

Consensus modularity. Repetition of the module detection algorithm leads to multiple possible high-

modularity partitions that maximize 𝑄 for a given network, resulting in module membership assignments 

that vary across runs of the algorithm [12, 14, 15]. In order to account for this variability, we used the 

consensus approach proposed in [16] whereby an agreement matrix is calculated, representing the 

probability of each node pair to be assigned to the same module across iterations. Finally, the agreement 

matrix was subjected to an independent module detection, resulting in an individual-level (or group-

representative when the input was group-average connectivity matrix) high-modularity partition. In this 

step, the resolution parameter 𝜏 was set to 0.75, representing the level at which the agreement matrix 

was thresholded before being subjected to the final module detection. Similar results were obtained 

when 𝜏 =0.5 or 𝜏 =1. The modularity detection was implemented with no prior community affiliation 

input, hence in a purely data-driven fashion. 

Within– and between–module connectivity. Based on the results obtained from consensus module 

detection, mean within- (between-) module connectivity was estimated as the sum of connection weights 

falling within (between) modules, normalized by maximum number of possible within- (between) 

module connections (Garcia et al., 2018). In contrast to the overall mean functional connectivity, this is 

done by focusing on only the connections that fall within or between modules, respectively: 

𝐹𝐶𝑚1,𝑚2
=

∑ 𝑤𝑖,𝑗𝑖∈𝑚1,𝑗∈𝑚2

𝑁𝑚1𝑁𝑚2
 (Eq.4) 

In Eg.4, 𝑤𝑖,𝑗 represent the connection weight between node 𝑖 of module 𝑚1 and node 𝑗 of module 𝑚2, 

and 𝑁 is the number of nodes. When 𝑚1 = 𝑚2, the result gives the functional connectivity within a 

single module. More precisely, in the case of within-module connectivity per participant, for each 

module we calculated the sum of connection weights (i.e., correlations) for each pair of nodes that are 

grouped within that module. This sum is then normalized by dividing the result by the total number of 

connections in the same module. Finally, to get a whole-brain estimate of within-module connectivity, 

the scores are averaged across all modules. In the case of between-module connectivity, the summation 

and normalization is done across all pairs of modules, and the results are then averaged. 

Group-level modularity partition. Based on the results obtained from graph-theoretical consensus 

community detection (see above), group-level functional connectivity per resting state and listening task 

was computed by first averaging unthresholded (raw) connectivity matrices across all participants, and 

then including the top 10% of the connections in the graph according to the rank of their correlation 

strengths[17, 18]. To obtain group-level modularity partition, the graph-theoretical consensus 

community detection algorithm was applied to the sparse group-level connectivity matrix (identical to 

[19]). Similar to [20], modules with fewer than five nodes were removed, and the result was used for 

visualization (main text: Data visualization). To functionally identify the network modules, we used the 

labels assigned to each cortical node as in [20].  
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Fig. S1. Analysis steps through which artifact-clean regional BOLD signals were averaged per cortical 

parcel. The results were used to construct graph-theoretical models of the functional connectome during 

resting state and the listening task, to ultimately investigate brain-behavior relationship using 

(generalized) linear mixed-effects analysis.  
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Fig. S2. The effect of graph thresholding on the whole–brain results. For the analysis reported in the 

main text, the choice of the graph threshold (10%) was guided by previous studies showing that 

behavioral correlates of brain networks are found within a range of low thresholds, usually 5%–30% of 

connection density [7, 8, 21, 22]. To directly investigate this range in the present study, we examined 

the effect of graph thresholding using cost-integration approach [17]. We found that higher functional 

segregation of the whole–brain network during the listening task relative to resting state was not specific 

to a certain network density. Data in each plot show max–normalized values per density (error bar: 

SEM). P-values within each plot are based on pared permutation tests applied to the data averaged over 

the whole range of network density (cost-integration).  
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Fig. S3. Consistency of higher functional segregation of the whole-brain network during six blocks of 

the listening task relative to resting state. The comparisons at each block is based on permutation tests 

for paired samples (error bars: SEM). Cohen’s d and P-values within each plot are based on pared 

permutation tests applied to the task data averaged over the six blocks as compared to resting state.  
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Fig. S4. Correlation between brain network measures across resting state and the listening task. The 

significance of the Spearman’s correlations (rho) was tested using permutation tests with 10,000 

randomizations. Shaded area shows two-sided parametric 95% CI.  
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Fig. S5. Alterations in functional connectivity within the auditory-control network during the listening 

task relative to resting state. Mean functional connectivity was significantly increased within the 

auditory nodes (AUD), ventral attention nodes (VA), as well as between auditory and ventral attention 

nodes. Conversely, mean functional connectivity was significantly decreased within cingulo-opercular 

(CO) nodes as well as between auditory and cingulo-opercular nodes. Histograms show the distribution 

of the change (task minus rest) of mean functional connectivity across all 49 participants.  
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Fig. S6. Correlation between brain network measures and age. Root mean square (RMS) of frame-wise 

displacement, as a measure of head motion, was regressed out from the brain network measures prior to 

testing the correlations.The significance of the Spearman’s correlations (rho) was tested using 

permutation tests with 10,000 randomizations. Shaded area shows two-sided parametric 95% CI.  
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Table S1. Linear mixed-effects models predicting individuals’ listening performance. The 

corresponding models were constructed to investigate prediction of (A) single-trial binary accuracy (1/0) 

in word identification or (B) speed of word identification (1/RT) from the listening cues (i.e., spatial cue 

and semantic cue) and change in modularity of the whole-brain network (DiffModularity). Significant 

effects are shown in blue. The main effects of the listening cues are plotted in Figure 2B (main text). 

OR: Odds ratio; β: slope parameter estimate; 𝜎2: within-group variance; 𝜏00: between-group variance; 

𝜌01: random-slope-intercept-correlation. 
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Table S2. Linear mixed-effects models predicting individuals’ listening performance from modularity 

of the whole-brain resting state or task network as separate predictors. The corresponding models were 

constructed to investigate prediction of (A) single-trial binary accuracy (1/0) in word identification or 

(B) speed of word identification (1/RT) from the listening cues (i.e., spatial cue and semantic cue) and 

modularity derived from the whole-brain resting-state (Rest) or listening-task (Task) network (i.e., two 

separate regressors). Significant effects are shown in blue. OR: Odds ratio; β: slope parameter estimate; 

𝜎2: within-group variance; 𝜏00: between-group variance; 𝜌01: random-slope-intercept-correlation. 
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Table S3. Linear mixed-effects models predicting individuals’ listening performance from change in 

modularity of the auditory–control network. The corresponding models were constructed to investigate 

prediction of (A) single-trial binary accuracy (1/0) in word identification or (B) speed of word 

identification (1/RT) from the listening cues (i.e., spatial cue and semantic cue) and change in modularity 

derived from the fronto-temporal auditory-control network (DiffModularity). Significant effects are 

shown in blue. The interactions between the spatial cue and change in modularity of the auditory-control 

network are plotted in Figure 6B/C. OR: Odds ratio; β: slope parameter estimate; 𝜎2: within-group 

variance; 𝜏00: between-group-variance; 𝜌01: random-slope-intercept-correlation. 
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Table S4. Linear mixed-effects models predicting individuals’ listening performance from modularity 

of the auditory-control network during resting state or task as separate predictors. The corresponding 

models were constructed to investigate prediction of (A) single–trial binary accuracy (1/0) in word 

identification or (B) speed of word identification (1/RT) from the listening cues (i.e., spatial cue and 

semantic cue) and modularity derived from the auditory-control network under resting-state (Rest) or 

listening challenge (Task). Significant effects are shown in blue. OR: Odds ratio; β: slope parameter 

estimate. OR: Odds ratio; β: slope parameter estimate; 𝜎2: within-group variance; 𝜏00: between-group-

variance; 𝜌01: random-slope-intercept-correlation. 
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