
Bioinformatics, 2018, 1–10 
doi: 10.1093/bioinformatics/bty534 

Advance Access Publication Date: 28 June 2018 
Applications Note 

 

Systems Biology 

Supplementary Material for “SLIDE – a web-
based tool for interactive visualization of large-
scale –omics data” 
Soumita Ghosh1,2, Abhik Datta3, Kaisen Tan4 and Hyungwon Choi1,2,* 
1Institute of Molecular and Cell Biology, A*STAR, Singapore 138673, 2Saw Swee Hock School of Public 
Health, National University of Singapore, Singapore 117549, 3Centre for BioImaging Sciences and Department 
of Biological Sciences, National University of Singapore, Singapore 117551, 4Department of Otolaryngology, 
Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228 

*To whom correspondence should be addressed. 

Associate Editor: Oliver Stegle 

Received on December 12, 2017; revised on May 15, 2018; editorial decision on June 26, 2018; accepted on June 27, 2018  

Abstract 
Summary: In this supplement, we review the literature of visualization tools for –omics data and de-
scribe the software implementation of SLIDE in detail. We illustrate the functions of SLIDE using a 
time course microarray data set, which profiles whole lung mouse cells infected with influenza virus of 
different strains in varying lethal and sub-lethal doses. The data set consists of 133 microarrays with 
>45,000 transcripts, which could not be visualized in other open-source tools.  
Contact: hwchoi@imcb.a-star.edu.sg  

 

Visualization interfaces in SLIDE can be classified into feature-level 
modules and group-level modules. These two interfaces are presented in 
Figure S1. The various functionalities are discussed in Section S3. 

S1 Relevant Work  
Currently, many open-source and commercial –omics data visualization 
tools are already available. These tools offer a wide range of functionali-
ties and different degrees of scalability, some with interactive visualiza-
tion. The strengths and limitations of commonly used tools are summa-
rized in Table S1 with direct comparison to SLIDE. For example, one 
notable limitation of existing alternatives is the scalability of clustering. 
Typical molecular datasets can reach up to >50,000 features from hun-
dreds of samples (e.g. microarray, RNA-Seq). The scalability of Java 
TreeView (Saldanha, 2004), MapleTree (Simirenko, 2003) and 
FTreeView (Freudenberg et al., 2009) is partly constrained by their 
dependency on Cluster 3.0 (De Hoon et al., 2002; Eisen et al., 1998), 
which is their main engine for clustering. Heatmapper (Babicki et al., 
2016), ClustVis (Metsalu and Vilo, 2015) and INVEX (Xia et al., 2013) 
use the computational capabilities of R packages to cluster the data. 

These tools can cluster at most a few thousand genes in a reasonable 
amount of time (e.g. minutes). 

One of the most popular tools for –omics visualization is Multi-
experiment Viewer (MeV) (Saeed et al., 2003). MeV provides several 
statistical analysis and clustering methods. Although MeV also visual-
izes the data at user-defined resolutions, the tool has an upper limit in the 
number of features and does not perform separate analysis for subsets of 
features as SLIDE does. In terms of graphics, it has a lower bound of one 
pixel per data element. At this resolution, tall or fat matrices cannot be 
visualized well in one snapshot, a feature that is available in SLIDE 
irrespective of the size of the dataset.  

Many tools listed in Table S1, including MeV, offer string matching-
based searching of user provided metadata (such as gene symbols, Entrez 
and sequence accession numbers). However, they do not allow querying, 
tagging and extraction of individual features into an independent sub-
analysis based on additional information such as biological pathways and 
evolutionarily conserved functions such as Gene Ontology (GO) (Ash-
burner et al. 2000). The ability to search keywords and tag features, 
simultaneously displaying the relevant feature data on a side panel in 
real-time, is a key advantage of SLIDE over others. 



 

Fig. S1. SLIDE visualization interface. (A) Feature-level visualization interface of SLIDE. The global view heatmap visualizes the entire expression 
matrix after hierarchical clustering of the features. The search panel on top of the global view allows real-time search and tagging of the data. The 
search tags highlight features with horizontal (green and brown) stripes on vertical bars alongside the heatmaps, while the search terms are displayed in 
the search results panel. The detailed view heatmap gives a zoomed-in view of a portion of the entire data, selected using a slider on the left edge of the 
global view panel. In the interactive dendrogram view, the branches of the tree can be clicked to visualize a subset of the clustered data. Features can be 
selected and added to the user-created feature lists using the “ADD TO LIST” functionality in the search results, detailed view and interactive dendro-
gram view panels. Clicking features, pathways or gene ontologies (in the heatmap views and in search results) displays their details in the information 
panel. (B) Group-level visualization interface has the same components as feature-level visualization. However, the columns of the heatmaps are user-
created feature lists and the rows are functional terms. The control panels in the two types of visualizations also have slightly different sets of parame-
ters. See Software manual for details.  
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Table S1.  Summary of features in existing –omics data visualization tools and SLIDE 

Tools 

 

Features 

MeV Gitools Heatmapper 
Java TreeView 

/ MapleTree 

Functional 

TreeView 
CIMminer 

INVEX (Heatmap 

Clustering in Net-

workAnalyst) 

SLIDE 

Scalability Clustering scalabil-

ity is limited by Java 

Virtual Machine's 

memory. Fails to 

perform hierarchical 

clustering of 45,281 

genes when JVM is 

allocated 2 GB 

virtual memory. 

Distance matrix 

computation for 

hierarchical 

clustering of 

45,281 genes was 

less than 15% 

complete after 1 

hour of pro-

cessing 

The input data is 

limited to 2500 

features and 300 

samples 

Execution of 

hierarchical 

clustering failed 

for 45,281 genes 

with Cluster 3.0 

due to insuffi-

cient memory 

space 

Execution of 

hierarchical 

clustering failed 

for 45,281 genes 

with Cluster 3.0 

due to insuffi-

cient memory 

space 

Limited to 

1000 rows 

Limited to 5000 rows Visualizing and 

clustering 45,281 

genes across 133 

samples requires 

<400 MB memory. 

Hierarchical cluster-

ing of genes using 

average linkage and 

Euclidean distance 

requires <7 minutes. 

Visualizations Heatmaps, dendro-

grams and other 

plots 

Heatmaps, den-

drograms, etc 

Heatmaps, 

dendrograms 

Heatmaps, 

dendrograms 

Heatmaps, 

dendrograms 

Heatmaps Heatmaps Heatmaps, dendro-

grams 

Clustering 

capabilities 

Multiple clustering 

algorithms available 

Hierarchical and 

kmeans++ clus-

terings available 

Uses R packag-

es for clustering 

Depends on 

packages such as 

Cluster 3.0. 

Clustering 

output is the 

input for this 

tool. 

Depends on 

packages such as 

Cluster 3.0. 

Clustering 

output is the 

input for this 

tool. 

Uses R 

packages for 

clustering 

Only hierarchical 

clustering is available  

Only hierarchical 

clustering is availa-

ble  

Search Capa-

bilities 

Approximate (wild-

card) and exact 

string matching 

based search of 

feature metadata 

Approximate and 

exact string 

matching based 

search of feature 

and sample 

metadata 

None Approximate 

and exact string 

matching based 

search of feature 

metadata 

Approximate 

and exact string 

matching based 

search of feature 

metadata 

None None Approximate and 

exact search of 

feature metadata 

(entrez, gene sym-

bol, ensembl, uniprot 

and refseq identifi-

ers) as well as func-

tional information 

Functional 

Tagging 

None None None None None None None User input inde-

pendent functional 

tagging 

Enrichment 

Analysis 

Multiple methods 

are available for 

biological interpre-

tation of data 

Requires genes 

to pathway 

mapping to be 

provided by user 

None None Provides inter-

face to DAVID 

and Enrichr for 

functional 

analysis 

None Gene ontology and 

pathway enrichment 

can be performed 

within the tool 

Hypergeometric test 

based enrichment 

analysis and 

heatmap based 

visualization of 

enrichment. Gene to 

functional group 

mapping is available 

within the tool. 
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Visualizing at 

Multiple 

Resolutions 

Fixed resolution. 

Requires scrolling to 

view the entire data. 

Ability to save 

heatmaps of tall or 

fat matrices as 

images is limited 

due to fixed resolu-

tion. 

Allows visualiz-

ing at multiple 

resolutions, but 

the resolution has 

a lower bound of 

1 pixel per data 

matrix cell, as a 

result large 

matrices cannot 

be viewed in 

their entirety in a 

single frame. 

Fixed resolution Allows visualiz-

ing at multiple 

resolutions, but 

the resolution 

has a lower 

bound of 1 pixel 

per data matrix 

cell, as a result 

large matrices 

cannot be 

viewed in their 

entirety in a 

single frame. 

The data can be 

viewed at any 

desired resolu-

tion 

Fixed resolu-

tion 

Three fixed resolu-

tions: low, medium 

and high 

Data can be visual-

ized in its entirety 

(i.e. at the lowest 

resolution) as well as 

at high-resolutions 

where individual 

features are clearly 

visible. 

Sublist genera-

tion 

Subsets of features 

can be selected by 

selecting clusters in 

the dendrogram and 

saved 

None None Subsets of 

features can be 

selected and 

saved through 

text based search 

of metadata, 

using the den-

drogram and by 

directly select-

ing data rows. 

Subsets of 

features can be 

selected and 

saved through 

text based search 

of metadata, 

using the den-

drogram and by 

directly select-

ing data rows. 

 

None List of selected fea-

tures can be generated 

through manual selec-

tion. List also has to 

be manually saved in 

file 

Subsets of features 

can be selected 

(through enhanced 

search of metadata, 

functional search 

and using the den-

drogram) and saved 

 

 
Test for enrichment of biological functions in selected sets of genes, 

often called gene set enrichment analysis, can also be performed in most 
existing tools. However, some tools (with the exception of INVEX) 
require that the user provide the mapping between genes and pathways. 
For instance, Gitools (Perez-Llamas and Lopez-Bigas, 2011) requires a 
gene-to-pathway mapping as input for enrichment analysis. FTreeView 
provides interfaces to external tools such as DAVID (Huang, D. W. et 
al., 2007) and Enrichr (Chen et al., 2013). Similar to INVEX, analysis 
results can be immediately visualized in SLIDE in the form of a 
heatmap, a feature that is lacking in most alternatives. 

Many existing tools such as CIMminer (Weinstein et al., 1994) and 
GenePattern (Reich et al., 2006) were developed without the software 
architecture necessary to support high levels of user interactivity. CIM-
miner, for instance, requires the data to be uploaded to a server, which 
performs clustering and emails back a link to the user for visualizing the 
result. Several other tools such as HeatmapGenerator (Khomtchouk et 
al., 2014) and matrix2png (Pavlidis and Noble, 2003) are also available 
for specifically creating heatmaps without any analysis capabilities. In 
contrast, SLIDE offers a complimentary set of functionalities, such as the 
ability to interactively explore very large datasets at the level of gene sets 
or biological functions, along with the ability to customize and save the 
visualizations in a resolution independent format. 

S2 Implementation 

S2.1 Software Architecture  
SLIDE has been designed as a Java and Python-driven web application 
with a rich interface that can be accessed using any modern web brows-
er. It uses a well-established web server, the Glassfish server, and the 
widely used MongoDB database. Both Glassfish and MongoDB are open 

source. Since the web server, the database, Java and Python are all freely 
available and can be easily installed on most modern operating systems, 
SLIDE can also be used as a standalone application. HTML is used to 
create the backbone of the graphical user interface, within which the 
visualizations are rendered using Scalable Vector Graphics (SVG). CSS 
is used for styling and JavaScript is used for client-side user interactivity.  

To achieve scalability, a key design philosophy in SLIDE is to main-
tain a constant amount of data in the web browser, at all times. This is 
achieved using Asynchronous JavaScript and XML (AJAX) based up-
dates that dynamically load only the portion of the data needed. The 
heatmaps in global view and interactive dendrogram view are rendered 
as images of fixed dimensions. The heatmap data for detailed view is 
asynchronously requested from the server as needed. The amount of data 
that can be loaded and visualized using SLIDE is therefore only limited 
by the amount of main memory (random-access memory) available. 
Loading and visualizing a dataset with 50,000 features and 200 rows 
requires ~4GB RAM, while running hierarchical clustering on it requires 
~16GB RAM. 

The server-side contains the GlassFish web server as the visualization 
engine. The application logic has been implemented using Java Server 
Pages (JSPs) and Servlets. The data processing logic has been imple-
mented using Java and Python. Combining Java and Python provides a 
balance between software development time and software performance. 
For instance, SLIDE uses the Python package fastcluster (Müllner, 
2013), which provides efficient implementations of agglomerative hier-
archical clustering. The functional information is maintained as a reposi-
tory in a MongoDB server.  MongoDB allows storing non-flat, document 
like structures that can be queried with close to in-memory like perfor-
mance. The SLIDE repository comprises of gene information, gene 
ontology information and biological pathway information. The database 
schemas have been optimized and indexed such that near real-time per-
formance is possible for the most common  



Fig. S2.  Search-based feature tagging and sub-analysis creation functionalities applied to mRNA expression data of mouse infection model. (A) A 
global view visualizing the mRNA expression matrix, comprising of 45,281 genes across 133 experiments, after hierarchical clustering of the genes using 
average linkage and Euclidean distance. The search results panel displays the results of wildcard search for four GO terms. The genes associated with the 
matched GO terms are tagged (with green stripes) in real-time. (B) The interactive dendrogram view of a sub-analysis created using the features tagged in 
the search result "neutrophil chemotaxis". (C) The detailed view of the same sub-analysis, showing the features at a higher resolution. (D) the histogram of 
the expression data visualized in (A). In (B) and (C) chemokine and chemokine receptors show distinctive dose dependent expression patterns across the 
time-course. 
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queries. The gene information, GO terms are extracted from the R pack-
age Bioconductor (Gentleman et al. 2004). A comprehensive list of 
biological pathway information for the human and mouse species are 
also extracted from ConsensusPathDB (CPDB) (Kamburov et al., 2010). 
In the current release, SLIDE supports functional annotation for human 
and mouse data. The MongoDB repository is automatically updated 
periodically with data re-extracted from Bioconductor and CPDB. 

A user manual outlining SLIDE’s interactive features is available at 
https://github.com/soumitag/SLIDE/raw/master/application/slide/
SLIDE_Users_Manual.pdf. The “HELP” menu in SLIDE’s user inter-
face provides quick access to the user manual, example input data and 
sample information files and GitHub’s issue reporting site. 

S2.1 Input and Output Data Formats  
Feature-level visualization in SLIDE (e.g. expression data) requires an 
input data file containing the matrix of quantitative values in a delimited 
text format (comma, tab, space, semi-colon or pipe delimited). Addition-
ally, a sample information file is required if the data contains sample 
group information (such as replicates, experimental conditions, time 
points). The sample information file should also be a delimited text file. 
The user will be prompted to specify delimiters for both input files. 
Sample group names can be used to indicate experimental conditions 
such as vital status, control and test conditions. Each such grouping is 
referred to as a factor and SLIDE allows grouping by up to two factors 
(e.g. disease status as having a tumor or not can be two sample groups of 
one factor and treatment groups such as chemotherapy, immunotherapy 
can be sample groups of the second factor). The detailed format of the 
sample information file is discussed in Section II.2 of SLIDE user man-
ual, available at available at  
https://github.com/soumitag/SLIDE/raw/master/application/
slide/SLIDE_Users_Manual.pdf.  

The sample names in the sample information file must be identical to 
the column headers in the input data file. Comments can be added in the 
sample information file by starting the comment line with a ‘#’ symbol. 
Any line that does not begin with a ‘#’ symbol and is not empty must 
contain a valid sample mapping. Rows with the same sample group name 
and time point are automatically detected as replicates. Only the sample 
names mentioned in the sample information file are loaded from the 
input data file. 

An example sample information file for the mouse data set used here 
is available at https://github.com/soumitag/SLIDE/blob/master/data/
Brandes_et_al_GSE42638_Sample_Information.txt. The input data file 
should contain one or more feature meta-data such as Entrez, official 
gene symbol, RefSeq, Ensemble and Uniprot identifiers. SLIDE can 
automatically map missing meta-data information if any one of these 
identifiers is available.  

The feature lists created within SLIDE can be saved in a text file for-
mat. Any analysis or sub-analysis workspace can be saved in a ".slide" 
file, which can be loaded back onto SLIDE for continued analysis. All 
visualizations within SLIDE can be saved as Scalable Vector Graphics 
(SVG) files, which are resolution-independent and can be used to create 
high quality images. When saving visualizations from SLIDE, several 
customization options are available. For instance, one can choose to 
include the search tags as well as the histogram of values.  

 
 
 

S3 Illustration of SLIDE in a time course micro-
array data with complex experimental design 

We demonstrate the capabilities of SLIDE using mRNA expression data 
from an influenza infection study of murine lung epithelial cells. The 
study profiled the transcriptomic changes in the whole lung epithelial 
cells after non-lethal, sub-lethal and lethal influenza infection (Brandes 
et al., 2013). Specifically, the mouse lung epithelial cells were infected 
with non-lethal H1N1 virus strain A/Texas/36/91 (Tx91) strain at 106 
plaque-forming units (PFU), sub-lethal and lethal doses of H1N1 
A/Puerto Rico/8/34 (PR8) strain and sham infection on 1, 2, 3 and 10 
days post infection. The sub-lethal doses are 0.2 and 0.6 times the medi-
an lethal dose (LD50) and the lethal doses are 10 and 100 times the 
median lethal dose. The microarray experiment consists of 19 experi-
mental conditions (see Figures S2B and S2C for details) with 7 biologi-
cal replicates per condition. The expression matrix consists of 45,281 
genes and 133 (19x7) gene expression microarray experiments. The 
input data was quantile normalized, log base 2 transformed (log2) and 
baseline transformed by the median of sham-infected. For a demo analy-
sis of this data using SLIDE go to http://137.132.97.109/VTBox/ and 
click the ‘Load Demo’ button. 

Brandes et al. applied systematic statistical filtering to first identify 
8,291 differential genes between the 19 experimental conditions and 
formed 50 clusters of genes (referred to as modules) that are highly 
correlated across multiple conditions through an optimization process. 
Their analysis identified condition specific inflammatory responses. For 
instance, excess neutrophil-mediated inflammatory damage was identi-
fied as characteristic of fatal infection. While formal statistical proce-
dures based inference is indispensable, here we show that user-guided 
graphical navigation of the data with SLIDE, can also recover similar 
gene modules solely based on visualization, and can even confirm the 
conclusions from statistical filtering graphically.  

S3.1 Sample (Meta) information file 
Each row in the sample information file contains three entries in this 
example: sample name, sample group name, and time point. For this 
dataset, it is possible to group samples based on their characteristics or 
experimental conditions, such as dose, strain, sample identifier, time 
point. Here, we use two sample grouping factors: (i) a combination of 
H1N1 strains and doses, with sample group names such as Sham, Tx91, 
0.2PR8LD50, and so on; and (ii) the number of days post infection (time 
point). The column order can be modified within SLIDE in real-time, to 
sort the columns either by sample group name or by time point. When 
sorted by sample group name, the samples within each sample group are 
sorted by time points, and vice versa. Thus, input data need not be sorted 
before loading into SLIDE; a feature that can be particularly useful for 
data sets with many columns.  

S3.2 Feature-level visualization of the entire data 
The global heatmap in Figure S2A shows the result of hierarchical clus-
tering of the 45,281 genes in the whole lung RNA expression data using 
Euclidean distance and average linkage. The clustering trees in Figure 
S1A are sorted using the "smallest child first" ordering scheme (Bar-
Joseph, Z. et al., 2001). A small region of the top-most upregulated 
cluster in Figure S2A is shown at a greater depth in the interactive den-
drogram view in Figure S2B. The dose dependent immune response can 
be visually identified in this figure. For instance, CXCL1 and IL6, two  

https://github.com/soumitag/SLIDE/raw/master/application/slide/SLIDE_Users_Manual.pdf
https://github.com/soumitag/SLIDE/raw/master/application/slide/SLIDE_Users_Manual.pdf
https://github.com/soumitag/SLIDE/raw/master/application/slide/SLIDE_Users_Manual.pdf
https://github.com/soumitag/SLIDE/raw/master/application/slide/SLIDE_Users_Manual.pdf
https://github.com/soumitag/SLIDE/blob/master/data/Brandes_et_al_GSE42638_Sample_Information.txt
https://github.com/soumitag/SLIDE/blob/master/data/Brandes_et_al_GSE42638_Sample_Information.txt
http://137.132.97.109/VTBox/


important markers of inflammatory response, show large increase in 
expression levels with increasing dose. Figure S2C shows the same 
features in a detailed view, the non-lethal strain Tx91 and sub-lethal 
doses of PR8 strain, CXCL1 and IL6 are over expressed in Days 2 and 3 
compared to baseline (Day 1). While the expression levels of these genes 
return to the baseline levels by Day 10 for non-lethal Tx91 and sub-lethal 
doses of PR8, the same genes remain at relatively higher expression 
levels at Day 10 for the lethal PR8 doses. 

 

S3.3 Query-based feature tagging and sub-analysis 
Brandes et al. found that excess inflammatory host response is caused by 
chemokine-driven neutrophil infiltration at the site of infection. Chemo-
kines orchestrate cell migration and play a crucial role as mediators of 
acute inflammation. CXCL1, the main trigger of neutrophil recruitment, 
exhibits a distinguishable expression pattern in lethal dose levels of 
infection by pathogenic strain PR8 in Figure S2B. To visualize the dis-
tribution of genes related to cell chemotaxis across various gene clusters, 
GO terms related to neutrophil chemotaxis, leukocyte chemotaxis, mon-
ocyte chemotaxis, and lymphocyte chemotaxis were searched by user 
query in SLIDE. The result of this wildcard search-based tagging pulled 

 
 
Fig. S3.  Enrichment Analysis and Group-level visualization using feature lists. Enrichment analysis results in the interactive dendrogram view. 
Brandes et al. identified two distinct biological processes through their modular analysis of the mouse infection model. The first was a common antivi-
ral response pattern of host across all infection conditions, the second was a condition specific innate immune response, which was pro-inflammatory 
and constituted a fatal molecular signature with increased lethality. (A) The enrichment level of significant functional terms in the gene lists associated 
with these two modules, referred to as B-7 (anti-viral response) and A-8 (early fatal signature). (B) The region in (A) highlighted by the vertical bar R1 
in detailed view. The regions show several highly enriched biological processes in both feature lists. The regions highlighted by the vertical bars R2, R3 
and R4 are presented in Figure S4. (C) The histogram of the data visualized in (A). 
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the subset of expression data for relevant genes, as shown in Figure 
S2A. A wildcard search in SLIDE returns all searched entities that con-
tain the searched literal. For instance, the wildcard search for GO terms 
containing "neutrophil chemotaxis" found four matches (Figure S2A). 

A sub-analysis was created with the genes associated with the four 
GO terms returned by the wildcard search for the GO term "neutrophil 
chemotaxis". A portion of this subset of genes is shown in detailed view 
in Figure S2C, where the expression levels of neutrophil chemokines 
such as CCL4, CCL7, CXCL1, CXCL2 increased rapidly with increased 
lethality. For 10 times LD50 and 100 times LD50 doses of PR8, these 
genes were already highly expressed in day 2, whereas for 0.6 times 
LD50 dose of PR8 their expression change is visible only from day 3. 
This visualization indicates there is an early neutrophil infiltration at the 
infection site for higher lethal doses compared to lower lethal doses, 
consistent with the findings of Brandes et al. 

S3.4 Group-level visualization: enrichment analysis 
As discussed above, Brandes et al. took a modular approach to analyze 
the biological processes that distinguish influenza infections based on 
their lethality and identified 50 exclusive modules. We use SLIDE’s 
group-level visualization to determine biological processes enriched in 
two modules, B-7 and A-8, which they investigated in depth and found 
to be associated with distinct molecular signatures of host response to 
infection. The first module, B-7, is linked to antiviral response and the 
second module, A-8, is linked to the host inflammatory response pattern 

that constitute early fatal signature. The result of GO enrichment analysis 
on these two modules is presented in Figure S3A, which shows the 
interactive dendrogram view containing all biological processes present 
in the Gene Ontology database, that were found to be significant. The 
colors in the heatmap represent magnitude of statistical significance 
(−log10 p − value). Darker colors therefore indicate greater statistical 
significance of enrichment in a feature list. As can be seen in Figure 
S3A, there are several significant pathways with p-value less than 0.05 in 
the hypergeometric test. Some interesting clusters of biological processes 
are presented in detailed view in Figure S3B and in the Figures S4A, 
S4B and S4C. The heatmap in Figure S3B shows the biological process-
es in Region R1 of Figure S3A, and contains the most enriched path-
ways. The biological processes in Regions R2, R3 and R4 of Figure S2A 
are presented in Figures S4A, S4B and S4C, respectively. 

In Figure S3B, the GO terms "inflammatory response" and "response 
to virus", as expected, are enriched in modules A-8 and B-7, respective-
ly. In addition, a number of other enriched biological processes were also 
found. For instance, several immune system related GO terms such as 
"Innate Immune Response", "Immune System Process", "Regulation of 
Immune Response" are also highly enriched in module B-7. JAK-STAT 
signaling related pathways, which Brandes et al. identified as distin-
guishing host response patterns associated with early fatality, are also 
enriched in module A-8 (Figure S4A and Figure S4B).  
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Fig. S4.  Enrichment Analysis and Group-level visualization using feature lists (continued). (A) Shows the region of Figure S3A highlighted by 
the vertical bar R2, in detailed view. (B) Shows the region of Figure S3A highlighted by the vertical bar R3, in detailed view. (C) Shows the region of 
Figure S3A highlighted by the vertical bar R4, in detailed view. 
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