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1 Calculating Maximum Interface Curvature in a Pillar Lattice

We assume that all competition interfaces between pillars make right angles with the pillar edges. We also
center the system such that we eliminate a parameter and then the equation of the circle that approximates
the competition interface is

x2 + (y − yo)2 = r2, (1)

where r is the radius of the circle whose edge is the competition interface and yo is the y coordinate of that
circle. We assume that the center-to-center separation of the pillars is ∆x and the radius of each pillar is
R. We characterize the point of intersection between the pillar edge and the circular interface by the angle
φ. Then at the point of intersection (i) between the circle and the pillar the coordinates on the circle are

xi = −∆x

2
+R cos(φ) and yi = R sin(φ). (2)

At that same point the slope of the circle must be equal to tan(φ). The slope is found by taking the
implicit derivative

∂

∂x

[
x2 + (y − yo)2 = r2

]
→ 2x+ 2(y − yo)yx = 0 → yx = − x

y − yo
, (3)

and using this result we can solve for yo and use that to find r2

( r
R

)2
=

(
δ − cos(φ)

sin(φ)

)2

→ r

R
=
δ − cos(φ)

sin(φ)
(4)

where the sign ambiguity is irrelevant, and we define δ = ∆x
2R . Then the minimum radius (maximum

curvature) lies at the angle given by

∂

∂φ

( r
R

)
= 0 → φc = tan−1

(√
1− 1

δ2
,
1

δ

)
, (5)

where we use the four-quadrant tangent function, and upon substitution

rmin

R
=
√
δ2 − 1, (6)

and thus the maximum curvature is

κmax =
1

R
√
δ2 − 1

. (7)

We note that as δ → ∞ the maximum curvature goes to zero and the circle that corresponds to the
maximum curvature is the circle whose diameter is ∆x. As δ → 1 (and hence ∆x → 2R) the maximum
curvature diverges.
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SI Figure 1: Schematic graphically depicting the pillar radius R, pillar separation ∆x, and angle φ. For
fixed values of R and ∆x, each interface curvature 1/r corresponds to a contact angle φ.

dx = 4, R =1 dx = 8, R =1 dx = 2.25, R =1 

SI Figure 2: Plots of maximum interface curvature as a function of pillar separation. The dashed lines
show the interface curvature as a function of the angle φ, from low φ (blue) to high φ (yellow). The solid
red circle shows the circle whose corresponding competitive interface has the highest curvature given the
values of R and ∆x.
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SI Figure 3: (A) Plot of the interface curvature between two pillars with the indicated size and spacing as
a function of the contact angle φ. If the ecologically equilibrated interface curvature is both less than the
maximum curvature and corresponds to a contact angle less than the contact angle at maximum curvature
then the dynamics provide a restoring force which stabilizes the interface, otherwise, the interface is
unstable. (B) Schematic matched to (A) that shows the zone of stable interface angles φ in green (here
0 ≤ φstable . π/4) and unstable zone in red. The maximum angle of the green zone and the black circle
both correspond to the maximum curvature shown in (A).

3



1.1 Relationship to Competitive Asymmetry

We can calculate the maximum possible curvature for a particular lattice with values R and ∆x, and if a
particular level of competitive asymmetry, ε = 1

2 |PAB − PBA|, between species A and B requires a higher
curvature than this value, the lattice in question will not stably support both species.

We know that competition interfaces are flat for symmetric competition (ε = 0), while ε > 0 results
in curved interfaces. Additionally, the sharpness of the competitive interface is inversely related to 〈P 〉 =
1
2 (PAB + PBA); the lower the mean value of P the sharper the interface. Thus dimensional arguments
demand that the curvature of the competitive interface be set by a function of the dimensionless competition
asymmetry, ε/ 〈P 〉. The inverse natural length scale of the system 1

λ =
√
r/D, sets the natural scale for

curvature and thus to within a constant the interface curvature in a stable competitive system must be

κcrit =

√
r

D
f

(
ε

〈P 〉

)
. (8)

where f is some function. Taylor’s theorem then suggests that for a sufficiently smooth function with small
dimensionless competitive asymmetries

κcrit ∝
√
r

D

ε

〈P 〉
(9)

which is supported by the data in Fig. 2B.
A geometric argument gives similar results; given two strains with unequal competitive fitness, we

postulate that at equilibrium (i.e. when the genetic boundary does not move) the ratio of competition
parameters PAB and PBA is proportional to the ratio of the numeric advantage imposed by a curved
interface (as shown in SI Fig. 4). The width of the transition zone, w, is, to within an order one constant,
set by the only natural length scale in the system,

√
D/r, and hence this implies

PAB
PBA

∝
π(R2 − (R− w

2 )2)

π((R+ w
2 )2 −R2)

with κcrit =
1

R
→ κcrit ∝

1

w

PAB − PBA
PAB + PBA

∝
√
r

D

ε

〈P 〉
. (10)

2 Demonstration of Positive Lyapunov Exponents

In the main text we employed correlation analysis to examine the three-component dynamical state, outside
of stable limit-cycling, showing extreme sensitivity to initial conditions as a rapid decay in the correlation
between nearly identical initial conditions. Here, we examine how the abundance of three intransitively
competing species evolve from a conserved initial state with a small perturbation. We simulated the three
component system with a random initial condition for 200 doubling times to create a state whose spatial
structure was well past the ‘grow in’ period – we refer to this as the ‘seed’ state. We then generated
zero-mean Gaussian noise with a standard deviation of 0.001 in units of carrying capacity and added
unique instances of this noise to 30 independent replicates of the seed state. We evolved each of those
replicates for an additional 600 doubling periods. For each replicate, we calculated the absolute difference in
concentration at every position between the time-matched evolved seed state and each of the 30 perturbed
states. We calculated the natural logarithm of each of these state-distance vectors through time and
averaged them, giving the log-mean magnitude of the state-distance as a function of time. Because each
component Ai is bounded by 0 ≤ Ai ≤ 1 the state-distances are bounded, but for early times the slope
of the log-mean magnitude approximates the maximal Lyapunov exponent [1]. As shown in SI Fig. 5
small perturbations from the seed state: (i) led to exponentially increasing state-distances, indicating
positive Lyapunov exponents, (ii) showed clear and rapidly increasing divergences in component abundances
through time from a nearly identical state, commensurate with (i), and (iii) evolved spatial patterns that
were initially similar but ultimately significantly diverged over time.

Following the same protocol as above, we performed demonstrative simulations of three-species dynam-
ics in a typical Lotka-Volterra model with dense pillars and calculated the state distance vectors for 30
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SI Figure 4: A schematic of the unstable equilibrium between two unequal competitors, here with species
A (magenta) the stronger competitor (hence PAB < PBA). The competition zone has a width w set by the
natural length scale

√
D/r. The equilibrium curvature of the competitive interface (solid line) is positioned

such that the numerical advantage of the weaker competitor (B) is balanced against the higher potency
of the stronger competitor (A). In the absence of structural perturbations (e.g. pillars) this equilibrium is
unstable.
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replicates over a period of 400 doubling times. Like the modified LV model, introduction of dense pillars
led to extreme sensitivity to perturbation and chaotic dynamics, while the absence of pillars was insensitive
to perturbations and did not display chaotic dynamics (see SI Fig.6). When pillars were present, the state
distance increased approximately exponentially at early times indicating a positive maximal Lyapunov
exponent. While we did not run an exhaustive set of simulations for the typical LV model, we noticed that
denser pillar arrays were required to elicit chaotic dynamics as compared to the modified LV model.

Caption for SI Figure 5: Demonstration of Chaotic Dynamics. This figure expands on the data from
Fig. 3, with each labeled row in this figure corresponding to a column in Fig. 3. From an initially random
state we simulated our modified Lotka-Volterra equations for 200 doubling times to establish an initial
‘seed’ state. At t = 200 (dashed vertical lines in the first column) we created 30 identical replicates of
the seed state and to each added unique instances of zero-mean Gaussian noise with a standard deviation
of 0.001. The first column shows the subsequent evolution of the mean abundance of all 30 perturbed
replicates to the right of the dashed vertical line. The second column shows the natural log of the state
distance from the original seed starting at t = 200. The third column shows the seed state at the time of
perturbation (upper left) followed by three perturbed replicates. The first row corresponds to Fig. 3A and
shows little sensitivity to perturbations, sublinear growth of the state distance with time, and the terminal
states for each replicate are nearly identical, with per-pixel differences in abundance at ∼ 10−4. The second
row corresponds to Fig. 3B, there is some sensitivity to perturbations, but the state distance grows slower
than exponentially with time and hence is not chaotic, accordingly the three replicates are also nearly
identical, with per-pixel differences in abundance at ∼ 10−2. The third row corresponds to Fig. 3C; at
this reduced pillar spacing the replicates show extreme sensitivity to perturbations and the state distance
grows exponentially with time up to a saturation level imposed by the bounds of Ai, and accordingly, the
replicates are distinctly different a fixed time after perturbation. The fourth row corresponds to Fig. 3D
and like the previous row, at this pillar spacing there is extreme sensitivity to perturbations, exponential
growth of state distances, and the species distributions for each replicate are distinct. In the third and
fourth rows, the slope of the log-linear (exponential) increase in state distances approximates the maximal
Lyapunov exponent, which is positive, indicating chaotic dynamics. In all simulations, L/(1.29λ) = 150,
D = 15, P = 0.1, and Amin = 0, R, and ∆x as indicated in Fig. 3.

Caption for SI Figure 6: Perturbations to a typical Lotka-Volterra model. From an initially random
state we simulated a typical Lotka-Volterra model (first through third rows) to establish an initial ‘seed’
state. We created 30 identical replicates of the seed state and to each added unique instances of zero-mean
Gaussian noise with a standard deviation of 0.001. The first column shows the subsequent evolution of the
mean abundance of all 30 perturbed replicates to the right of the dashed vertical line. The second column
shows the natural log of the state distances from the seed state. The third column shows the seed state
(upper left) followed by three perturbed replicates. The first row is a typical LV model without pillars
and shows little sensitivity to perturbations, essentially no growth of state distance with time, and nearly
identical replicates, with per-pixel differences in abundance at ∼ 10−4. The second row is a typical LB
model perturbed by pillars spaced at ∆x = 5.5R and shows little sensitivity to perturbations, essentially no
growth of state distance with time, and nearly identical replicates, with per-pixel differences in abundance at
∼ 10−4. The third row is a typical LV model with pillars at a denser spacing of ∆x = 4R, showing extreme
sensitivity to perturbations and approximately exponential growth of state distance with time, indicating
chaotic dynamics. Accordingly the three replicates are each distinct. The third row is the modified LV
model with the same pillar conditions as the second row for comparison. Like the data from Fig. 3D, this
row shows extreme sensitivity to perturbations and the state distance grows exponentially with time up
to a saturation level imposed by the bounds of Ai, and accordingly, the replicates are distinctly different
a fixed time after perturbation. In the second and third rows, the slope of the log-linear (exponential)
increase in state distances approximates the maximal Lyapunov exponent, which is positive, indicating
chaotic dynamics. In all simulations, L/(1.29λ) = 150, D = 15, P = 0.1, and Amin = 0, and R and ∆x as
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SI Figure 6:
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indicated.

3 Relationship to Typical Lotka-Volterra Model

For both the two and three component systems, our model equations are symmetric between components
and are represented in dimensionless form by

∂Ai
∂t

= ∇2Ai +Ai

(
1− Ak

Pki

)1−
∑
j

Aj

 , (11)

where Ak actively kills Ai and the sum over j includes all species. For simplicity, this model does not
explore differences in carrying capacity. We note that if the concentration, Pki, of an opposing species,
Ak, that is required to induce local killing in Ai is very large relative to the carrying capacity C, (that
is Pki/C � 1) then this model becomes a typical Lotka-Volterra model with identical carrying capacity
between the species, given by

∂Ai
∂t

= ∇2Ai +Ai

1−
∑
j

Aj

 . (12)

For finite values of Pki, the difference between our model and a typical Lotka-Volterra model is the inclusion
of cubic terms of the form A2B, AB2, and ABC for the three component case, and A2B and AB2 for the
two component case. In most regions of space where one species dominates, these terms are guaranteed to
be small, because at most an O(1) component is being multiplied by one or two powers of a component
that is� 1. The inclusion of the term 1−Ak/Pki is meant to capture active killing at the interface between
two species by parameterizing species-specific interactions that are independent of resource limitations, i.e.
active killing, and as such these cubic terms are most significant at interfaces. In SI Fig. 7 we compare
structurally induced coexistence between mutual killers in both a typical and our modified Lotka-Volterra
equations; we reduced our modified model to a typical Lotka-Volterra type via the transformation

∂Ai
∂t

= ∇2Ai +Ai

(
1− Ak

Pki

)1−
∑
j

Aj

 → ∂Ai
∂t

= ∇2Ai +Ai

1−
∑
j

Aj −
Ak
Pki

 , (13)

by removing cubic terms. Further, we used this typical form to recalculate the extinction probability phase
plot of Fig. 2A from the main text, shown below in SI Fig. 8.

4 Modeling Extinction Time Distributions in Structured Environments

We seek to characterize the classes of dynamics observed during three-way intransitive competition in
our anisotropic environmental simulations. The diagram below shows the states and transition rates be-
tween the three observed dynamical states, with L being limit-cycle (cyclic), C being chaotic, and E being
extinction. Extinction is a fully absorbing state (hence no arrows emerge from E). The cyclic state is
characterized by stable coexistence of all three species and hence the transition rate from L to E is strictly
modeled as zero. Our simulations are deterministic and hence for a given initial condition in a particular
environment the time course of transitions between these states is encoded by those initial conditions.
Thus the ensemble from which we draw trajectories that statistically follow this diagram is the ensemble
of random, spatially uncorrelated initial conditions, not a statistical ensemble over stochastic dynamical
processes.
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SI Figure 7: Comparison of our modified Lotka-Volterra model to a typical Lotka-Volterra model with two
species. The top two rows show the evolution of both models in identical structured grids with identical
initial conditions. Their subsequent evolution is very similar and ultimately a stable pattern of coexistence
is established. Grid parameters were R/(1.29λ) = 2 and ∆x = 3.5R. The bottom two rows show the
evolution of both models with identical initial conditions in the absence of any environmental structure.
Their subsequent evolution is very similar and ultimately both models coarsen until there is single dominant
species. In all simulations, L/(1.29λ) = 100, D = 15, P = 0.1, and Amin = 0.001.
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SI Figure 8: Reproduction of Fig. 2A using the standard Lotka-Volterra model, showing nearly identical
behavior of coexistence between mutual killers that depends on pillar-grid parameters. In all simulations,
L/(1.29λ) = 100, D = 15, 〈P 〉 = 0.1, and Amin = 0.001.

4.1 Kinetic Model

We assume that for a given pillar size and spacing, there is a corresponding set of state-transition rates.
Over an ensemble of initial conditions, these rates are characterized by the number of observed transitions
of a particular type (CL, LC, or CE) per unit time. This model aims to determine the distribution of
arrival times into the extinct state and compare those predictions with the simulated distributions. The
distribution of arrival times p(t′) is related to the extinct ensemble fraction E by

dE = p(t′)dt′ → p(t′) =
∂E

∂t′
(14)

where the total integrated amount of E is 1 as t′ →∞ because E is a strictly absorbing state. This means
that all trajectories eventually end with extinction, though the time to extinction could be very long if, for
instance, specific values of pillar size and spacing result in kLC ∼ 0, noting that as ∆x→∞, kLC → 0.

Using this kinetic model, the following ODEs govern the probability of being in each state as a function
of time

L̇ = −kLCL+ kCLC (15)

Ċ = kLCL− (kCL + kCE)C (16)

Ė = kCEC (17)

Since this describes the time-dependent probability of being in a given state L̇+ Ċ + Ė = 0 and hence the
system is conservative. Given that Ė ∝ C, we note that C ∝ p(t) and hence seek to decouple the equations
into an equation strictly for C. Solving eqn. 16 for L we find

L =
1

kLC

(
Ċ + (kCL + kCE)C

)
(18)

and then differentiating with respect to time we find

L̇ =
1

kLC

(
C̈ + (kCL + kCE)Ċ

)
. (19)
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Then substituting these into eqn. 15 we have

L̇ = −kLCL+ kCLC → 1

kLC

(
C̈ + (kCL + kCE)Ċ

)
= −kLC

1

kLC

(
Ċ + (kCL + kCE)C

)
+ kCLC (20)

which simplifies to
C̈ + (kLC + kCL + kCE)Ċ + kLCkCEC = 0. (21)

We note that the two initial conditions that connect to our simulations are C(0) = Co and L(0) = Lo,
which then translate into C(0) = Co and

Ċ(0) = kLCLo − (kCL + kCE)Co. (22)

In order to reduce the parameter space and reveal natural scales, we non-dimensionalize this equation by
choosing a time scale that is positive and bounded as individual rate constants are set to zero, kij → 0,
namely

t′ = tτ → τ = (kLC + kCL + kCE)−1. (23)

Then switching to the dimensionless t as the time variable, we have

C̈ + Ċ +KC = 0 (24)

with the dimensionless constant

K =
kLCkCE

(kLC + kCL + kCE)2
. (25)

The rate constants are all positive, kij ≥ 0, and hence it can be shown that

0 < K <
1

4
(26)

for all values of kij
1. This also transforms the initial condition to

Ċ(0) = τ (kLCLo − (kCL + kCE)Co) = τkLCLo + (τkLC − 1)Co. (27)

4.1.1 Initial Condition C(0) = 0 L(0) = 1

There are two solutions of interest, namely when (Co, Lo) = (0, 1) and (Co, Lo) = (1, 0). Any other initial
condition is a linear combination of these two solutions. Let us examine (Co, Lo) = (0, 1), which has the
solution

C(t) = τkLC
e−

t
2

α
sinh (αt) (28)

with α =
√

1−4K
2 . Then building on the fact that Ė = kCEC = p(t)

p01(t) = Ė = τkCEC(t) =
K

α
e−

t
2 sinh (αt) (29)

where the factor of τ comes from the non-dimensionalization and the subscript 01 in p refers to the initial
conditions used to derive this version of p. On long time scales∫ ∞

0
p01(t)dt =

K

α

∫ ∞
0

e−
t
2 sinh (αt) dt =

1
4 − α

2

α

∫ ∞
0

e−
t
2 sinh (αt) dt = 1 (30)

for all values of 0 < α < 1
2 , meaning all trajectories lead to the fully absorbing state of extinction.

1Examining K′ = ab
(a+b)2

, which is maximized when a = b and hence K′ = 1
4
. Then changing to K′′ = ab

(a+b+c)2
with c > 0

and hence 0 < K′′ ≤ K′.
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SI Figure 9: (A) Schematic showing dynamical states (limit-cycle / cyclic L, chaotic C, and extinct E)
and the mean rates of transition that connect them. (B) The family of extinction time distributions as a
function of dimensionless time and the dimensionless rate parameter K for C(0) = 0 and L(0) = 1 that
result from the kinetic model in (A).

4.1.2 Initial Condition C(0) = 1 L(0) = 0

Examining (Co, Lo) = (1, 0), combining terms and simplifying, this has the solution

C(t) =
e−

t
2

2α
[2α cosh (αt) + (2τkLC − 1) sinh (αt)] (31)

and then p10(t) = Ė = τkCEC(t) and hence

p10(t) =
K

α
e−

t
2 sinh(αt) + γ

e−
t
2

2α
[2α cosh(αt)− sinh(αt)] (32)

with ∫ ∞
0

p10(t)dt = 1. (33)

The dimensionless constant γ = τkCE is bounded to be 0 < γ < 1. We note that the first term in the
above equation is the solution for p01(t) that we found for C(0) = 0 and L(0) = 1, that solution integrates
to one and hence that demands that∫ ∞

0
e−

t
2 [2α cosh(αt)− sinh(αt)] dt = 0, (34)

which it does. Then we note that both γ and K are functions of kij and hence are not fully independent
parameters. Examining the structure of K and γ, first we note that

K =
kLC
kCE

γ2 (35)

and that the maximum value of γ is when kCL = 0 and thus as a function of kLC and kCE , the maximum
value of γ is

γ =
1

1 + kLC
kCE

→ γ =
1

1 + K
γ2

(36)
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SI Figure 10: The two dimensionless rate parameters K and γ are not fully independent of each other
because they are both functions of kij and kij > 0. As shown in this text, K ≤ γ(γ − 1), here shown by
the bounding parabola, where the values within that region are fractally organized. We do not yet know
the full mapping from this kinetic parameter space to the morphological space specified by R and ∆x.

Thus the maximum value of K is bounded by

K ≤ γ(1− γ) (37)

and the minimum is zero. Any arbitrary (arb) initial condition is a weighted sum of these two solutions
for the extinction probability

parb = (1− f)p01(t) + fp10(t) (38)

with 0 < f < 1 being the weighting. Then because p01 and p10 share terms this simplifies to

parb(t) =
K

α
e−

t
2 sinh (αt) + fγ

e−
t
2

2α
[2α cosh(αt)− sinh(αt)] . (39)

While we know that K and γ obey K ≤ γ(1− γ), f is an independent parameter.
Examining our simulations, the fit parameters to the output distributions have a wide range of K, given

that 0 < K < 1/4, suggesting that γ ∼ 1
2 for most simulations and hence that kCE ∼ kCL+kLC . Likewise,

we found that fitting bounded f � 1. This parameter regime suggests that simulations tend to start off
in the limit-cycle phase and migrate to the chaotic phase before going extinct. In fitting the extinction
time distributions, we fit for both K and τ , ignoring γ because f � 1, and we allowed for a small time
translation t→ t− to to account for the ‘grow-in’ period from random initial conditions. Finally, we note
that this transition state model is valid for the connection diagram shown in SI Fig. 9 when those state
transitions have well-defined average rates (kij); the transition-state model is not specific to the PDEs of
our ecological model.
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K = 0.1, γ = 0.5, f = 0.01

K = 0.2, γ = 0.5, f = 0.01

SI Figure 11: Examples of the extinction time distributions for values of K, γ, and f that are similar to
what we see from our simulations.

5 Classification of Dynamic States

See SI Fig. 12.

6 Extinction Dynamics in Asymmetric Lattices

See SI Fig. 13.

7 Supplemental Movie Legends

Supplemental Movie 1: Symmetric two-species competition in structurally isotropic and anisotropic
environments. Simulation parameters are L/(1.29λ) = 100, P = 0.1, Amin = 0.001 with R/(1.29λ) = 2 and
∆x = 3.5R for the anisotropic case. The movie depicts system dynamics over 1200 doubling times; the
anisotropic simulation is pinned after approximately 160 doubling times. Snapshots of these simulations
were used to make Figure 1.

Supplemental Movie 2: Pinning and coexistence of species with asymmetric competitive fitness. Sim-
ulation parameters are L/(1.29λ) = 100, PAB = 0.112, PBA = 0.088, Amin = 0.001, R/(1.29λ) = 2 and
∆x = 3R. The movie depicts system dynamics over 85 doubling times.

Supplemental Movie 3: Large and widely spaces pillars do not significantly perturb intransitive com-
munities. Simulation parameters are L/(1.29λ) = 100, P = 0.1, Amin = 0.01, R/(1.29λ) = 8, ∆x = 5R.
The movie depicts system dynamics over 1,000 doubling times.

Supplemental Movie 4: Dense pillars induce wave destabilization and community collapse. Simulation
parameters are L/(1.29λ) = 100, P = 0.1, Amin = 0.01, R/(1.29λ) = 10, ∆x = 2.6R. The movie depicts
system dynamics over 1,000 doubling times.
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SI Figure 12: Classification of intransitive community dynamics. (A) For every simulation, the temporal
autocorrelation was calculated using the vectorized pixel intensities of all species for every non-pillar
pixel in the system. (B) The resulting autocorrelation matrix was then used to determine if the spatial
distributions of species recapitulated themselves to a sufficiently high degree for at least two cycles; if so,
the simulation was classified as cyclic at that time point. A threshold correlation of 0.8 was chosen (red
line), as this was the level at which isotropic simulations were reliably classified as cyclic over ∼ 1000
doubling times (excluding grow-in and time points fewer than two cycles from the end of the simulation).
The resulting time-dependent classifications were used to generate Figure 5A. The data for this figure was
taken from a simulation with L/(1.29λ) = 100, P = 0.1, Amin = 0.01, R/(1.29λ) = 6 and ∆x = 3R. (C)
Snapshots of this simulation corresponding to distinct dynamic regimes. After a short grow-in period, the
simulation relaxed into a limit-cycle driven by a single wave center about one of the pillars (white arrow at
t = 100 and 300). This wave center was unstable (note asymmetric species distributions about the pillar at
t = 100 and 300 and wave widths at t = 300), persisting for several hundred doubling times until collapse
of the wave center resulted in an extinction cascade at t = 700 (trivial autocorrelations of the victorious
monoculture that persisted until the end of the simulation are not included in the analysis). (D) and (E)
show snapshots and corresponding autocorrelation matrices for the stable limit-cycle from Fig. 3B and
the persistent chaotic state from Fig. 3D, respectively, to demonstrate the clearly observable differences in
their autocorrelation structure. In both simulations L/(1.29λ) =, D = 15, P = 0.1, Amin = 0, R = 15, and
in (D) ∆x = 6.5R, while in (E) ∆x = 5R.
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SI Figure 13: Randomized pillar arrays do not affect qualitative community outcomes. Pillar arrays
were randomized by drawing either the pillar spacing ∆x (A) or the pillar radius R (B) from a uniform
distribution of varying width. In (A) pillar positions were randomized by jittering pillar positions, with the
displacement direction chosen randomly and the displacement magnitude drawn from a uniform distribution
with mean 5R and standard deviation as indicated in panel headings. In (B) the positions remained fixed
to a triangular grid but the pillar radii varied, drawn from a uniform distribution with the indicated
mean and variance. Example randomized arrays are shown on the right. For each standard deviation,
three independent realizations of the jittered grid of pillars were generated and manually validated to
ensure pillars were not overlapping or spaced too closely to accurately simulate diffusion. Ten random
initial condition replicates were performed for each of the three grids, giving 30 total simulations for each
standard deviation in ∆x or R. Fractions within subheadings of each panel indicate the observed frequency
of extinction for each condition. In all cases, extinction frequency did not show a significant dependence on
the standard deviation of ∆x nor R, whereas extinction frequency showed a strong dependence on mean
lattice parameters, consistent with observations in the main text. Plotted points are randomly displaced
along the x-axis to reduce overlap. Simulation parameters are L/(1.29λ) = 100 and P = 0.1, with indicated
pillar radius R and spacing ∆x = 5R before addition of random variation as indicated.
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Supplemental Movie 5: Pillars may serve as unstable wave centers. Simulation parameters are L/(1.29λ) =
100, P = 0.1, Amin = 0.01, R/(1.29λ) = 6, ∆x = 3.4R. The movie depicts system dynamics over 1,000
doubling times.

Supplemental Movie 6: Small dense pillars can cage wave centers and prolong community coexistence
under chaotic dynamics. Simulation parameters are L/(1.29λ) = 100, P = 0.1, Amin = 0.01, R/(1.29λ) = 2,
∆x = 2.4R. The movie depicts system dynamics over 1,000 doubling times.

Supplemental Movies 7 - 10: Spatiotemporal evolution of species concentration fields from Figure 3.
Simulation parameters are L/(1.29λ) = 150, P = 0.1, Amin = 0, R/(1.29λ) = 3, ∆x as indicated in Figure
3. The movies are time stamped in doubling times.
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