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Supplemental Text

Rationale for cell line

KG1la (FAB M1) was established as a subline of KG1 myeloblasts with minimal maturation, but
unable to differentiate (1, 2); HL60 (FAB M2) was established from a promyelocyte that can
differentiate into neutrophils, granulocyte-like cells, or monocyte/macrophage-like cells by
various chemicals (3); HNT34 (FAB M4) was established from chronic myelomonocytic leukemia
(CMMol) (4); and AML193 (FAB M5) was established from acute monocytic leukemia (5). While
FAB M3 represents a differentiation stage intermediate to the four cell lines studied, it is
defined by a specific genetic mutation t(15;17)(q24;921) resulting in the fusion protein
Promyelocytic leukemia/retinoic acid receptor alpha (PML-RARA). It is highly treatable and not
commonly treated by AZA, thus not included in the current study.

SMITE analysis

The SMITE algorithm (Significance-based Modules Integrating the Transcriptome and
Epigenome) increases analysis power in identifying subnetworks of dysregulated genes by
combining gene regulation information from both methylation and transcription levels. Here,
the joint scores are mapped onto a gene interaction network. SMITE analysis revealed that each
AML cell line had 16-27 functional modules identified and these functional modules encompass
481 ~ 612 genes (Dataset S3). In particular, analysis of the KG1a cell line benefited most from
SMITE, where 528 genes were found to be dysregulated compared to 160 genes when analyzed
using transcription data alone. This indicated wider functional impact of AZA treatment on the
KG1a cell line when examining both sets of information in the context of gene interaction
networks compared to transcriptomics alone. Also, when looking across all four cell lines,
instead of the 5 common genes found to be transcriptionally dysregulated, SMITE identified 19
functional modules encompassing 310 genes. We observed recurrent themes of dysregulation
of metabolism from multiple top functional modules identified across all four cell lines -
HDC:HNMT, CTSA:GNS:IDS:NEU1, and PTGS2:LTCA4S, representing genes involved in histamine
metabolism, protein processing, and leukotrienes metabolism. Other top common functional
modules affected were ‘natural killer cell mediated cytotoxicity’ and ‘osteoclast differentiation’.
These findings were consistent with the impact of AZA on immune pathways and AML cell
differentiation, and also identified novel functional modules. For example, HNMT encodes a
methyltransferase that metabolizes histamine via N(tau)-methylation. Core genes from these
functional modules would also serve as interesting therapeutic targets for follow up validation.
AZA impacted different functional modules in the individual cell lines — top modules involved in
various signaling pathways (mTOR, insulin, p53 etc) were affected in AML193 cells, while
modules related to the MAPK signaling pathway was regulated in HL60 cells.

Supplemental Materials and Methods

Cell culture and azacitidine treatment

AML193, HL60, KG1a, and HNT34 cells were cultured in RPMI SILAC media (Thermo Fisher
Scientific; Waltham, MA) containing L-[12C6,14N2]lysine and L-[12C6,14N4]arginine (light label)
and treated with vehicle (DMSO) or 0.5 uM AZA daily for 3 days. Cells were cultured for



another 4 days in drug-free media before frozen cell pellets were harvested for DNA
methylation (Infinium MethylationEPIC BeadChip, Illumina) and gene expression (GeneChip™
Human Genome U133 Plus 2.0 Array, Thermo Fisher Scientific) analyses.

DNA methylation and gene expression data analysis

For DNA methylation data, the standard beta values from Illumina’s BeadStudio were used as
our initial input and further corrected for different probe designs using Beta Mixture Quantile
dilation (BMIQ) method (6). Probes with known SNPs and too many missing values were also
removed from subsequent analyses. The final input data matrix contains 833622 probes. For
differential methylation analyses, beta values were transformed to M value (a logit
transformation of beta values) and limma package (7) was applied to assess the significance.

For gene expression data, gene expression values were calculated based on the Robust Multi-
array Average (RMA) algorithm (8). For each gene, a single probe set was selected based on
jetset algorithm (9) resulting the final input data matrix of 20517 genes. Functional enrichment
of baseline gene expression profiles was assessed using GSVA package from Bioconductor (10).
The package limma was used to assess differential gene expression (7) and gene set enrichment
analysis was carried out using fast pre-ranked gene set enrichment analysis (fgsea) package
from Bioconductor (11).

Hierarchical clustering based on Euclidean distance and Ward's minimum variance method was
used to evaluate the similarity/difference between samples based on their global DNA
methylation or gene expression profiles. The integrated analyses combining DNA methylation
and gene expression data were carried out using SMITE package in Bioconductor (12). All data
analyses were carried out using R: A language and environment for statistical computing (13).
Methylome and transcriptome datasets have been deposited to NCBI's Gene Expression
Omnibus database (https://www.ncbi.nlm.nih.gov/geo/)(14) and are available under accession
number GSE123211.

SILAC surface proteomics sample preparation

For stable isotope labeling with amino acids in cell culture (SILAC) experiments, each cell line
was cultured in RPMI SILAC media (Thermo Fisher Scientific) containing L-[13C6,15N2]lysine
and L-[13C6,15N4] arginine (heavy label) (Thermo Fisher Scientific) or L-[12C6,14N2]lysine and
L-[12C6,14N4]arginine (light label) for 5 passages to ensure full incorporation of the isotope
labeling on cells. In the forward SILAC experiment, heavy labeled cells were treated with AZA
while the light labeled cells were treated with DMSO control. In a parallel reverse SILAC
experiment, light labeled cells were treated with AZA while the heavy labeled cells were treated
with DMSO control. On day 7 of the aforementioned drug treatment, 40-60 x 106 cells from
AZA or DMSO treated cells were mixed at a 1:1 cell count ratio for cell surface capture
enrichment with several optimization (15). Briefly, live cells were treated with a sodium
periodate buffer (2 mM NaPO4, PBS pH 6.5) at 4°C for 20 mins to oxidize terminal sialic acids of
glycoproteins. Aldehydes generated by periodate oxidation were then reacted with biocytin
hydrazide in a labeling buffer (1 mM biocytin hydrazide (biotium), 10 mM analine (Sigma), PBS



pH 6.5) at 4°C for 90 mins. Cells were then washed four times in PBS pH 6.5 to remove excess
biocytin-hydrazide and flash frozen.

Frozen cell pellets were lysed using RIPA buffer (VWR) with protease inhibitor cocktail (Sigma-
Aldrich; St. Louis, MO) at 4°C for 30 mins. Cell lysate was then sonicated, clarified, and
incubated with 500uL of neutravidin agarose slurry (Thermo Fisher Scientific) at 4°C for 30
mins. The neutravidin beads were then extensively washed with RIPA buffer, high salt buffer
(1M NaCl, PBS pH 7.5), and urea buffer (2M urea, 50mM ammonium bicarbonate) to remove
non-specific proteins. Samples were then reduced on-bead with 5mM TCEP at 55°C for 30 mins
and alkylated with 10mM iodoacetiamide at room temperature for 30 mins. To release bound
proteins, we first performed an on-bead digestion using 20ug trypsin (Promega; Madison, WI)
at room temperature overnight. The “tryptic” fraction was then eluted using spin column and
the neutravidin beads were extensively washed again with RIPA buffer, high salt buffer (1M
NaCl, PBS pH 7.5), and urea buffer (2M urea, 50mM ammonium bicarbonate). To release the
remaining trypsin digested N-glycosylated peptides bound to the neutravidin beads, we
performed a second on-bead digestion using 2500U PNGase F (New England Biolabs; Ipswich,
MA) at 37°C for 3 hrs. Similarly, the “PNGase F” fraction was eluted using a spin column. Both
tryptic and PNGase F fractions were then desalted using SOLA HRP SPE column (Thermo Fisher
Scientific) using standard protocol, dried, and dissolved in 0.1% formic acid, 2% acetonitrile
prior to LC-MS/MS analysis.

Mass spectrometry analysis

Approximately 1ug of peptides was injected to a pre-packed 0.75mm x 150mm Acclaimed
Pepmap C18 reversed phase column (2um pore size, Thermo Fisher Scientific) attached to a Q
Exactive Plus (Thermo Fisher Scientific) mass spectrometer. For the “tryptic” fraction, peptides
were separated using a linear gradient of 3-35% solvent B (Solvent A: 0.1% formic acid, solvent
B: 80% acetonitrile, 0.1% formic acid) over 180 mins at 300uL/min. Similarly, the “PNGase F”
fraction was separated using the same gradient over 120 mins. Data were collected in data-
dependent mode using a top 20 method with dynamic exclusion of 35 secs and a charge
exclusion setting that only samples peptides with a charge of 2, 3, or 4. Full (ms1) scans
spectrums were collected as profile data with a resolution of 140,000 (at 200 m/z), AGC target
of 3E6, maximum injection time of 120 ms, and scan range of 400 - 1800 m/z. MS-MS scans
were collected as centroid data with a resolution of 17,500 (at 200 m/z), AGC target of 5E4,
maximum injection time of 60 ms with normalized collision energy at 27, and an isolation
window of 1.5 m/z with an isolation offset of 0.5 m/z.

Proteomics data processing

Peptide search for each individual dataset was performed using ProteinProspector (v5.13.2)
against 20203 human proteins (Swiss-prot database, obtained March 5, 2015). Enzyme
specificity was set to trypsin with up to two missed cleavage; cysteine carbamidomethyl was set
as a fixed modification; methionine oxidation, lysine and arginine SILAC labels were set as
variable modifications; asparagine deamidation was also set as variable modification for the
PNGase F fraction; peptide mass tolerance was 6 ppm; fragment ion mass tolerance was 0.4 Da;
peptide identification was filtered by peptide score of 0.0005 in Protein Prospector, resulting in



a false discovery rate (FDR) of <1% calculated by number of decoy peptides included in the
database. To estimate the efficiency of the surface proteome enrichment method, a list of
surface proteins was generated by searching for “membrane” but not “mitochondrial” or
“nuclear” using Uniprot subcellular localization annotations. We found up to 60% of peptides
identified in the tryptic fraction and up to 90% of peptides identified in the PNGase F fraction
belonged to the surface proteome reflecting a high and expected surface protein enrichment.
For proteins identified in both fractions, Pearson correlation between median log2 enrichment
ratios found in tryptic fraction and PNGase F fractions were between 0.85 and 0.95 (Figure
S7B).

Quantitative data analysis was performed using Skyline (UWashington) software with a ms1
filtering function. Specifically, spectral libraries from forward and reverse SILAC experiments
were analyzed together such that ms1 peaks without an explicit peptide ID would be quantified
based on aligned peptide retention time. An isotope dot product of at least 0.8 was used to
filter out low quality peptide quantification, and a custom report from Skyline was then
exported for further processing and analysis using R. In the tryptic fraction, only peptides with
five or more well quantified peptides were included. In the PNGase F fraction, only peptides
with N to D deamidation modification were included. Forward and reverse SILAC datasets for
both tryptic and PNGase F fractions were then combined and reported as median log2
enrichment values normalized to a mean of zero for the AZA treated cells. The raw proteomics
data, peaklist, Protein Prospector results, and Skyline quantification results have been
deposited to the ProteomeXchange Consortium
(http://proteomecentral.proteomexchange.org) via the MassIVE partner repository with the
data set identifier PXD011298.
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Figure S1. Azacitidine treatment schematic and surface proteome capture methods. (A)
The AML cell lines were treated with 0.5uM fresh AZA or vehicle for three days and
allowed to recover for four days. The AML AZA-vehicle pairs were grown in either heavy
SILAC or light SILAC media. AML cell lines tested in the current study include KG1a,
HL60, HNT34, and AML193. (B) Cell surface capture method by biocytin-hydrazide
labeling of glycoproteins (see methods for detailed descriptions).
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Figure S2. Global de-methylation of AML cell lines when treated by AZA. Density plot of
beta values for each cell line sample before and after treatment indicate a general shift
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Figure S3. Expression of DNMT transcript in each cell line. Expression of DNMT1

transcript is high in all four cell lines. Expression of both de novo methyltransferases

DMNT3A and DMNT3B were low in HL60.
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Figure S5. Baseline gene set variation analysis by gene expression data. (A-B) Gene
Set Variation Analysis (GSVA) using Gene Ontology (GO) term analysis in
differentiation and cell death pathways indicate differences between the cell lines at
baseline. (C) GSVA of the top 50 hallmark gene set indicate different biological states
between each cell line.
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Figure S10. Top enriched gene sets affected by AZA treatments identified by GSEA of the
proteomics dataset using GO term analysis shows common functional changes despite few
specific proteins that overlapped.
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Figure S11. Comparison of surface proteomics data on HL60 cells. Overlap of proteins
identified in current study compared to those identified by Hofmann et al. (16). A total of
230 proteins were commonly identified in both studies.
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Figure S12. (A) Comparison of log> RNA expression profile of all genes (green), of all
genes annotated to be surface proteins (blue), and of genes identified by mass
spectrometry experiment (cyan) across all cell lines. Whiskers extends up to 1.5
interquartile range above or below the box. (B) Extension to Figure 4D, showing
changes in protein, gene expression, and DNA methylation for all surface protein



observed are shown in a heatmap. In addition to TSS1500, methylation changes in
other regions such as TSS200, 5’'UTR, gene body, 15t exon, exon boundary, 3'UTR,

north shelf, north shore, CpG island, south shore, south shelf, and non CpG island are

also included.
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Figure S$13. Expression of specific transcripts in the AIM gene set shows an overall

enrichment of the AIM gene set to various degree.



Table S1. Viable cell count at the end of AZA treatment.
Condition Viable Cells/mL (x10°) (Day 7) % of Control

KG1a vehicle 1 100.0
0.5uM AZA 0.3 30.0

HL-60 vehicle 2.6 100.0
0.5uM AZA 1.9 73.1

HNT-34 vehicle 1.3 100.0
0.5uM AZA 0.35 26.9

AML-193 vehicle 1.39 100.0
0.5uM AZA 0.22 15.8

Table S2. Comparison of AML cell lines according to known CD markers, gene
expression, and peptide spectrum match.
CD3 CD4 CD13 CD14 CD19 CD33 CD34

KG1a - - + - - + +
a HL60 - + + - - + -
CD Marker HNT34 ) + + ) ) + +
AML193 - + - - - + ;
KG1a 86 78 96 5.8 6.1 95 125
Gene HL60 81 113 114 84 6 113 7.6

expression®  HNT34 82 86 114 538 6 94 117
AML193 7.5 9.2 5.2 5.8 58 107 7.7

Peptide KG1a 0 0 52 0 0 20 21
spectrum HL60 0 10 62 0 0 15 0
match HNT34 0 2 72 0 0 6 4
AML193 0 10 0 0 0 20 0

a8 CD markers detected by flow cytometry taken from DMSZ cell line repository
(www.dsmz.de)

b Normalized gene expression profile in log, scale

¢Number of well-quantified peptides spectrum matches identified by mass spectrometry
in cells with vehicle treatment
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