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Supplemental Text 
 
Rationale for cell line 
KG1a (FAB M1) was established as a subline of KG1 myeloblasts with minimal maturation, but 
unable to differentiate (1, 2); HL60 (FAB M2) was established from a promyelocyte that can 
differentiate into neutrophils, granulocyte-like cells, or monocyte/macrophage-like cells by 
various chemicals (3); HNT34 (FAB M4) was established from chronic myelomonocytic leukemia 
(CMMoL) (4); and AML193 (FAB M5) was established from acute monocytic leukemia (5). While 
FAB M3 represents a differentiation stage intermediate to the four cell lines studied, it is 
defined by a specific genetic mutation t(15;17)(q24;q21) resulting in the fusion protein 
Promyelocytic leukemia/retinoic acid receptor alpha (PML-RARA). It is highly treatable and not 
commonly treated by AZA, thus not included in the current study. 
 
SMITE analysis 
The SMITE algorithm (Significance-based Modules Integrating the Transcriptome and 
Epigenome) increases analysis power in identifying subnetworks of dysregulated genes by 
combining gene regulation information from both methylation and transcription levels. Here, 
the joint scores are mapped onto a gene interaction network. SMITE analysis revealed that each 
AML cell line had 16-27 functional modules identified and these functional modules encompass 
481 ~ 612 genes (Dataset S3). In particular, analysis of the KG1a cell line benefited most from 
SMITE, where 528 genes were found to be dysregulated compared to 160 genes when analyzed 
using transcription data alone. This indicated wider functional impact of AZA treatment on the 
KG1a cell line when examining both sets of information in the context of gene interaction 
networks compared to transcriptomics alone. Also, when looking across all four cell lines, 
instead of the 5 common genes found to be transcriptionally dysregulated, SMITE identified 19 
functional modules encompassing 310 genes. We observed recurrent themes of dysregulation 
of metabolism from multiple top functional modules identified across all four cell lines - 
HDC:HNMT, CTSA:GNS:IDS:NEU1, and PTGS2:LTC4S, representing genes involved in histamine 
metabolism, protein processing, and leukotrienes metabolism. Other top common functional 
modules affected were ‘natural killer cell mediated cytotoxicity’ and ‘osteoclast differentiation’. 
These findings were consistent with the impact of AZA on immune pathways and AML cell 
differentiation, and also identified novel functional modules. For example, HNMT encodes a 
methyltransferase that metabolizes histamine via N(tau)-methylation. Core genes from these 
functional modules would also serve as interesting therapeutic targets for follow up validation. 
AZA impacted different functional modules in the individual cell lines – top modules involved in 
various signaling pathways (mTOR, insulin, p53 etc) were affected in AML193 cells, while 
modules related to the MAPK signaling pathway was regulated in HL60 cells. 
 
Supplemental Materials and Methods 
 
Cell culture and azacitidine treatment 
AML193, HL60, KG1a, and HNT34 cells were cultured in RPMI SILAC media (Thermo Fisher 
Scientific; Waltham, MA) containing L-[12C6,14N2]lysine and L-[12C6,14N4]arginine (light label) 
and treated with vehicle (DMSO) or 0.5 µM AZA daily for 3 days.  Cells were cultured for 



another 4 days in drug-free media before frozen cell pellets were harvested for DNA 
methylation (Infinium MethylationEPIC BeadChip, Illumina) and gene expression (GeneChip™ 
Human Genome U133 Plus 2.0 Array, Thermo Fisher Scientific) analyses. 
 
DNA methylation and gene expression data analysis 
For DNA methylation data, the standard beta values from Illumina’s BeadStudio were used as 
our initial input and further corrected for different probe designs using Beta Mixture Quantile 
dilation (BMIQ) method (6).  Probes with known SNPs and too many missing values were also 
removed from subsequent analyses.  The final input data matrix contains 833622 probes.  For 
differential methylation analyses, beta values were transformed to M value (a logit 
transformation of beta values) and limma package (7) was applied to assess the significance.  
 
For gene expression data, gene expression values were calculated based on the Robust Multi-
array Average (RMA) algorithm (8).  For each gene, a single probe set was selected based on 
jetset algorithm (9) resulting the final input data matrix of 20517 genes.  Functional enrichment 
of baseline gene expression profiles was assessed using GSVA package from Bioconductor (10). 
The package limma was used to assess differential gene expression (7) and gene set enrichment 
analysis was carried out using fast pre-ranked gene set enrichment analysis (fgsea) package 
from Bioconductor (11). 
 
Hierarchical clustering based on Euclidean distance and Ward's minimum variance method was 
used to evaluate the similarity/difference between samples based on their global DNA 
methylation or gene expression profiles.  The integrated analyses combining DNA methylation 
and gene expression data were carried out using SMITE package in Bioconductor (12). All data 
analyses were carried out using R: A language and environment for statistical computing (13). 
Methylome and transcriptome datasets have been deposited to NCBI's Gene Expression 
Omnibus database (https://www.ncbi.nlm.nih.gov/geo/)(14) and are available under accession 
number GSE123211.  
 
SILAC surface proteomics sample preparation 
For stable isotope labeling with amino acids in cell culture (SILAC) experiments, each cell line 
was cultured in RPMI SILAC media (Thermo Fisher Scientific) containing L-[13C6,15N2]lysine 
and L-[13C6,15N4] arginine (heavy label) (Thermo Fisher Scientific) or L-[12C6,14N2]lysine and 
L-[12C6,14N4]arginine (light label) for 5 passages to ensure full incorporation of the isotope 
labeling on cells. In the forward SILAC experiment, heavy labeled cells were treated with AZA 
while the light labeled cells were treated with DMSO control. In a parallel reverse SILAC 
experiment, light labeled cells were treated with AZA while the heavy labeled cells were treated 
with DMSO control. On day 7 of the aforementioned drug treatment, 40-60 x 106 cells from 
AZA or DMSO treated cells were mixed at a 1:1 cell count ratio for cell surface capture 
enrichment with several optimization (15). Briefly, live cells were treated with a sodium 
periodate buffer (2 mM NaPO4, PBS pH 6.5) at 4°C for 20 mins to oxidize terminal sialic acids of 
glycoproteins. Aldehydes generated by periodate oxidation were then reacted with biocytin 
hydrazide in a labeling buffer (1 mM biocytin hydrazide (biotium), 10 mM analine (Sigma), PBS 



pH 6.5) at 4°C for 90 mins. Cells were then washed four times in PBS pH 6.5 to remove excess 
biocytin-hydrazide and flash frozen. 
 
Frozen cell pellets were lysed using RIPA buffer (VWR) with protease inhibitor cocktail (Sigma-
Aldrich; St. Louis, MO) at 4°C for 30 mins. Cell lysate was then sonicated, clarified, and 
incubated with 500µL of neutravidin agarose slurry (Thermo Fisher Scientific) at 4°C for 30 
mins. The neutravidin beads were then extensively washed with RIPA buffer, high salt buffer 
(1M NaCl, PBS pH 7.5), and urea buffer (2M urea, 50mM ammonium bicarbonate) to remove 
non-specific proteins. Samples were then reduced on-bead with 5mM TCEP at 55°C for 30 mins 
and alkylated with 10mM iodoacetiamide at room temperature for 30 mins. To release bound 
proteins, we first performed an on-bead digestion using 20µg trypsin (Promega; Madison, WI) 
at room temperature overnight. The “tryptic” fraction was then eluted using spin column and 
the neutravidin beads were extensively washed again with RIPA buffer, high salt buffer (1M 
NaCl, PBS pH 7.5), and urea buffer (2M urea, 50mM ammonium bicarbonate). To release the 
remaining trypsin digested N-glycosylated peptides bound to the neutravidin beads, we 
performed a second on-bead digestion using 2500U PNGase F (New England Biolabs; Ipswich, 
MA) at 37°C for 3 hrs. Similarly, the “PNGase F” fraction was eluted using a spin column. Both 
tryptic and PNGase F fractions were then desalted using SOLA HRP SPE column (Thermo Fisher 
Scientific) using standard protocol, dried, and dissolved in 0.1% formic acid, 2% acetonitrile 
prior to LC-MS/MS analysis.  
 
Mass spectrometry analysis 
Approximately 1µg of peptides was injected to a pre-packed 0.75mm x 150mm Acclaimed 
Pepmap C18 reversed phase column (2µm pore size, Thermo Fisher Scientific) attached to a Q 
Exactive Plus (Thermo Fisher Scientific) mass spectrometer. For the “tryptic” fraction, peptides 
were separated using a linear gradient of 3-35% solvent B (Solvent A: 0.1% formic acid, solvent 
B: 80% acetonitrile, 0.1% formic acid) over 180 mins at 300µL/min. Similarly, the “PNGase F” 
fraction was separated using the same gradient over 120 mins. Data were collected in data-
dependent mode using a top 20 method with dynamic exclusion of 35 secs and a charge 
exclusion setting that only samples peptides with a charge of 2, 3, or 4. Full (ms1) scans 
spectrums were collected as profile data with a resolution of 140,000 (at 200 m/z), AGC target 
of 3E6, maximum injection time of 120 ms, and scan range of 400 - 1800 m/z. MS-MS scans 
were collected as centroid data with a resolution of 17,500 (at 200 m/z), AGC target of 5E4, 
maximum injection time of 60 ms with normalized collision energy at 27, and an isolation 
window of 1.5 m/z with an isolation offset of 0.5 m/z. 
 
Proteomics data processing 
Peptide search for each individual dataset was performed using ProteinProspector (v5.13.2) 
against 20203 human proteins (Swiss-prot database, obtained March 5, 2015). Enzyme 
specificity was set to trypsin with up to two missed cleavage; cysteine carbamidomethyl was set 
as a fixed modification; methionine oxidation, lysine and arginine SILAC labels were set as 
variable modifications; asparagine deamidation was also set as variable modification for the 
PNGase F fraction; peptide mass tolerance was 6 ppm; fragment ion mass tolerance was 0.4 Da; 
peptide identification was filtered by peptide score of 0.0005 in Protein Prospector, resulting in 



a false discovery rate (FDR) of <1% calculated by number of decoy peptides included in the 
database. To estimate the efficiency of the surface proteome enrichment method, a list of 
surface proteins was generated by searching for “membrane” but not “mitochondrial” or 
“nuclear” using Uniprot subcellular localization annotations. We found up to 60% of peptides 
identified in the tryptic fraction and up to 90% of peptides identified in the PNGase F fraction 
belonged to the surface proteome reflecting a high and expected surface protein enrichment. 
For proteins identified in both fractions, Pearson correlation between median log2 enrichment 
ratios found in tryptic fraction and PNGase F fractions were between 0.85 and 0.95 (Figure 
S7B).  
 
Quantitative data analysis was performed using Skyline (UWashington) software with a ms1 
filtering function. Specifically, spectral libraries from forward and reverse SILAC experiments 
were analyzed together such that ms1 peaks without an explicit peptide ID would be quantified 
based on aligned peptide retention time. An isotope dot product of at least 0.8 was used to 
filter out low quality peptide quantification, and a custom report from Skyline was then 
exported for further processing and analysis using R. In the tryptic fraction, only peptides with 
five or more well quantified peptides were included. In the PNGase F fraction, only peptides 
with N to D deamidation modification were included. Forward and reverse SILAC datasets for 
both tryptic and PNGase F fractions were then combined and reported as median log2 
enrichment values normalized to a mean of zero for the AZA treated cells. The raw proteomics 
data, peaklist, Protein Prospector results, and Skyline quantification results have been 
deposited to the ProteomeXchange Consortium 
(http://proteomecentral.proteomexchange.org) via the MassIVE partner repository with the 
data set identifier PXD011298. 
  



Supplemental Figures S1-S13 and Tables S1-S2 

 
Figure S1. Azacitidine treatment schematic and surface proteome capture methods. (A) 
The AML cell lines were treated with 0.5µM fresh AZA or vehicle for three days and 
allowed to recover for four days. The AML AZA-vehicle pairs were grown in either heavy 
SILAC or light SILAC media. AML cell lines tested in the current study include KG1a, 
HL60, HNT34, and AML193. (B) Cell surface capture method by biocytin-hydrazide 
labeling of glycoproteins (see methods for detailed descriptions). 
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Figure S2. Global de-methylation of AML cell lines when treated by AZA. Density plot of 
beta values for each cell line sample before and after treatment indicate a general shift 
of the hypermethylation peak.  
 
 

 
Figure S3. Expression of DNMT transcript in each cell line. Expression of DNMT1 
transcript is high in all four cell lines. Expression of both de novo methyltransferases 
DMNT3A and DMNT3B were low in HL60.  
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Figure S4. Heatmap of DNA methylation level (beta values) of all ~800,000 CpG 
arranged by their chromosomal locations in all samples.  
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Figure S5. Baseline gene set variation analysis by gene expression data. (A-B) Gene 
Set Variation Analysis (GSVA) using Gene Ontology (GO) term analysis in 
differentiation and cell death pathways indicate differences between the cell lines at 
baseline.  (C) GSVA of the top 50 hallmark gene set indicate different biological states 
between each cell line. 
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Figure S6. Hierarchal clustering of top variable gene expression profiles (Interquartile range of 
probesets between four cell lines > 1, n = 5747). The differences in gene expression varied more 
among cell lines than by AZA treatment. 
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Figure S7. Gene Set Enrichment Analysis (GSEA) of gene expression data reveals 
common biologically processes induced by AZA. (A-B) GSEA of differentially expressed 
genes (adjusted p value < 0.05) using hallmark (A), reactome and KEGG gene sets (B). 
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Figure S8. Proteomics analysis statistics. (A) Boxplot of light/heavy SILAC ratio for all 
datasets. (B) Replicate comparison between each cell line and each fraction. (C) 
Hierarchal clustering of log2 SILAC surface protein enrichment ratio showed a distinct 
response across the four cell lines when treated with AZA and did not correspond to 
AML lineage marker similarity.   
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Figure S9. Validation of ITGAM regulation by western blot. (A) Western blot of ITGAM 
in each cell line with vehicle or AZA treatment indicate different response in each cell 
line. (B) Volcano plots of surface proteomics data with ITGAM labeled in blue in each 
cell line. (C) Summary of ITGAM regulation indicating up-regulation in HL60 and 
AML193 cells, no change in KG1a cells and is down-regulation in HNT34 cells. 
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Figure S10. Top enriched gene sets affected by AZA treatments identified by GSEA of the 
proteomics dataset using GO term analysis shows common functional changes despite few 
specific proteins that overlapped. 
 

 
Figure S11. Comparison of surface proteomics data on HL60 cells. Overlap of proteins 
identified in current study compared to those identified by Hofmann et al. (16). A total of 
230 proteins were commonly identified in both studies.  
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Figure S12. (A) Comparison of log2 RNA expression profile of all genes (green), of all 
genes annotated to be surface proteins (blue), and of genes identified by mass 
spectrometry experiment (cyan) across all cell lines. Whiskers extends up to 1.5 
interquartile range above or below the box. (B) Extension to Figure 4D, showing 
changes in protein, gene expression, and DNA methylation for all surface protein 
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observed are shown in a heatmap. In addition to TSS1500, methylation changes in 
other regions such as TSS200, 5’UTR, gene body, 1st exon, exon boundary, 3’UTR, 
north shelf, north shore, CpG island, south shore, south shelf, and non CpG island are 
also included. 

 
Figure S13. Expression of specific transcripts in the AIM gene set shows an overall 
enrichment of the AIM gene set to various degree. 
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Table S1. Viable cell count at the end of AZA treatment.  
Condition Viable Cells/mL (x106) (Day 7) % of Control 

KG1a vehicle 1 100.0 
 0.5uM AZA 0.3 30.0 

HL-60 vehicle 2.6 100.0 
 0.5uM AZA 1.9 73.1 

HNT-34 vehicle 1.3 100.0 
 0.5uM AZA 0.35 26.9 

AML-193 vehicle 1.39 100.0 
 0.5uM AZA 0.22 15.8 

 
 
 
Table S2. Comparison of AML cell lines according to known CD markers, gene 
expression, and peptide spectrum match. 

  CD3 CD4 CD13 CD14 CD19 CD33 CD34 

CD Markera 

KG1a - - + - - + + 
HL60 - + + - - + - 

HNT34 - + + - - + + 
AML193 - + - - - + - 

Gene 
expressionb 

KG1a 8.6 7.8 9.6 5.8 6.1 9.5 12.5 
HL60 8.1 11.3 11.4 8.4 6 11.3 7.6 

HNT34 8.2 8.6 11.4 5.8 6 9.4 11.7 
AML193 7.5 9.2 5.2 5.8 5.8 10.7 7.7 

Peptide 
spectrum 
matchc 

KG1a 0 0 52 0 0 20 21 
HL60 0 10 62 0 0 15 0 

HNT34 0 2 72 0 0 6 4 
AML193 0 10 0 0 0 20 0 

 
a CD markers detected by flow cytometry taken from DMSZ cell line repository 
(www.dsmz.de)  
b Normalized gene expression profile in log2 scale 
c Number of well-quantified peptides spectrum matches identified by mass spectrometry 
in cells with vehicle treatment 
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