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S1 Supplementary figures
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Figure S1: Observed-to-expected number of mutations shown for 3’ UTRs, promoter elements, and 5’
UTRs. For details, see Figure 2B legend description. Note that splice sites are omitted from these plots
as they are short and heavily dominated by observed counts of zero.
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Figure S2: CADD-score based QQplots of p-values for the considered non-coding regulatory regions
obtained with and without overdispersion. QQplot for protein-coding genes is shown in Figure 4G.
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Figure S3: Potential cancer driver candidates identified with ncdDetect using overdispersion and CADD
scores, including melanoma results. All elements with a colored tile has a q-value less than 10%.
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Figure S4: COSMIC CGC recall plot. Fraction of COSMIC CGC genes recalled in top candidates by
ncdDetect and ExInAtor.
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have previously been reported by other non-coding cancer driver screens [6, 4]. For the specific ranking
of promoter elements by ncdDetect and LARVA, please refer to supplementary table 6.



S2 Autocorrelation distance between features

We want to explore the similarity between the pattern of values of a genomic feature and that of the observed-
to-expected mutation rate. Features similar to the observed-to-expected mutation rate, are good candidate
features able to explain part of the additional variance in the mutation rate model.

The autocorrelation distance is a distance measure between time series, quantifying the dissimilarity be-
tween the autocorrelation functions of two time-series(Montero and Vilar 2014). Given two time series with
autocorrelation functions ρ1 = (ρ11, ρ12, . . .) and ρ2 = (ρ21, ρ22, . . .) respectively, the distance is given by

d(x, y) = (1− p)
K∑
i=1

pi(ρ1i − ρ2i)2

The parameter p is a weight decay, such that more distant autocorrelation have smaller impact on the distance
measure. We used p = 0.99, but our results are consistent over a wide range of values for p.

We compute the pairwise autocorrelation distance between the features (Dnase hypersensitivity, h3k9me3,
replication timing and xr-seq), the expected-to-observed mutation rate and expected-to-observed mutation rate
where the values of the time series were shuffled. The feature closest to expected-to-observed mutation rate was
XR-seq (Figure S6).
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Figure S6: Auto-correlation distance between genomic features.



S3 Benjamini-Hochberg step-up procedure on subset of p-values
is conservative

Given m hypothesis H1, . . . , Hm, with corresponding p-values p1, . . . , pm, let p(1), . . . , p(m) be the p-values sorted
from smallest to largest. The Benjamini-Hochberg step-up procedure [1] requires us to find the maximal k such
that

p(k) ≤
k

m
α,

where α is the level at which FDR rate is controlled.
Suppose now that we have only computed the p-value for a subset of the hypotheses. Let n ≤ m be the

size of this subset. Denote by r(1), . . . , r(n), the sorted p-values for this subset. Clearly r(j) >= p(j), hence the
maximal k′ such that

r(k′) ≤
k′

m
α,

is smaller than k. Thus fewer hypothesis are rejected. It can also be seen that all hypothesis rejected while
knowing only a subset of the p-values would also have been rejected had we known all p-values.



S4 OD estimates in sub-samples and sub-datasets

Overdispersion measures the regional deviation between the observed and expected mutation count accumulated
across a large number of samples. Sample-specific deviations will cancel out as a larger number of samples is
accumulated. Cancer-type specific deviations will cancel out as we accumulate samples from different cancer
types. Pan-cancer deviations do not cancel out and will remain as more samples are included.

First, we compute the overdispersion in sub-datasets sampled randomly without replacement from the
505 samples. We note that the od-estimates decreases as we include more samples, allowing sample-specific
deviations in the mutation rate to cancel out. In concordance with the idea of pan-cancer deviation it appears
that the over-dispersion asymptote to a value larger than zero. Note also that as more samples are included,
the estimate of overdispersion stabilizes with a small variance.

Next, we compute the overdispersion in each of the 14 cancer-types and compare them to the overdispersion
estimates obtained for a similar sized sub-sampled dataset. The larger overdispersion in the single cancer-type
datasets compared to the overdispersion in similar sized sub-sampled datasets indicate that there are cancer-type
specific deviations in the mutation rate.
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Figure S7: OD estimates as the number of samples increase. The samples are sampled randomly from
all cancer-types.
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overdispersion.



S5 Logit-normal distribution

We look at a fixed predicted mutation probability of p̂ = 1 ·10−6. Let r = logit(p̂) = log
(

p̂
1−p̂

)
. The underlying

true mutation probability, p, is modelled as

p = logistic(r + γ) =
1

1 + exp(−r − γ)

where γ ∼ N (0, σ2). Using transformation of random variables, the probability density function of p can be
found as

fp(p) = ϕ
(
logit(p)− r;σ2) ∣∣∣∣ ddp logit(p)− r

∣∣∣∣
= ϕ

(
logit(p)− r;σ2) 1

p(1− p) .

where ϕ(·;σ2) is the density function for a normal distribution with variance σ2.



S6 Simulation study of the effects of overdispersion

To investigate how ncdDetect performs on simulated data, we randomly sampled 500 non-COSMIC CGC genes,
and added overdispersion to the mutation probabilities predicted by the background model for these genes.
Concretely, we added a random effect γ ∼ N(0, ρ2) to the mutation probabilities, where ρ ∈ {0, 0.2, 0.4, 0.6}.
We randomly selected 50 of the sampled genes to be true positives, and increased the number of mutations
observed for these genes, to make their resulting scores similar to the mean observed score for ncdDetect-
recalled COSMIC CGC genes. We ran ncdDetect to learn the degree of overdispersion, and accounted for
this in the significance evaluation of the sampled genes. We also performed significance evaluation without
accounting for overdispersion.

Significance evaluation in this setup illustrates that the number of false positives increases with the amount
of overdispersion (Figure S9). We further observe that as the amount of overdispersion decreases, the recall rate
of ncdDetect improves (Figure S10).
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Figure S9: Number of false positives detected with ncdDetect as a function of the amount of overdis-
persion. P-values are obtained without accounting for overdispersion.
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Figure S10: The ability of ncdDetect v.2 to recall the simulated true positive elements as the amount of
added overdispersion increases. Each point of the plot is the average result of ten simulations. P-values
are obtained by accounting for overdispersion.
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