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1 Introduction

Crumble does not compress quality values itself, rather it replaces quality values in a SAM/BAM/CRAM
�le with di�erent qualities which compress better in standard tools. If the distribution of quality
value usage becomes more extreme, the entropy decreases and compression ratios increase.

This means that existing software pipelines continue to work on crumbled data. However it
also means some �le formats gain more from Crumble than others.

2 Software versions and git commit hashes

Crumble 0.8 996341e https://github.com/jkbonfield/crumble

Htslib 0.7 209f94b https://github.com/samtools/htslib

Samtools 0.7 b8d69cd https://github.com/samtools/samtools

GATK 3.7 https://software.broadinstitute.org/gatk

CALQ 1.0.0 5b2ba4c https://github.com/voges/calq

Bcftools 1.6-7 b7b502e https://github.com/samtools/bcftools

Freebayes 1.1.0-46 8d2b3a0 https://github.com/ekg/freebayes

QVZ2 0.1-24 70e5926 https://github.com/mikelhernaez/qvz2

VT 0.5772 6686b5c https://github.com/atks/vt
Htslib was used to write CRAM �les, either directly from within Crumble or via Samtools for

production of the lossless CRAMs (converted from the downloaded BAM �les). Default compres-
sion levels were used.

3 Evaluation pipeline

GATK HaplotypeCaller, Bcftools and Freebayes are used without a set of known variants and
without application of GATK Variant Quality Score Recalibration (VQSR). This is to demonstrate
the raw calling power without attempts to rescue mistakes via known variants and to judge likely
performance on new organisms. Command line arguments used were:

java -Xmx4g -jar GenomeAnalysisTK.jar -T HaplotypeCaller -R $human_ref \

-L 1 --genotyping_mode DISCOVERY -stand_call_conf 10 \

-I $prefix.bam -o $prefix.gatk.vcf

freebayes -f $human_ref $prefix.bam > $prefix.freebayes.vcf

bcftools mpileup -f $human_ref $prefix.bam | \

bcftools call -vm - > $prefix.bcftools.vcf

Truth sets are downloaded from Heng Li's CHM-eval release:
https://github.com/lh3/CHM-eval/releases/download/v0.2/CHM-evalkit-20161018.tar

Comparison of VCF call and truth sets is made after normalising variant coordinates and
splitting multi-allelic sites and MNPs into separate vcf records, followed by region �ltering using
the inclusion / exclusion bed �les in the CHM-eval release kit. The e�ect of these may mean that
some compound variants can yield both a match and a mismatch, for example calling a homozygous
mutation as heterozygous, but it makes comparisons between tools easier. These operations are
performed with bcftools and vt:
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bcftools norm -m -both -t $region -f $href $v 2>/dev/null | \

vt decompose_blocksub - | \

bcftools view -T ^$exclude.bed | bcftools view -T $include.bed > $v.norm.vcf

The normalised / �ltered �les are then compared with �bcftools isec� to count the shared
variants between truth and call sets and those occurring only in one �le:

bcftools isec -c both -p $call.isec $truth.norm.vcf.gz $call.norm.vcf.gz

This is a relatively strict de�nition of identity, meaning that the variant must occur at both
the same site and be the same call. The �isec� command produces 4 VCF �les in the $call.isec
directory:

0000.vcf: private to truth.norm.vcf (false negatives)
0001.vcf: private to call.norm.vcf (false positives)
0002.vcf: records from truth.norm.vcf, shared by both �les (correct calls)
0003.vcf: records from call.norm.vcf, shared by both �les (correct calls)

By counting the VCF records in each �le we observe the recall and precision. The �les can be
�ltered by quality and type using �bcftools view�, for example:

FN_SNP=`bcftools view -H -i "TYPE='snp' && QUAL >= 30" $call.isec/0001.vcf | wc -l`

More aggressive �ltering was also applied based on the recommended practices from each tool,
where available. The following are exclusion �lter rules, applied using `bcftools view -e $�lter'. We
also applied a simple over-depth �lter too, of DP>90 for the full 50x sample and DP>30 for the
15x sample.

• GATK HaplotypeCaller
https://software.broadinstitute.org/gatk/documentation/article.php?id=3225

SNP: QUAL < $qual || QD < 2 || FS > 60 || MQ < 40 || SOR > 3 || MQRankSum <

-12.5 || ReadPosRankSum < -8 || DP > $DP

Indel: QUAL < $qual || QD < 2 || FS > 200 || ReadPosRankSum < -20 || DP > $DP

• Bcftools (No quality �ltering for indels)

SNP: QUAL < $qual || DP > $DP

Indel: IDV < 3 || IMF < 0.03 || DP > $DP

• Freebayes
https://wiki.uiowa.edu/download/attachments/145192256/
erik%20garrison%20-%20iowa%20talk%202.pdf?api=v2

SNP / Indel: QUAL < $qual || SAF <= 0 || SAR <= 0 || RPR <= 1 || RPL <= 1 ||

DP > $DP

Note that due to some variants being compound, it is possible for a single VCF record to
contain the correct variant while also containing either a false positive or false negative.

It is also noted that the normalisation step is not always perfect and we cannot compute whether
a compound insertion and deletion is identical to a series of SNPs. Hence some of the reported
numbers of false positives / negatives may be pessimistic. However we do not believe the results
are biased in favour of any speci�c method of quality reduction.
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4 Results

The original BAM input �le was chromosome 1 of CHM1_CHM13_2.bam, from ERR1341796
with depth ∼50x. We also subsampled this to evaluate performance on a ∼15x data set, where
quality values become much more important.

The �rst assessment we do is to evaluate the baseline of lossless quality values, followed by
no quality values (using a �xed score) to demonstrate the impact that having any quality has.
Subsequent tests evaluate quality quantisation, Crumble, Calq and QVZ2. We test variant calling
precision and recall using GATK HaplotypeCaller, Bcftools and Freebayes.

Tables below show the number of true positives (TP), false positives (FP) and false negatives
(FN) for all variants, after �ltering by quality, and with a more complete �ltering by quality, depth
and per-tool recommended rules.

For our tables we use variant quality 30 in our �lters, but variant callers calibrate quality values
di�erently and the trade o� between precision and recall may alter at a di�erent quality threshold.
To get a better comparison between tools and the e�ect that variant quality �ltering has on each
tool we plot the true positive vs false positive rates as a line, with points produced by varying the
quality �lter to values 10, 15, 20, 25, 30, 40, 50, 75 and 100. Points closer to the top-left of the
graph represent a better result with fewer false positive and/or false negative calls. Each tool is
graphed with and without the additional �ltering steps listed in the introduction.

4.1 Original / Quantised, Chromosome 1

We �rst present the baseline original quality values for Chromosome 1 of the download BAM
�le along with no quality values using a �xed quality of 25, and simple binary quantisation with
qualities 4 and 28. The reason to consider these one and two value quantisations is to provide a
baseline for more targeted approaches.

We count the total number of bases in chromosome 1 alignments along with the expected
number of base call errors according to their quality values. For example, if we observe 1,000 bases
with phred quality 20 then we expect approximately 10 will be erroneous as quality 20 (assuming a
correct BQSR recalibration) indicates a 1 in 100 error rate. For the full 50x data on chromosome 1
this gives 12,239,915,644 bases with an estimated 599,904,677 errors, yielding an amortised average
quality score of 13.1. Unfortunately using this gives no calls with GATK and a large number of
false negatives using bcftools and freebayes. So instead we chose an arbitrary quality value of 25
as a means to evaluate quality-less performance.

For the binary quantisation, we observe a dip in the quality frequency distribution between 16
and 20, so we split the distribution into bases with quality >= 20 and those below. By similar
counting these lead to amortised base quality scores of 4 and 28 for the two bins, which unlike
single quality 13 does work well for all three tools.

The binary quantisation using values 4 and 28 has minimal impact on bcftools and freebayes
recall and accuracy. With GATK it also has minimal impact on the 15x data, but with the 50x it
has a small negative impact.

All three callers perform poorly with the unary quality 25, with signi�cant increases in either
false positives (Bcftools, Freebayes) or false negatives (GATK). Thus we establish that some degree
of quality value separation is important for calling accuracy, even at 50 fold coverage. While using
a unary quality would e�ectively remove all storage requirements for quality values, the binary
quantisation compresses quality value storage by a factor of 7.6.
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GATK HaplotypeCaller
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Figure 1: True Positive vs False Negative rates of GATK HaplotypeCaller on the original qualities

vs binary and unary quantisation.

These show that having some �delity of quality values is bene�cial, as the �xed value of 25
does not compare well to the original. Binary quantisation to 4 and 28 has a negative impact on
GATK at high depth, but minimal change on the shallow data set.

Tables with the actual counts of true positives, false positives and false negatives are shown
below.

Table 1: GATK HC: 50x Original

Type Q>0 Q>=30 Filtered

SNP TP 265007 264828 261977

SNP FP 6585 5950 3047

SNP FN 4648 4827 7678

InDel TP 38162 38103 38075

InDel FP 3972 3861 3690

InDel FN 7874 7933 7961

CRAM qual size 4,106,563,351

Table 2: GATK HC: 15x Original

Type Q>0 Q>=30 Filtered

SNP TP 254670 247683 241894

SNP FP 4798 3564 2517

SNP FN 14985 21972 27761

InDel TP 32900 32117 32111

InDel FP 2781 2561 2521

InDel FN 13136 13919 13925

CRAM qual size 1,211,486,517

Table 3: GATK HC: 50x Qual 4 + 28

Type Q>0 Q>=30 Filtered

SNP TP 264592 264442 261645

SNP FP 5861 5418 2950

SNP FN 5063 5213 8010

InDel TP 37322 37265 37238

InDel FP 3600 3514 3377

InDel FN 8714 8771 8798

CRAM qual size 539,249,433

Table 4: GATK HC: 15x Qual 4 + 28

Type Q>0 Q>=30 Filtered

SNP TP 249779 243924 238273

SNP FP 4000 3132 2206

SNP FN 19876 25731 31382

InDel TP 30470 29891 29884

InDel FP 2312 2167 2133

InDel FN 15566 16145 16152

CRAM qual size 159,104,061
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Table 5: GATK HC: 50x Qual 25

Type Q>0 Q>=30 Filtered

SNP TP 264727 264408 261295

SNP FP 7085 5556 3189

SNP FN 4928 5247 8360

InDel TP 37522 37354 37315

InDel FP 3665 3496 3402

InDel FN 8514 8682 8721

CRAM qual size 756,507

Table 6: GATK HC: 15x Qual 25

Type Q>0 Q>=30 Filtered

SNP TP 252113 242781 236923

SNP FP 9614 3946 3132

SNP FN 17542 26874 32732

InDel TP 31651 30461 30451

InDel FP 2558 2258 2236

InDel FN 14385 15575 15585

CRAM qual size 223,176
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Figure 2: True Positive vs False Negative rates of Bcftools on the original qualities vs binary and

unary quantisation.

As with GATK HaplotypeCaller, Bcftools is harmed by having no quality values. However the
lines showing binary binned (4 and 28) qualities are nearly superimposed on top of the lossless
quality calls, at some points being marginally improved by the binning process.

Note the bcftools indel �ltering doesn't use quality values, hence these come out as a single
point.

Table 7: Bcftools: 50x Original

Type Q>0 Q>=30 Filtered

SNP TP 263750 262682 262599

SNP FP 5493 3942 3216

SNP FN 5905 6973 7056

InDel TP 35434 33799 35143

InDel FP 14490 13048 1678

InDel FN 10602 12237 10893

CRAM qual size 4,106,563,351

Table 8: Bcftools: 15x Original

Type Q>0 Q>=30 Filtered

SNP TP 253194 232858 232734

SNP FP 4763 2243 1648

SNP FN 16461 36797 36921

InDel TP 31820 28502 29450

InDel FP 5198 3985 596

InDel FN 14216 17534 16586

CRAM qual size 1,211,486,517
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Table 9: Bcftools: 50x Qual 4 + 28

Type Q>0 Q>=30 Filtered

SNP TP 263644 262590 262507

SNP FP 5521 3895 3171

SNP FN 6011 7065 7148

InDel TP 35364 33737 35080

InDel FP 14360 12923 1652

InDel FN 10672 12299 10956

CRAM qual size 539,249,433

Table 10: Bcftools: 15x Qual 4 + 28

Type Q>0 Q>=30 Filtered

SNP TP 252813 231041 230917

SNP FP 4945 2203 1613

SNP FN 16842 38614 38738

InDel TP 31672 28325 29354

InDel FP 5102 3900 594

InDel FN 14364 17711 16682

CRAM qual size 159,104,061

Table 11: Bcftools: 50x Qual 25

Type Q>0 Q>=30 Filtered

SNP TP 263813 262617 262539

SNP FP 11444 5196 4515

SNP FN 5842 7038 7116

InDel TP 34831 32932 34564

InDel FP 14830 13308 1567

InDel FN 11205 13104 11472

CRAM qual size 756,507

Table 12: Bcftools: 15x Qual 25

Type Q>0 Q>=30 Filtered

SNP TP 252531 228972 228851

SNP FP 17447 2646 2088

SNP FN 17124 40683 40804

InDel TP 30978 27389 28782

InDel FP 5128 3863 557

InDel FN 15058 18647 17254

CRAM qual size 223,176
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Figure 3: True Positive vs False Negative rates of Freebayes on the original qualities vs binary and

unary quantisation.

As with Bcftools, �xed quality is harmful, but again we see binary quantisation having either
no e�ect or a small bene�t.
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Table 13: Freebayes: 50x Original

Type Q>0 Q>=30 Filtered

SNP TP 264313 262909 261769

SNP FP 6018 4994 2880

SNP FN 5342 6746 7886

InDel TP 32756 32018 31362

InDel FP 675 574 330

InDel FN 13280 14018 14674

CRAM qual size 4,106,563,351

Table 14: Freebayes: 15x Original

Type Q>0 Q>=30 Filtered

SNP TP 258868 222751 200892

SNP FP 4994 2984 1269

SNP FN 10787 46904 68763

InDel TP 30122 23257 18760

InDel FP 535 297 108

InDel FN 15914 22779 27276

CRAM qual size 1,211,486,517

Table 15: Freebayes: 50x Qual 4 + 28

Type Q>0 Q>=30 Filtered

SNP TP 264310 262753 261637

SNP FP 5863 4856 2789

SNP FN 5345 6902 8018

InDel TP 32687 31795 31159

InDel FP 654 556 324

InDel FN 13349 14241 14877

CRAM qual size 539,249,433

Table 16: Freebayes: 15x Qual 4 + 28

Type Q>0 Q>=30 Filtered

SNP TP 258878 219981 199141

SNP FP 5018 2919 1236

SNP FN 10777 49674 70514

InDel TP 30098 22849 18462

InDel FP 532 287 99

InDel FN 15938 23187 27574

CRAM qual size 159,104,061

Table 17: Freebayes: 50x Qual 25

Type Q>0 Q>=30 Filtered

SNP TP 264306 262960 261822

SNP FP 9670 6698 4147

SNP FN 5349 6695 7833

InDel TP 32964 32578 31797

InDel FP 739 633 354

InDel FN 13072 13458 14239

CRAM qual size 756,507

Table 18: Freebayes: 15x Qual 25

Type Q>0 Q>=30 Filtered

SNP TP 258860 219683 200481

SNP FP 11610 3433 1455

SNP FN 10795 49972 69174

InDel TP 30255 24061 19185

InDel FP 631 349 118

InDel FN 15781 21975 26851

CRAM qual size 223,176
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Tool Comparisons

Given the above analysis, we are also able to do a side by side comparison between GATK Haplo-
typeCaller, Bcftools and Freebayes results on both 50x and 15x data sets. Such an analysis is not
the primary focus of this paper, but given we have the data available it is an interesting diversion.

Missing from these �gures is the usefulness of output. In order to compare between tools
and get a constant total number of variants we have split all multi-allelic sites and MNPs into
individual records, as this permits Freebayes haplotype calls to be compared against bcftools and
GATK HaplotypeCaller, however in doing so it removes one of the strengths of Freebayes in that
neighbouring mutations are phased. It should be noted this is purely a snapshot of one single
individual with two alleles in even proportion, so we do not encourage any broader conclusions to
be made. Also note that regardless of the tool used for calling, the data has previously been passed
through GATK BQSR (base quality score recalibration).

On this data set we observe that each tool occupies its own distinct space in the accuracy (true
positives) vs recall (false negatives) graph for SNP calling, meaning that each tool has its own
strengths.
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Figure 4: A summary of True Positive vs False Negative rates of GATK HaplotypeCaller, Bcftools

and Freebayes at multiple quality thresholds, with and without �ltering.
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4.2 Crumble

Crumble was tested with minimum (-1), maximum (-9p8) and custom optimised (-9p8 -u30 -Q60
-D100) parameters. The compression level (1 to 9) controls a larger set of parameters, which can
be seen with `crumble -h'. Some of these are the ones adjusted in the optimised crumble: -u30
adjusts the quality used in high con�dence calls (defaults to 40); -Q60 reduces the minimum SNP
consensus con�dence required to trigger quality value replacement, from 70 (-9) or 75 (-1); likewise
-D100 reduces the minimum indel consensus con�dence, from -125 (-9) or 150 (-1).

The lightest compression level (crumble -1) is designed to cope better with subsequent remap-
ping to di�erent reference sequences, achieved by storing more lossless quality values in regions
of low mapping score, potential collapsed repeats or missing insertions. However this requires a
considerably larger amount of storage.

For the full 50x data set, to run crumble -9p8 on chromosome 1 took 41 minutes elapsed time
on a 2.2GHz Intel Xeon E5-2660, using 3Gb of RAM. Processing the entire genome (a 155Gb BAM
�le) took just over 10 hours, peaking at 3.8Gb of RAM.

The e�ect di�ers slightly per caller, although as expected the lowest level of lossy compression
(crumble -1) was always closest to the original calls. Even so, crumble -1 gives a compressed quality
size only 14% larger than the binary quantisation method using scores 4 and 28 introduced in the
previous section. Crumble with the maximum optimised GATK parameters appears to also work
well with bcftools and freebayes, indicating the optimisation is more related to the data rather
than the caller.

Both higher levels of crumble tested give around 2.3 times better quality compression than the
binary quantisation.
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Figure 5: True Positive vs False Negative rates of GATK HaplotypeCaller on the Crumbled vs

lossless qualities.

There is some variation between 50x / 15x and between SNP / Indel on whether the light
Crumble -1 qualities are better than the lossless ones. However uniformly the P-score smoothing
and more aggressive compression modes of Crumble are bene�cial to all tests, with the more
optimised parameters working best overall.
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Table 19: GATK HC: 50x Crumble -1

Type Q>0 Q>=30 Filtered

SNP TP 265007 264826 262030

SNP FP 6226 5715 2968

SNP FN 4648 4829 7625

InDel TP 38155 38088 38064

InDel FP 3965 3846 3649

InDel FN 7881 7948 7972

CRAM qual size 613,816,217

Table 20: GATK HC: 15x Crumble -1

Type Q>0 Q>=30 Filtered

SNP TP 254875 247918 242191

SNP FP 4787 3624 2580

SNP FN 14780 21737 27464

InDel TP 32908 32116 32106

InDel FP 2783 2544 2507

InDel FN 13128 13920 13930

CRAM qual size 260,305,104

Table 21: GATK HC: 50x Crumble -9p8

Type Q>0 Q>=30 Filtered

SNP TP 265032 264907 262161

SNP FP 6334 5770 2980

SNP FN 4623 4748 7494

InDel TP 38265 38193 38157

InDel FP 3991 3869 3699

InDel FN 7771 7843 7879

CRAM qual size 234,945,688

Table 22: GATK HC: 15x Crumble -9p8

Type Q>0 Q>=30 Filtered

SNP TP 257697 252166 246502

SNP FP 5145 3804 2742

SNP FN 11958 17489 23153

InDel TP 33384 32549 32538

InDel FP 2890 2625 2581

InDel FN 12652 13487 13498

CRAM qual size 77,416,003

Table 23: GATK HC: 50x Crumble -9p8 -u30
-Q60 -D100

Type Q>0 Q>=30 Filtered

SNP TP 264966 264834 262100

SNP FP 6059 5551 2866

SNP FN 4689 4821 7555

InDel TP 38255 38187 38147

InDel FP 3937 3819 3658

InDel FN 7781 7849 7889

CRAM qual size 228,658,529

Table 24: GATK HC: 15x Crumble -9p8 -u30
-Q60 -D100

Type Q>0 Q>=30 Filtered

SNP TP 256536 250405 244759

SNP FP 4439 3491 2488

SNP FN 13119 19250 24896

InDel TP 33344 32534 32521

InDel FP 2834 2589 2547

InDel FN 12692 13502 13515

CRAM qual size 72,072,237

Bcftools

The a�ect of Crumble on bcftools is less clear than GATK, particularly at 50x. Not visible in the
plot, the lossless and Crumble -1 SNP lines are superimposed for the 15x sample, possibly because
at shallow data fewer quality values are adjusted. Which algorithm works best varies slightly based
on which quality score is used in �ltering, but the winner for SNPs is usually one of the two highest
Crumble levels. Indels show less signi�cant di�erences after �ltering, perhaps due to lack of using
quality in the �ltering, with all 4 methods picking a slightly di�erent trade o� between precision
and speci�city.
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Figure 6: True Positive vs False Negative rates of Bcftools on the Crumbled vs lossless qualities.

Table 25: Bcftools: 50x crumble -1

Type Q>0 Q>=30 Filtered

SNP TP 263659 262617 262534

SNP FP 5496 3972 3234

SNP FN 5996 7038 7121

InDel TP 35618 33992 35327

InDel FP 14561 13156 1710

InDel FN 10418 12044 10709

CRAM qual size 613,816,217

Table 26: Bcftools: 15x Crumble -1

Type Q>0 Q>=30 Filtered

SNP TP 253190 232872 232748

SNP FP 4764 2243 1647

SNP FN 16465 36783 36907

InDel TP 31980 28783 29591

InDel FP 5307 4079 605

InDel FN 14056 17253 16445

CRAM qual size 260,305,104

Table 27: Bcftools: 50x crumble -9p8

Type Q>0 Q>=30 Filtered

SNP TP 263766 262883 262798

SNP FP 5818 4361 3569

SNP FN 5889 6772 6857

InDel TP 35469 33868 35186

InDel FP 14801 13321 1740

InDel FN 10567 12168 10850

CRAM qual size 234,945,688

Table 28: Bcftools: 15x Crumble -9p8

Type Q>0 Q>=30 Filtered

SNP TP 256171 242505 242379

SNP FP 5675 2507 1873

SNP FN 13484 27150 27276

InDel TP 32053 28951 29643

InDel FP 5566 4291 608

InDel FN 13983 17085 16393

CRAM qual size 77,416,003

Table 29: Bcftools: 50x crumble -9p8 -u30 -Q60
-D100

Type Q>0 Q>=30 Filtered

SNP TP 263799 262793 262710

SNP FP 5454 3925 3197

SNP FN 5856 6862 6945

InDel TP 35674 34073 35394

InDel FP 15310 13747 1765

InDel FN 10362 11963 10642

CRAM qual size 228,658,529

Table 30: Bcftools: 15x Crumble -9p8 -u30 -Q60
-D100

Type Q>0 Q>=30 Filtered

SNP TP 253740 234599 234475

SNP FP 4909 2169 1579

SNP FN 15915 35056 35180

InDel TP 32146 29044 29732

InDel FP 5681 4400 623

InDel FN 13890 16992 16304

CRAM qual size 72,072,237
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Figure 7: True Positive vs False Negative rates of Freebayes on the Crumbled vs lossless qualities.

With Freebayes, as with Bcftools, the lossless and Crumble -1 lines are superimposed. Crumble
makes little di�erence to SNP calling after �ltering, although there are slight gains with the GATK-
optimised parameters. For indels after �ltering the more compressed -9p8 options give a slight
improvement at 50x.

Table 31: Freebayes: 50x crumble -1

Type Q>0 Q>=30 Filtered

SNP TP 264319 262915 261772

SNP FP 6026 5002 2881

SNP FN 5336 6740 7883

InDel TP 32759 32060 31403

InDel FP 677 575 331

InDel FN 13277 13976 14633

CRAM qual size 613,816,217

Table 32: Freebayes: 15x Crumble -1

Type Q>0 Q>=30 Filtered

SNP TP 258868 222752 200889

SNP FP 5014 2991 1273

SNP FN 10787 46903 68766

InDel TP 30122 23260 18760

InDel FP 535 297 108

InDel FN 15914 22776 27276

CRAM qual size 260,305,104

Table 33: Freebayes: 50x crumble -9p8

Type Q>0 Q>=30 Filtered

SNP TP 264318 263302 262094

SNP FP 6376 5324 3136

SNP FN 5337 6353 7561

InDel TP 32974 32610 31847

InDel FP 716 612 353

InDel FN 13062 13426 14189

CRAM qual size 234,945,688

Table 34: Freebayes: 15x Crumble -9p8

Type Q>0 Q>=30 Filtered

SNP TP 258916 236683 207011

SNP FP 6004 3410 1476

SNP FN 10739 32972 62644

InDel TP 30393 25528 19627

InDel FP 597 362 125

InDel FN 15643 20508 26409

CRAM qual size 77,416,003
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Table 35: Freebayes: 50x crumble -9p8 -u30 -
Q60 -D100

Type Q>0 Q>=30 Filtered

SNP TP 264312 263002 261876

SNP FP 5976 4923 2907

SNP FN 5343 6653 7779

InDel TP 32865 32357 31651

InDel FP 689 583 340

InDel FN 13171 13679 14385

CRAM qual size 228,658,529

Table 36: Freebayes: 15x Crumble -9p8 -u30 -
Q60 -D100

Type Q>0 Q>=30 Filtered

SNP TP 258853 225856 202815

SNP FP 5065 2921 1283

SNP FN 10802 43799 66840

InDel TP 30189 23959 19150

InDel FP 559 314 114

InDel FN 15847 22077 26886

CRAM qual size 72,072,237
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4.3 CALQ

CALQ requires a sorted SAM �le plus reference sequence as input and emits a new �le containing
the compressed qualities in its own format. The decode process produces a �le containing just
qualities, which with the aid of a supplied python script can then be put back into the original
SAM �le.

To encode:

calq -r $HREF -q Illumina-1.8+ -o CHM1_CHM13_2.chr1.sam.cq \

-f CHM1_CHM13_2.chr1.sam 2>&1 | tee CHM1_CHM13_2.chr1.sam.calq.txt

To decode:

calq -f -s CHM1_CHM13_2.chr1.sam -d -o CHM1_CHM13_2.chr1.sam.cq.qual \

CHM1_CHM13_2.chr1.sam.cq

Followed by replace_qual_sam.py to replace the qualities in the original input SAM �le.
The encode process took approximately 7 hours for chromosome 1 and the decode 1.5 hours.
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Figure 8: True Positive vs False Negative rates of GATK HaplotypeCaller on the lossless vs CALQ

qualities.

We only show GATK HaplotypeCaller results for CALQ and QVZ2, as evaluating these tools
is not the primary focus of this paper.

Compared to the lossless qualities, with the 50x data sets CALQ gives a signi�cant decrease
in true positives. The 15x data set fares better, representing a di�erent tradeo� between precision
and recall. The compressed quality size is comparable to the lightest compression with crumble
(`crumble -1`).

Table 37: CALQ + GATK HC, 50x

Type Q>0 Q>=30 Filtered

SNP TP 264619 264539 261740

SNP FP 6408 5877 3266

SNP FN 5036 5116 7915

InDel TP 37280 37235 37202

InDel FP 3685 3585 3412

InDel FN 8756 8801 8834

CALQ .cq size 618,891,043

Table 38: CALQ + GATK HC, 15x

Type Q>0 Q>=30 Filtered

SNP TP 250452 248941 243309

SNP FP 4527 3432 2469

SNP FN 19203 20714 26346

InDel TP 30348 29767 29761

InDel FP 2375 2211 2177

InDel FN 15688 16269 16275

CALQ .cq size 187,994,047
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4.4 QVZ2
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Figure 9: True Positive vs False Negative rates of GATK HaplotypeCaller on the lossless vs QVZ2

qualities, 50x.

QVZ2 operates on a �le containing only quality values (e.g. every 4th line in a FASTQ �le).
It required around 10Gb of RAM and took 27 minutes to encode. It uses its own compressed �le
format for storing the quality values. After decoding we ran the replace_qual_sam.py tool from
CALQ to update the SAM �le prior to variant calling.

Comparing the Crumble results with QVZ2 we see the e�ect of minimising quality mean squared
error vs aggressively increasing and decreasing qualities based on likelihood of variant calls chang-
ing. The mean squared error from Crumble changes will be very signi�cant, but the size reduction
is proportionally far greater while still achieving minimal changes to variant calling, in this case
a small gain. QVZ2 has minimal impact on calling precision and recall at its lowest level (-t1).
QVZ2 -t4 produces a slight shift towards more false positives with fewer false negatives, but is
broadly bene�cial, especially post �ltering. The compression ratio at this option is not far behind
CALQ and Crumble -1. Finally QVZ2 -t16 gives the smallest �le of all (about 10% smaller than
crumble -9p8), but has a signi�cant increase in false positives.

Table 39: QVZ2 -t 1 + GATK HC, 50x

Type Q>0 Q>=30 Filtered

SNP TP 264991 264810 261954

SNP FP 6541 5947 3052

SNP FN 4664 4845 7701

InDel TP 38125 38065 38038

InDel FP 3948 3826 3663

InDel FN 7911 7971 7998

QVZ2 qual size: 1,493,843,021

Table 40: QVZ2 -t 1 + GATK HC, 15x

Type Q>0 Q>=30 Filtered

SNP TP 254503 247598 241799

SNP FP 4668 3495 2457

SNP FN 15152 22057 27856

InDel TP 32732 31970 31964

InDel FP 2739 2514 2473

InDel FN 13304 14066 14072

QVZ2 qual size: 441,580,609
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Table 41: QVZ2 -t 4 + GATK HC, 50x

Type Q>0 Q>=30 Filtered

SNP TP 265058 264873 262025

SNP FP 6874 6155 3095

SNP FN 4597 4782 7630

InDel TP 38256 38175 38138

InDel FP 4058 3904 3732

InDel FN 7780 7861 7898

QVZ2 qual size: 657,068,110

Table 42: QVZ2 -t 4 + GATK HC, 15x

Type Q>0 Q>=30 Filtered

SNP TP 255342 248070 242197

SNP FP 5105 3706 2635

SNP FN 14313 21585 27458

InDel TP 33240 32373 32365

InDel FP 2837 2592 2557

InDel FN 12796 13663 13671

QVZ2 qual size: 194,172,554

Table 43: QVZ2 -t 16 + GATK HC, 50x

Type Q>0 Q>=30 Filtered

SNP TP 265051 264852 261936

SNP FP 8959 7322 3545

SNP FN 4604 4803 7719

InDel TP 38215 38108 38073

InDel FP 4126 3925 3740

InDel FN 7821 7928 7963

QVZ2 qual size: 201,725,874

Table 44: QVZ2 -t 16 + GATK HC, 15x

Type Q>0 Q>=30 Filtered

SNP TP 255105 247508 241601

SNP FP 9314 4541 3410

SNP FN 14550 22147 28054

InDel TP 32997 31986 31977

InDel FP 2918 2616 2584

InDel FN 13039 14050 14059

QVZ2 qual size: 59,859,656

4.5 Syndip regions

The Syndip data set is not perfect and there are bed �les to �lter out poor regions. This may
lead to concern that we are testing only well behaved data and do not know how the tools work
in hard to sequence regions. This concern is true for all truth sets generated from real sequencing
data, including the Genome in a Bottle (GIAB) and Platinum Genomes (PlatGen) data sets that
have been established for longer. The Syndip paper indicates that testing variant callers on Syndip
probes more of the genome, including more di�cult parts, leading to substantially higher false
positive rates than seen with GIAB and PlatGen.

�Figure 2a reveals that the FPPM of SNPs estimated from Syndip is often 5-10 times

higher than FPPM estimated from GIAB or PlatGen. Looking into the Syndip FP

SNPs, we found most of them are located in CNVs that are evident in PacBio data in

the context of long �anking regions, but look dubious in short-read data alone.�

The total number of bases included in chromosome 1 from Syndip is 212.9Mb out of 225.3Mb
of non-N reference. This compares favourably to 204.4Mb in �ltered GIAB.

Furthermore we can subtract the GIAB regions from Syndip regions to get only regions that
occur in Syndip (around 8.4Mb). To see a signi�cantly elevated overall false positive rate, either
the Syndip data is highly erroneous or the bulk of the extra false positives are within this region.
To test this we ran GATK on the data sets �ltered to this region alone.

Comparing this to the full Syndip regions for chromosome 1 we see that 65% of false positives
occur within this small portion. This addresses the possibility that we are restricting ourselves to
only good quality data. The results show that Crumble still performs well in this region.

Table 45: GATK HC: 50x Original

Type Q>0 Q>=30 Filtered

SNP TP 19858 19740 18298

SNP FP 4384 4014 1950

SNP FN 3818 3936 5378

InDel TP 9822 9774 9752

InDel FP 2992 2913 2807

InDel FN 4416 4464 4486

Table 46: GATK HC: 15x Original

Type Q>0 Q>=30 Filtered

SNP TP 17411 16711 15616

SNP FP 3063 2553 1643

SNP FN 6265 6965 8060

InDel TP 7187 6966 6961

InDel FP 2040 1923 1887

InDel FN 7051 7272 7277
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Table 47: GATK HC: 50x Crumble -9p8...

Type Q>0 Q>=30 Filtered

SNP TP 19900 19801 18360

SNP FP 4229 3872 1829

SNP FN 3776 3875 5316

InDel TP 9879 9822 9789

InDel FP 2985 2902 2792

InDel FN 4359 4416 4449

Table 48: GATK HC: 15x Crumble -9p8...

Type Q>0 Q>=30 Filtered

SNP TP 17711 16990 15899

SNP FP 2948 2496 1624

SNP FN 5965 6686 7777

InDel TP 7399 7130 7125

InDel FP 2080 1921 1884

InDel FN 6839 7108 7113

Table 49: GATK HC: 50x Calq

Type Q>0 Q>=30 Filtered

SNP TP 19521 19465 18050

SNP FP 4203 3931 1999

SNP FN 4155 4211 5626

InDel TP 9186 9153 9123

InDel FP 2751 2688 2576

InDel FN 5052 5085 5115

Table 50: GATK HC: 15x Calq

Type Q>0 Q>=30 Filtered

SNP TP 16267 16065 15020

SNP FP 2726 2367 1525

SNP FN 7409 7611 8656

InDel TP 6042 5913 5908

InDel FP 1716 1628 1598

InDel FN 8196 8325 8330

Table 51: GATK HC: 50x QVZ2 -t 4

Type Q>0 Q>=30 Filtered

SNP TP 19901 19771 18335

SNP FP 4486 4087 1981

SNP FN 3775 3905 5341

InDel TP 9894 9829 9799

InDel FP 3038 2932 2833

InDel FN 4344 4409 4439

Table 52: GATK HC: 15x QVZ2 -t 4

Type Q>0 Q>=30 Filtered

SNP TP 17588 16842 15729

SNP FP 3234 2652 1730

SNP FN 6088 6834 7947

InDel TP 7358 7097 7083

InDel FP 2078 1940 1900

InDel FN 6880 7141 7155

17



5 Syndip Summary

Table 53: Summary of �ltered 50x, Syndip Chromosome 1

SNP Indel
Tool Method FP FN FP FN Qual size

GATK Lossless 3047 7678 3690 7961 4,106,563,351
GATK Qual 4 + 28 2950 8010 3377 8798 539,249,433
GATK Qual 25 3189 8360 3402 8721 756,507
GATK Crumble -1 2968 7625 3649 7972 613,816,217
GATK Crumble -9p8 2980 7494 3699 7879 234,945,688
GATK Crumble -9p8 -u30... 2866 7555 3658 7889 228,658,529
GATK CALQ 3266 7915 3412 8834 618,891,043
GATK QVZ2 -t1 3052 7701 3663 7998 1,493,843,021
GATK QVZ2 -t4 3095 7630 3732 7898 657,068,110
GATK QVZ2 -t16 3545 7719 3740 7963 201,725,874

Bcftools Lossless 3216 7056 1678 10893 4,106,563,351
Bcftools Qual 4 + 28 3171 7148 1652 10956 539,249,433
Bcftools Qual 25 4515 7116 1567 11472 756,507
Bcftools Crumble -1 3234 7121 1710 10709 613,816,217
Bcftools Crumble -9p8 3569 6857 1740 10850 234,945,688
Bcftools Crumble -9p8 -u30... 3197 6945 1765 10642 228,658,529

Freebayes Lossless 2880 7886 330 14674 4,106,563,351
Freebayes Qual 4 + 28 2789 8018 324 14877 539,249,433
Freebayes Qual 25 4147 7833 330 14239 756,507
Freebayes Crumble -1 2881 7883 331 14633 613,816,217
Freebayes Crumble -9p8 3136 7561 353 14189 234,945,688
Freebayes Crumble -9p8 -u30... 2907 7779 340 14385 228,658,529

Table 54: Summary of �ltered 15x, Syndip Chromosome 1

SNP Indel
Tool Method FP FN FP FN Qual size

GATK Lossless 2517 27761 2521 13925 1,211,486,517
GATK Qual 4 + 28 2206 31382 2133 16152 159,104,061
GATK Qual 25 3132 32732 2236 15585 223,176
GATK Crumble -1 2580 27464 2507 13930 260,305,104
GATK Crumble -9p8 2742 23153 2581 13498 77,416,003
GATK Crumble -9p8 -u30... 2488 24896 2547 13515 72,072,237
GATK CALQ 2469 26346 2177 16275 187,994,047
GATK QVZ2 -t1 2457 27856 2473 14072 441,580,609
GATK QVZ2 -t4 2635 27458 2557 13671 194,172,554
GATK QVZ2 -t16 3410 28054 2584 14059 59,859,656

Bcftools Lossless 1648 36921 596 16586 1,211,486,517
Bcftools Qual 4 + 28 1613 38738 594 16682 159,104,061
Bcftools Qual 25 2088 40804 557 17254 223,176
Bcftools Crumble -1 1647 36907 605 16445 260,305,104
Bcftools Crumble -9p8 1873 27276 608 16393 77,416,003
Bcftools Crumble -9p8 -u30... 1579 35180 623 16304 72,072,237

Freebayes Lossless 1269 68763 108 27276 1,211,486,517
Freebayes Qual 4 + 28 1236 70514 99 27574 159,104,061
Freebayes Qual 25 1455 69174 118 26851 223,176
Freebayes Crumble -1 1273 68766 108 27276 260,305,104
Freebayes Crumble -9p8 1476 62644 125 26409 77,416,003
Freebayes Crumble -9p8 -u30... 1283 66840 114 26886 72,072,237
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6 Further compression

Unlike QVZ2 and CALQ, Crumble does not output compressed qualities itself. It is designed to be
used in conjunction with an existing �le format, ideally one that has e�cient encoding of quality
values. This means it works well in conjunction with CRAM, but improving compressibility of
qualities also helps BAM.

The 15x sub-sampled �le with and without Crumble for the single chromosome 1 test above
have the following sizes:

file bytes

CHM1_CHM13_2.15x.chr1.bam 3963702044

CHM1_CHM13_2.15x.chr1.cram 2188724919

CHM1_CHM13_2.15x.chr1.crumble-opt.bam 2325189762

CHM1_CHM13_2.15x.chr1.crumble-opt.cram 1049588799

In absolute bytes saved, BAM reduces by more (1.6 vs 1.1 Gb), due to initially poor compression
of qualities. However in ratio terms, the original lossless CRAM was 45% smaller than the original
BAM, but after Crumble the lossy CRAM is now 55% smaller than the corresponding BAM.

This particular data set has been through the GATK Base Quality Score Recalibration (BQSR)
process which has preserved original qualities in the SAM OQ:Z tag. The cram_size tool from
the Staden io_lib package gives summaries of the space taken by each data type within a CRAM
�le. The original and crumbled version are shown below for chromosome 1 of the 15x Syndip data
set along with annotation of the most signi�cant SAM �elds.

Block content_id 11, total size 147342810 g RN (read names)

Block content_id 12, total size 1211486517 R QS (quality scores)

Block content_id 13, total size 210086 g IN (bases in insertions)

Block content_id 14, total size 31483343 rR SC (bases in soft-clips)

Block content_id 15, total size 7866518 R BF (BAM flags)

Block content_id 16, total size 3517731 rR CF (CRAM flags)

Block content_id 17, total size 13906529 g r AP (POS field)

Block content_id 18, total size 13921662 r RG (Read group)

Block content_id 19, total size 1900911 g r MQ (Mapping quality)

Block content_id 20, total size 355913 g r NS (Mate reference ID)

Block content_id 21, total size 384498 r MF (Mate flags)

Block content_id 22, total size 2811406 g TS (TLEN field)

Block content_id 23, total size 5262570 g NP (PNEXT field)

Block content_id 24, total size 7926491 g NF (Read pairing)

Block content_id 26, total size 7764331 r FN (Feature (diff) count)

Block content_id 27, total size 2999582 rR FC (Feature code)

Block content_id 28, total size 35781940 g r FP (Feature position)

Block content_id 29, total size 155914 g r DL (Length of CIGAR "D")

Block content_id 30, total size 5926103 rR BA (Bases)

Block content_id 31, total size 8649685 rR BS (Base substitions)

Block content_id 32, total size 3087067 r TL (Aux. tag list)

Block content_id 4281155, total size 6309393 r ASC (AS:i: aux tag)

Block content_id 4281187, total size 3410458 g ASc (AS:i: aux tag)

Block content_id 5063514, total size 14956889 g MCZ (MC:Z: aux tag)

Block content_id 5063770, total size 686 g MDZ (MD:Z: aux tag)

Block content_id 5067107, total size 2031763 g r MQc (MQ:i: aux tag)

Block content_id 5131619, total size 66 g NMc (NM:i: aux tag)

Block content_id 5194586, total size 155949 g OCZ (OC:Z: aux tag)

Block content_id 5197929, total size 42528 g OPi (OP:i: aux tag)

Block content_id 5198170, total size 601811789 R OQZ (OQ:Z: aux tag)

Block content_id 5261146, total size 29615589 g PGZ (PG:Z: aux tag)

Block content_id 5456218, total size 2021083 g SAZ (SA:Z: aux tag)

Block content_id 5591363, total size 602922 g UQC (UQ:i: aux tag)

Block content_id 5591395, total size 11069115 r UQc (UQ:i: aux tag)

Block content_id 5591411, total size 289324 g UQs (UQ:i: aux tag)

Block content_id 5787235, total size 42 g XNc (XN:i: aux tag)

Block content_id 5788739, total size 141166 g XTC (XT:i: aux tag)
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Block content_id 5788771, total size 211183 g XTc (XT:i: aux tag)

Crumbled: as above, but with QS (quality scores) data series as:

Block content_id 12, total size 72072237 R QS

After this the next largest blocks are the original qualities (OQZ) as output as part of GATK
BQSR and read query names (RN).

The original qualities can be completely discarded, as is now the recommendation in the GATK
best practices. The other large auxiliary tag we safely remove is PG, as in this particular data it is
both super�uous (existing only to inform which subset in a map-reduce style processing pipeline
the read came from) and unfortunately also incorrect (none of the per-read PG tags match the @PG
SAM header lines).

When all reads from the same template occur within the same CRAM slice the read names
may be discarded without a�ecting variant calling and without losing pairing information as this
is held in the CRAM NF data series. Long distance read pairs have their names retained to ensure
pairing information is kept intact.

Crumble supports removal of both read names and speci�c auxiliary tags, as illustrated in the
command below:

crumble -T OQ,PG -O cram,lossy_names -9p8 -u30 -Q60 -D100 \

CHM1_CHM13_2.15x.chr1.cram CHM1_CHM13_2.15x.chr1.crumble-opt.cram

The CRAM �le now has no OQ:Z or PG:Z blocks and read names consume 15,480,044 bytes
instead of 147,342,810.

Repeating this test on the whole genome, at full depth (50x) and reduced depths of 30x and
15x, yields the �le sizes show below. Comparison between BAM and CRAM sizes show that the
bene�ts of using a columnar storage are signi�cantly greater on the crumbled data.

file BAM bytes CRAM bytes

CHM1_CHM13_2.all.lossless 165,881,395,078 94,722,033,125

CHM1_CHM13_2.all.crumble-opt 42,971,979,964 12,735,423,262

CHM1_CHM13_2.30x.lossless 100,407,390,797 56,798,653,417

CHM1_CHM13_2.30x.crumble-opt 26,826,816,872 7,635,898,756

CHM1_CHM13_2.15x.lossless 51,338,937,983 28,416,618,181

CHM1_CHM13_2.15x.crumble-opt 14,483,060,883 3,862,050,827

An approximate breakdown of storage in the reduced CRAM for the complete 30x sample is
24% qualities, 16% remaining auxiliary tags, 12% soft-clipped bases, 5% remaining read names,
5% read groups, 4% alignment position and the remaining 34% alignment and sequence-reference
di�erences plus a small amount of overhead.

Compressing with maximum compression levels (CRAM level 9) has a marginal impact on �le
size, reducing the 15x original and crumbled CRAMs by 1.6% and 0.8% only. Further compression
is possible by adding bzip and lzma compression methods, but these were not tested as they are
not commonly used.
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7 Other data sets

Although no truth sets are used for evaluating variation calling, we ran crumble on a variety of
other data sets to report the size reduction when using crumble -O cram,lossy_names -9p8.
The output was then converted back to BAM to compare the �le size between formats.

Data sets chosen were a 420x deep E.Coli Illumina MiSeq run (MiSeq_Ecoli_DH10B_110721_PF)
and an Illumina human RNASeq run (K562_cytosol_LID8465_TopHat_v2). These were taken
from the Moving Picture Experts Group (MPEG, JTC1/SC29/WG11 committee) data set for
on-going development of the MPEG-G format.

See https://github.com/sfu-compbio/compression-benchmark/blob/master/samples.md
for download links. We avoided Oxford Nanopore Technology and Paci�c Biosciences data as
Crumble has not been evaluated on these yet.

Before and after �le sizes are reported along with the space taken up by quality values and read
names where applicable.

File Format Method Total size Quality size Name size

MiSeq_Ecoli_DH10B_110721_PF BAM Original 1411850544 n/a n/a
MiSeq_Ecoli_DH10B_110721_PF CRAM Original 862693214 714245853 65303357
MiSeq_Ecoli_DH10B_110721_PF BAM Crumble -9p8 382629759 n/a n/a
MiSeq_Ecoli_DH10B_110721_PF CRAM Crumble -9p8 110838273 22526180 5197781

K562_cytosol_LID8465_TopHat_v2 BAM Original 13756734292 n/a n/a
K562_cytosol_LID8465_TopHat_v2 CRAM Original 9323049595 6443896054 1655419459
K562_cytosol_LID8465_TopHat_v2 BAM Crumble -9p8 4625068006 n/a n/a
K562_cytosol_LID8465_TopHat_v2 CRAM Crumble -9p8 2736614367 417779131 1085784399

The e�ect of Crumble on both data sets is a considerable reduction to quality size within CRAM
(32 fold and 15 fold respectively). The ability to perform lossy read name compression (which is
part of CRAM rather than Crumble) is hampered on the RNASeq data by having reads split
over larger regions and not colocating within the same CRAM slice and very few being labelled
as properly paired. As a consequence the read names are the largest data type in the crumbled
RNASeq data set. Neither of these �les have an excessively large collection of auxiliary tags.

For both �les the ratio of original to crumbled size is higher with CRAM (7.8 and 3.4) than
BAM (3.7 and 3.0), demonstrating the bene�t of combining lossy quality encoding with a columnar
�le format.

During preparation of this manuscript a bug was �xed a�ecting the speed of Crumble on
RNAseq data. Thus the RNASeq TopHat data was processed using a more recent git commit
(v0.8-4-g556c716). Both version 0.8 and 0.8-4 were tested on the E.Coli data and observed to give
identical results. Final timings were 6 min 43 seconds for the E.Coli data and 599 min 11 seconds
for the RNASeq data corresponding to unthreaded BAM processing speeds of 3.3Mb/s and 0.34
Mb/s, demonstrating that there is still some degraded CPU performance operating on RNASeq
data sets.

8 Conclusion

As expected, the 15x sample has fewer con�dent consensus bases than the 50x sample leading to a
slightly lower quality compression ratio, however even at 15x there is su�cient con�dence in calling
to discard most quality values.

The original CRAM �le for the 15x chromosome 1 comprised 24 million reads and 36 billion
base pairs, giving 2.67 bits per lossless quality value. After optimal Crumble parameters were
applied, this reduced to 0.16 bits per quality.

It is clear there are a lot of parameters that can be adjusted for controlling when to adjust
quality values, and to which values. We have not exhaustively explored this search space. There
are also open questions on the performance of Crumble on somatic / non-clonal samples, such as
cancers, or mixed sample data sets. Hence we do not recommend the use of Crumble on such data
without prior evaluation.

We also do not recommend usage of Crumble on non-Illumina data sets until further evaluation
has been made.
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