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1 ATAC-seq in lymphoblastoid cell lines (LCLs)

1.1 Samples

We obtained 76 lymphoblastoid cell lines from Coriell (https://catalog.coriell.org/). The lines were
prepared from blood samples collected in Great Britain and also genotyped in the 1000 Genomes Project.
The collected samples are as follows: HG00096, HG00098, HG00100, HG00101, HG00102, HG00103,
HG00105, HG00106, HG00107, HG00108, HG00109, HG00111, HG00112, HG00113, HG00114, HG00115,
HG00116, HG00117, HG00118, HG00119, HG00120, HG00121, HG00122, HG00125, HG00126, HG00127,
HG00128, HG00129, HG00130, HG00131, HG00132, HG00135, HG00136, HG00137, HG00138, HG00140,
HG00141, HG00142, HG00143, HG00145, HG00146, HG00148, HG00149, HG00150, HG00151, HG00152,
HG00154, HG00155, HG00156, HG00157, HG00158, HG00159, HG00231, HG00232, HG00233, HG00234,
HG00237, HG00238, HG00239, HG00242, HG00243, HG00244, HG00245, HG00246, HG00247, HG00254,
HG00255, HG00262, HG00263, HG00264, HG00265, HG01334, HG01789, HG01790, HG01791, HG02215.
The remaining 24 LCL lines were previously published in [1] for a total of 100 LCL samples.

1.2 ATAC-seq protocol

ATAC-seq library preparation was performed as previously described [1].

1.3 Illumina sequencing

76 ATAC-seq libraries each prepared with one of 76 Nextera i5 and i7 tag combinations (see above),
were pooled in equal volumes. Index tag ratios were assessed by a single MiSeq run. Index tag ratios
were balanced according to the MiSeq run before running 44 HiSeq 2500 lanes. In combination with the
ATAC-seq data for the 24 samples previously sequenced [1], we obtained a total of 4.4 billion mapped
fragments (8.7 billion reads) on autosomes. All sequencing results are available from European Nu-
cleotide Archive (ID: PRJEB9977). The ATAC-seq for GM12878 sample was additionally performed and
sequenced separately.
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2 Data preprocessing

2.1 Read alignment

Prior to the read alignment we performed sequencing adapter trimming by using skewer [2]. Reads
were mapped to assembly GRCh37 using BWA 0.7.4 [3].Following read mapping, we selected fragments
(read-pairs) that were uniquely mapped, where at least one of mate-pairs had a quality score of >10,
aligned with 1 gap, with three base mismatches or less. Any read pairs with an insert size less than 38bp
or greater than 10Kb, or on different chromosomes, were excluded from subsequent analyses.

We also used two external sequencing data sets, RNA-seq data from the gEUVADIS project [4] and
CTCF binding ChIP-seq data from Ding et al. [5]. For the gEUVADIS RNA-seq data, we mapped reads to
GRCh37 using Bowtie2 [6] and constructed spliced alignments using Tophat2 [7] with default settings,
using gene annotation information given by Ensembl 69 as a guide for the alignment. Following read
mapping, we selected fragments (read-pairs) that were uniquely mapped, where at least one of mate-
pairs had a quality score of >10, aligned with 1 gap, with three base mismatches or less. Any read pairs
with an insert size less than 75bp or greater than 500Kb, or on different chromosomes, were excluded
from subsequent analyses. For the CTCF ChIP-seq data, the same alignment process to our ATAC-seq
data was applied. In addition any read pairs with an insert size less than 50bp were excluded from
subsequent analyses.

2.2 Peak calling for ATAC-seq and CTCF ChIP-seq data

We first pooled all samples from ATAC-seq data (N = 100) and CTCF ChIP-seq data (N = 50), respec-
tively. For ATAC-seq data, we counted both ends of sequenced fragments (+4bp from downstream end
and -4bp from upstream end) as transposase cut sites at each genome coordinate. For CTCF ChIP-seq
data, we counted the midpoint of sequenced fragments (mate pairs) at each genome coordinate.

Then for each of those coverage depth data, we fitted two Gaussian kernel density estimations, one
for smoothing peaks with bandwidth equal to 100bp (referred to as the peak coverage) and the other for
creating background with bandwidth equal to 1kb (referred to as the background coverage). A peak was
defined by comparing the two smoothed coverage depth data. We called a peak when the peak coverage
was greater than the background coverage and the peak coverage in fragment per million (FPM) was
greater than 0.001, that is

(peak coverage depth)
(total fragments sequenced in megabase)

> 0.001.

We defined 277,128 peaks for our ATAC-seq data and 141,147 peaks for CTCF ChIP-seq data.

2.3 Counting fragments and FPKM (RPKM) calculation

For ATAC-seq and CTCF ChIP-seq data, we counted the number of sequenced fragments of which one
or other sequenced end overlaps with the annotated peak. Likewise, for RNA-seq data, we counted the
number of sequenced fragments (mate-pairs) of which one or other sequenced end overlaps with an
union of annotated Ensembl gene exons.

Let Yij be the fragment count of the feature, either gene or peak, j (j = 1, . . . , J) for an individual i (i =
1, . . . , N). We calculated log2 FPKM (fragments per kilobase of exon per million fragments mapped), yij,
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for sample i at feature j as follows:

yij = log2

(
Yij + 1

ljYi

)
,

where lj is the feature length (peak length for ATAC-seq and CTCF ChIP-seq / length of an union of
annotated gene exons for RNA-seq) in kilobase and Yi = ∑J

j=1 Yij/106 is the total fragment (read) count
in megabase for the individual i.

2.4 GC correction for fragment counts and FPKMs

We corrected for varying amplification efficiency of different GC contents using the method described
in [8]. We first calculated GC content of each union of annotated gene exons for RNA-seq data and that
of each peak for other sequencing data, which is mean G/C base counts within a feature over the feature
length. Then we assigned all features to 200 approximately equally sized bins {B1, . . . ,B200} based on
the GC content. Let Sil = ∑j∈Bl

Yij be the number of fragments in bin l from individual i. For each bin,
for each individual, we calculated the log2 relative enrichment, Fil , of fragments in each GC bin, such
that

Fil = log2

(
Sil/S·l
Si·/S··

)
,

where S·l = ∑i Sil , Si· = ∑l Sil and S·· = ∑i,l Sil . For each individual, we fitted a smoothing spline to
the plot of Fil against the mean GC content for the bin. We used the R function smooth.spline with a
smoothing parameter of 1.

Letting F̂il be the predicted value of the smoothing spline for bin l in individual i, we set cij = F̂il ,
where cij is the predicted log2 over/under-representation of fragment (read) count of feature j ∈ Bl in
individual i. Then the normalised FPKM (RPKM) was obtained by

ỹij = yij − cij.

2.5 Principal component correction

There are usually hidden confounding factors, such as sequencing batch, sample preparation date, in
real data that reduce power to detect QTLs. These factors are not often observed but can be captured by
principal component analysis (PCA) [9]. We applied PCA to log FPKMs with and without permutation
and selected the first 16 components for the ATAC-seq, 21 components for gEUVADIS RNA-seq data
and 8 components for CTCF ChIP-seq data whose contribution were greater than those obtained from
permuted data.

For normalised fragment count data, we regressed out those covariates from the log2 FPKMs using
a standard linear model. Let β̂ j be the estimated regression coefficients for feature j and xi be the vector
of covariates for individual i, we use the residual

ỹij = yij − x>i β̂ j

for subsequent QTL mapping. Note that we use the ordinary least square method

{α̂j, β̂ j} = argmin
{αj ,β j}

N

∑
i=1
|yij − αj − x>i β j|2.

to estimate coefficients of covariates for each feature j (either gene or peak).
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2.6 Genotype imputation

We downloaded VCF files for the 1000 Genomes Phase III integrated variant set from the project website.
Because ATAC-seq, RNA-seq and CTCF ChIP-seq samples were not completely overlapping with the
1000 Genomes Phase III samples, we extracted genotype data of the non-overlapping samples from
the 1000 Genomes Phase I data and the 1000 Genomes high density SNP chip data (performed on the
Illumina Omni platform).

For our ATAC-seq data, HG00104, HG00124, HG00134, HG00135, HG00152, HG00156, HG00247
and HG00249 were extracted from the Phase I data and HG00098 was extracted from the Illumina SNP
chip data. For gEUVADIS RNA-seq data, HG00104, HG00124, HG00134, HG00135, HG00152, HG00156,
HG00247, HG00249, HG00312, HG00359, HG00377, NA11993, NA20537 and NA20816 were extracted
from the Phase I data and NA07346 was extracted from the Illumina SNP chip data. For CTCF ChIP-
seq data, NA11993 was extracted from the Phase I data and NA07346, NA12891 and NA12892 were
extracted from the Illumina SNP chip data.

We then performed whole genome imputation for the extracted genotype data separately by using
the Beagle software (version: 23-Jul-16) [10]. To reduce the computational complexity, we split short
and long arms of each chromosome if variants were found in both arms. We finally merged the imputed
genotype data with the Phase III data.

2.7 Genomic annotations

Genomic annotations related to chromatin accessibility were generated from our ATAC-seq data. We
aggregated all samples’ sequencing data into one merged data to generate an average sequencing cov-
erage depth. The peak height was defined as the highest value of the average coverage depth within
each peak region (defined in Section 2.2). The peak height was converted into peak height quantiles
{qj; j = 1, . . . , J} ∈ (0, 1] across all peaks. Combining with VCF information, coverage depth at each ge-
netic variant l (inside the peak a) was normalised with the peak height to compute the relative coverage,
hla ∈ [0, 1]. Peak distance was calculated based on the midpoint of a peak region.

We also used various external genomic annotations. The Hi-C contact map, Hi-C loop and TAD in-
formation for GM12878 were obtained from [11]. The distance of Hi-C contact domain was calculated
from the Hi-C loop list. All data sets were downloaded from the Gene Expression Omnibus (Acces-
sion ID: GSE63525). The HiChIP data for GM12878 was obtained from [12]. The JuicerBox output of
HiChIP data was downloaded from the Gene Expression Omnibus (Accession ID: GSE101498) and pro-
cessed by the HiCCUPS software [13] to obtain the HiChIP loop list with the default parameter setting.
The capture Hi-C (CHi-C) contact domain information for GM12878 were obtained from [14, 15], from
which contact length distribution was generated. The original CHi-C data and annotated interactions
for GM12878 [14] was obtained from the ArrayExpress database (Accession ID: E-MTAB-2323). The
CHi-C data processed by CHiCAGO pipeline [15] was downloaded from here. The genomic segmenta-
tion annotation combining Segway [16] and ChromHMM [17] results was downloaded from the Encode
Project. Each ATAC peak was labelled by one of the 7 different segmentation categories at the peak
midpoint.
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2.8 Roadmap Epigenomics Project data

We downloaded DNaseI-seq data for the 53 different cell types from the project web page. We counted
the number of reads mapped at our annotated ATAC peaks and noramlised as FPKM in the same way
as our ATAC-seq data. Spearman’s correlation was calculated between any peak pair within 500Kb
distance across different cell types.

2.9 Bayes factor computation of GWAS summary statistics

We used the GWAS summary statistics for 10 different disease traits, Rheumatoid arthritis (RA), schizophre-
nia (SCZ), systemic lupus erythematosus (SLE), Crohn’s disease (CD), ulcerative colitis (UC), inflamma-
tory bowel diseases (IBD), type 2 diabetes (T2D), Alzheimer’s disease (AD), atopic dermatitis (ATD) and
coronary artery disease (CAD) available from:

RA http://plaza.umin.ac.jp/ yokada/datasource/software.htm

SCZ http://www.med.unc.edu/pgc/results-and-downloads

SLE http://insidegen.com/insidegen-LUPUS-data.html

IBD/CD/UC https://www.ibdgenetics.org/downloads.html

ATD https://data.bris.ac.uk/data/dataset/28uchsdpmub118uex26ylacqm

AD http://web.pasteur-lille.fr/en/recherche/u744/igap/igap download.php

T2D http://diagram-consortium.org/downloads.html

CAD http://www.cardiogramplusc4d.org/data-downloads/

For the RA GWAS summary statistics, we used the fixed effect inverse variance meta analysis method to
combine test statistics for each variant from the genome-wide SNP chip data across 11 studies (excluding
the Illumina Immuno-chip studies). We then use the Wakefield approximation [18] to convert the com-
bined test statistics into Bayes factors. We also applied the Wakefield approximation to the summary
statistics for SLE. Here we set the prior variance W = 0.1 as described in [19].
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3 Pairwise hierarchical model

3.1 Interaction hypotheses

The model aims to estimate the probability that a chromatin accessible peak j (j = 1, . . . , J) affects an-
other peak k ( 6= j) within a 1 Mb window centred at peak j, such that the maximum distance between
peak j and k is 500 Kb). We developed a Bayesian pairwise hierarchical model using overlapping associ-
ation signals of genetic variants surrounding those peaks. We defined the cis-window,Wjk, surrounding
peak j and k, as the union of two 1 Mb windows centred on each peak and assume that the peak pair
falls into one of the following five different hypotheses:

H0 (null) : there are no genetic variants inWjk that associate with either peak;

H1.1 (single) : there is one causal variant inWjk that affects peak j;

H1.2 (single) : there is one causal variant inWjk that affects peak k;

H2 (linkage) : there are two independent causal variants in Wjk, one of which affects peak j and
the other one affects peak k;

H3 (pleiotropy) : there is one causal variant in Wjk that affects both two peaks simultaneously and
independently;

H4.1 (causality) : there is one causal variant in Wjk that affects peak j, and also affects peak k only
through its association with peak j;

H4.2 (causality) : there is one causal variant in Wjk that affects peak k, and also affects peak j only
through its association with peak k.

Here the single hypothesis (H1) and causality hypothesis (H4) are split into two sub-hypotheses (H1.1/H1.2

and H4.1/H4.2) because of the asymmetrical feature between peak j and k.
The model employs ATAC-seq from multiple unrelated individuals. Let Y = (y1, . . . , yJ) denote a

matrix of normalised ATAC-seq read counts (measuring degrees of chromatin accessibility), whose jth
element is a vector of the read counts for N individuals at peak j, such that yj = (y1j, . . . , yNj)

>. We then
construct a finite mixture of regression models to jointly observe read counts for any peak pair under the
above hypotheses H = {H0, H1.1, H1.2, H2, H3, H4.1, H4.2}. For the peak pair j and k, we model the joint
probability of yj and yk by a regression model p(yj, yk|h) under the hypothesis h ∈ H, which is weighted

by the mixture probability Φ(h)
jk with which the j–k peak pair is potentially classified into hypothesis h.

The pairwise likelihood [20] of any peak pair in 500 Kb distance is then defined by

L2(Φ|Y) = ∏
1≤j<k≤J

d(j,k)<5×105

∑
h∈H

Φ(h)
jk p(yj, yk|h),

where Φ = {Φ(h)
jk } is the set of mixture probabilities and d(·, ·) is the distance function of a peak pair

based on the peak mid-points. Note that this likelihood is a special case of the pseudo-likelihood and
we assume it preserves necessary and sufficient information on causal inference between peaks. The
subsequent sections introduce details of the regression model and mixture probability. Note here that,
throughout the manuscript, the notation Wjk is also used as a set of variants or peaks in the window.
Therefore we denote a variant l or peak j is in the window as l ∈ Wjk or j ∈ Wjk. This does not meet the
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definition of a ”set” in a strict mathematical sense, instead it is context-dependent.

3.2 Regression model p(yj, yk|h)

The form of regression model depends upon the hypothesis h. We assume it is essentially factorised
by two marginal probabilities of observing yj and yk in a certain way. Let p(yj|φ) denote the marginal
probability of observing yj under the assumption that no genetic variants in Wjk associate with peak
j, and p(yj|xl) denote the marginal probability of observing yj under the assumption that single causal
variant xl (l ∈ Wjk) associates with peak j. Here xl = (x1l , . . . , xNl)

> is a vector of genotypes for N
individuals at a (biallelic) genetic variant (i.e., SNP, INDEL and CNV). Note that each element xil ∈
{0, 1, 2} is the alternative allele dosage for individual i at variant l. In addition, let p(yk|yj) denote
the marginal probability of observing yk under that assumption that peak j affects peak k. Given that
we know the causal variant l affects peak j (or k), the regression model is assumed to be factorised as
follows:

p(yj, yk|h, causal variant(s) known) =



p(yj|φ)p(yk|φ) h = H0

p(yj|xl)p(yk|φ) h = H1.1

p(yj|φ)p(yk|xl) h = H1.2

p(yj|xl)p(yk|xm) h = H2

p(yj|xl)p(yk|xl) h = H3

p(yj|xl)p(yk|yj) h = H4.1

p(yk|xl)p(yj|yk) h = H4.2

Note that xm (in the hypothesis H2) is a vector of genotypes at the causal variant m ∈ Wjk for peak k that
is not identical to the causal variant l for peak j (i.e., l 6= m) .

The causal variants l, m ∈ Wjk affecting peak j and k are unknown. We therefore introduce a variant-

level prior probability π
(jl)
jk that variant l ∈ Wjk is the causal variant for peak j, given that the peak j is a

QTL (analogously π
(kl)
jk for peak k). We here assume that there is, at most, one causal variant for peak j,

so that ∑l∈Wjk
π
(jl)
jk = 1. Given that there is a single (unknown) causal variant for peak j, the marginal

probability of observing yj can be written as

p(yj) = ∑
l∈Wjk

π
(jl)
jk p(yj|xl),

which leads to

p(yj, yk|h) =



p(yj|φ)p(yk|φ) h = H0

p(yj)p(yk|φ) h = H1.1

p(yj|φ)p(yk) h = H1.2
1

Rjk
∑

l,m∈Wjk ,l 6=m
π
(jl)
jk π

(km)
jk p(yj|xl)p(yk|xm) h = H2

∑
l∈Wjk

π
(∗l)
jk p(yj|xl)p(yk|xl) h = H3

p(yj)p(yk|yj) h = H4.1

p(yj|yk)p(yk) h = H4.2

where π
(km)
jk is the prior probability that the variant m is causal for peak k and Rjk = ∑l,m∈Wjk ,l 6=m π

(jl)
jk π

(km)
jk

is the constant multiplication to exclude the possibility that a single causal variant affects the two peaks
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under the hypothesis of linkage (H2). For the hypothesis of pleiotropy (H3), we implicitly assume that
there is an anchor peak ”a” inWjk that affects both peak j and k, whose read count ya can be integrated
out from the joint distribution of observing yj, yk and ya under the assumption of conditional indepen-
dence

p(yj, yk|H3) =
1

Ajk
∑

a∈Wjk ,a 6=j,k

∫
p(ya)p(yj, yk|ya)dya

=
1

Ajk
∑

a∈Wjk ,a 6=j,k
∑

l∈Wjk

π
(al)
jk

∫
p(ya|xl)p(yj|ya)p(yk|ya)dya

= ∑
l∈Wjk

 1
Ajk

∑
a∈Wjk ,a 6=j,k

π
(al)
jk

 p(yj|xl)p(yk|xl)

≡ ∑
l∈Wjk

π
(∗l)
jk p(yj|xl)p(yk|xl), (1)

where Ajk is the number of peaks inWjk other than j and k.
The marginal probabilities p(yj|xl) and p(yj|φ) are calculated from the effect of each individual geno-

type xil on the chromatin openness yij for individual i, following the simple linear regression:

yij = α
(l)
0j + α

(l)
1j xil + ε

(l)
ij , (2)

where (α
(l)
0j , α

(l)
1j ) denotes the coefficients of intercept and slope and ε

(l)
ij denotes the residual following

the normal distribution. Although, the analytical form of the Bayes factor for the simple linear regression
is known [21], we employ the asymptotic Bayes factor [18]

BF(l)
j ≡

p(yj|xl)

p(yj|φ)

≈
√

1− r(l)j exp

 (Z(l)
j )2

2
r(l)j


with r(l)j = W/(W + Var(α̂(l)1j )), Z(l)

j = Z(α̂(l)1j /Var(α̂(l)1j )
1
2 ) where {α̂(l)1j , Var(α̂(l)1j )} is the ordinary least

square estimation of the slope and its asymptotic variance. We here introduced the statistic transforma-
tion Z(·) that converts Student’s t statistic to standard normal Z statistic (see Appendix A for details).

The motivation for using the Bayes factor approximation is to devise an efficient and robust method
to compute the marginal probability p(yk|yj). Because of the existence of unknown confounding factors
and the measurement error, it is often difficult to estimate the effect size of yik on yij with the standard
linear regression:

yik = β
(j)
0k + β

(j)
1k yij + ε

(j)
ik . (3)

We therefore utilise a Mendelian randomisation (MR) technique [22] to robustly estimate the causal
effect β

(j)
1k by using the genetic variant l ∈ Wjk as the instrumental variable. The Bayes factor of the

regression of yk on yj using the instrumental variable xl can be calculated by

BF(jl)
k ≡

p(yk|yj)

p(yk|φ)

≈
√

1− r(jl)
k exp

 (Z(jl)
k )2

2
r(jl)

k
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with r(jl)
k = W/(W + Var(β̂

(jl)
1k )2) and Z(jl)

k = Z(β̂
(jl)
1k /Var(β̂

(jl)
1k )

1
2 ), where

β̂
(jl)
1k =

Cov(yk, xl)

Cov(yj, xl)

Var(β̂
(jl)
1k ) =

Var(yk − β̂
(jl)
1k yj)

(N − 2)Var(yj)Cor(yj, xl)2

is the causal effect and its asymptotic variance of the two stage least square (2SLS) estimate (see Ap-
pendix B for details). Note that the estimated causal effect β̂

(jl)
1k is also indexed by l ∈ Wjk, because the

2SLS estimate of the true causal effect β
(j)
1k depends on which instrumental variable is used. Here Var(·),

Cov(·, ·) and Cor(·, ·) indicate sample variance (biased), covariance and correlation, respectively.
For convenience, we rewrite the likelihood with ”regional” Bayes factors, defined as the average

Bayes factor across all variants inWjk weighted by the variant prior probabilities, such as

RBF(h)
jk ≡

p(yj, yk|h)
p(yj|φ)p(yk|φ)

=



∑
l∈Wjk

π
(jl)
jk BF(l)

j h = H1.1

∑
l∈Wjk

π
(kl)
jk BF(l)

k h = H1.2

1
Rjk

∑
l,m∈Wjk ,l 6=m

π
(jl)
jk π

(km)
jk BF(l)

j BF(m)
k h = H2

∑
l∈Wjk

π
(∗l)
jk BF(l)

j BF(l)
k h = H3

∑
l∈Wjk

π
(jl)
jk BF(l)

j BF(jl)
k h = H4.1

∑
l∈Wjk

π
(kl)
jk BF(l)

k BF(kl)
j h = H4.2

(4)

such as

L2(Φ, π) = ∏
1≤j<k≤J

d(j,k)<5×105

p(yj|φ)p(yk|φ)
[

Φ(0)
jk + ∑

h∈H1

Φ(h)
jk RBF(h)

jk

]
,

where π = {π(jl)
jk } andH1 = {H0, H1.1, H1.2, H2, H3, H4.1, H4.2} is the set of alternative hypotheses.

3.3 Mixture probability Φ(h)
jk

Because the hierarchical model relies on the genetic associations of peak j and k to infer causality, the
mixture probability Φ(h)

jk depends on the peak-level prior probability, Π(1)
j (Π(1)

k ) that a peak j (or k) is
a QTL. However, when neither variant is a putative QTL, it is essentially impossible to know whether
those peaks are interacting or not. In order to model the mixture probability Φ(h)

jk for any peak pair
regardless of the fact that a peak is a QTL, we further introduce the peak pair-level prior probabilities
{Ψ(0)

jk , Ψ(1)
jk , Ψ(2)

jk , Ψ(3)
jk } with which the j–k peak pair potentially falls into the following interacting cate-

gories: (0) no interaction; (1) pleiotropy; (2) causality from peak j to k; or (3) causality from peak k to j.
Note that these categories are mutually exclusive, such that ∑3

i=0 Ψ(i)
jk = 1.

We assume the peak-pair level prior probability is orthogonal to the peak level prior probability, the
hypothesis of non-QTL peak pair (H0) can be subdivided into the following four hypotheses:

11



H0.0 (no interaction) : peak j and k are both non-QTL and not interacting;

H0.1 (pleiotropy) : peak j and k are pleiotropic, but the anchor peak is non QTL;

H0.2 (causality) : peak j is causally interacting with peak k, but the peak j is non QTL;

H0.3 (causality) : peak k is causally interacting with peak j, but the peak k is non QTL;
Let H0 = {H0.0, H0.1, H0.2, H0.3} denotes a set of the null sub-hypotheses so that all the possible inter-
action hypotheses is H = H0 ∪H1. Therefore the mixture probability for each hypothesis is essentially
written as a product of peak level and peak-pair level prior probabilities, such that

Φ(h)
jk =



Ψ(0)
jk Π(0)

j Π(0)
k h = H0.0

Ψ(1)
jk Π(0)

∗ h = H0.1

Ψ(2)
jk Π(0)

j h = H0.2

Ψ(3)
jk Π(0)

k h = H0.3


Null hypothesesH0

Ψ(0)
jk Π(1)

j Π(0)
k h = H1.1

Ψ(0)
jk Π(0)

j Π(1)
k h = H1.2

Ψ(0)
jk Π(1)

j Π(1)
k h = H2

Ψ(1)
jk Π(1)

∗ h = H3

Ψ(2)
jk Π(1)

j h = H4.1

Ψ(3)
jk Π(1)

k h = H4.2


Alternative hypothesesH1

(5)

and, as a consequence of the four null sub-hypotheses, the mixture probability of h = H0 is given by

Φ(0)
jk = ∑

h∈H0

Φ(h)
jk = Ψ(0)

jk Π(0)
j Π(0)

k + Ψ(1)
jk Π(0)

∗ + Ψ(2)
jk Π(0)

j + Ψ(3)
jk Π(0)

k ,

where Π(0)
j = 1−Π(1)

j and Π(0)
k = 1−Π(1)

k . Here Π(1)
∗ denotes the prior probability that an unknown

anchor peak is a QTL that affects peak j and k simultaneously, while Π(0)
∗ = 1−Π(1)

∗ is the probability
that the anchor peak is non-QTL. Thus the total of mixture probabilities becomes ∑h∈H Φ(h)

jk = 1.

3.4 Hierarchical structure of prior probabilities

A key feature of the hierarchical model is that the three levels of prior probabilities (variant level, peak
level and peak-pair level) are allowed to depend on various genomic annotations.

3.4.1 Variant-level prior

We model the variant level prior probability as a function of three annotations: variant type (SNP, INDEL
or CNV), peak status (i.e. whether the variants are located inside or outside the peak region) and,
for those variants located within peaks, within-peak location, measured as the read depth at variant l,
relative to the maximum read depth in the peak such that:

π
(jl)
jk =

eηjl

∑m∈Wjk
eηjm

12



with

ηjl = x(l)INDELλ1 + x(l)CNVλ2 +


f1(hjl ; λ3, λ5, . . . , λ9) l is inside the focal peak j
f1(hal ; λ4, λ5, . . . , λ9) l is inside a flanking peak a ∈ Wjk (a 6= j)
0 otherwise

where {λ1, . . . , λ9} are hyper parameters, each of which indicates the log prior odds relative to a SNP
variant in a non-peak region as a baseline. The 0− 1 indicator variables {x(l)INDEL, x(l)CNV} specify whether
variant l is an INDEL or CNV rather than a SNP. The normalised coverage depth hjl ∈ [0, 1] at variant l
is relative to the peak height (the maximum coverage) of peak j when the variant l exists inside the peak.
We fit a non-linear function f1(·) which is a cubic spline function with 4 equi-spaced knots, governed
by the remaining hyper parameters {λ3, . . . , λ9} (see Appendix C for details). The first parameter of the
function, λ3 or λ4, controls the intercept of f1 allowing the log odds to be varied if variant l is in the focal
peak j or other peak a ( 6= j), implying that, except for the constant shift, the function form is identical
whenever l is in a peak region.

For a pleiotropic peak pair, the variant level prior probability is averaged across all flanking peaks
(Eq. 1). To reduce the computational burden, we approximate this at the linear predictor level as:

π
(∗l)
jk ≈ eη∗l

∑m∈Wjk
eη∗m

with

η∗l = x(l)INDELλ1 + x(l)CNVλ2 +

{
f1(hal ; λ4, λ5, . . . , λ9) l is inside the peak a ∈ Wjk

0 otherwise

Intuitively, the effect size of anchor peak is the same as that of a flanking peak, because it is essentially
unknown which anchor peak is causal to j–k peak pair. The rationale is that

1
Ajk

∑
a∈Wjk ,a 6=j,k

ηal → η∗l

holds true if the number of flanking peak tends to be large enough.

3.4.2 Peak-level prior

The peak-level prior probability is modelled by a non-linear function of the peak height, qj, the quantile
of maximum coverage depth at the peak j compared with all peaks. The model is defined by a logistic
regression

log
Π(1)

j

Π(0)
j

= f2(qj; γ1, . . . , γ6)

with a cubic spline function f2(·) with 4 equi-spaced knots governed by the 6 hyper-parameters {γ1, . . . , γ6}.

3.4.3 Peak-pair-level prior

Our model also enables us to assess effects of various genomic annotations on the probability of observ-
ing causal or pleiotropic interactions between peaks. The baseline model of Ψ are non-linear functions
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of the distance between peak j and k as multinomial logistic regressions:

log
Ψ(1)

jk

Ψ(0)
jk

= f3(djk; δ1, . . . , δ6)

log
Ψ(2)

jk

Ψ(0)
jk

= log
Ψ(3)

jk

Ψ(0)
jk

= f4(djk; δ7, . . . , δ12)

where f3(·) and f4(·) are cubic spline functions with 4 knots governed by the hyper-parameters {δ1, . . . , δ6}
and {δ7, . . . , δ12}, respectively.

3.5 Likelihood and parameter estimation

The pairwise likelihood should be maximised with respect to all parameters simultaneously. However,
in our ATAC-seq data for example, there are 277,128 ATAC-seq peaks genome-wide and the number of
peak pairs found within the 500 Kb window is 17,349,412. In addition, each cis-regionWjk contains more
than 2.5 thousand variants on average. It is unrealistic to maximise the likelihood with all parameters at
the same time.

Therefore, we split the model parameters into two sets and estimate in stages. Let Θ1 = {Π(γ), π(λ)}
be the parameters associated with the marginal structure for each caQTL peak, and Θ2 = {Ψ(δ)} be the
set of parameters associated with the pairwise structure between caQTL peaks. Our approach involves
a two-stage approach which first maximises the marginal likelihood with respect to Θ1, and then max-
imises the pairwise likelihood with respect to Θ2, where Θ1 is replaced by its estimator Θ̂1 obtained in
the first stage.

Let
L1(Θ1) ∝ ∏

1≤j≤J

[
Π(0)

j + Π(1)
j RBFj

]
(6)

be the marginal likelihood with an independence structure temporarily assumed for each peak. Note
that this likelihood is identical to the hierarchical model proposed in [23]. Here

RBFj = ∑
l∈Wj

π
(l)
j BF(l)

j

is the regional Bayes factor of associations for peak j, averaged across all variants in the cis-windowWj

(500Kb on either side of peak j), weighted by the prior probability

π
(l)
j =

eηjl

∑m∈Wj
eηjm

that l is the causal variant for peak j (i.e., ∑l∈Wj
π
(l)
j = 1). The linear predictor ηjl is identical to that in

the pairwise likelihood (Section 3.4) to carry on the prior information of causal variant in the first stage
into the second stage.

Let

L2(Θ2; Θ̂1) ∝ ∏
1≤j<k≤J

d(j,k)<5×105

[
Φ(0)

jk + ∑
h∈H1

Φ(h)
jk RBF(h)

jk

]
(7)
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be the pairwise likelihood as a product of finite mixture probabilities over all peak pairs in 500 Kb
window. The first-stage estimator Θ̂1 is fixed in L2 to reduce the complexity of optimisation. Our
definition of pleiotropy implicitly includes an ”anchor” peak, in which the putative causal variant is
located. The prior probability of an anchor peak being a QTL, Π(1)

∗ , was not directly estimated from
the marginal likelihood in Eq. 6, and still a free parameter to be optimised. Although there can be
an opportunity to estimate Π(1)

∗ in conjunction with Θ2 in the second stage, we would rather use the
moment estimator Π̂(1)

∗ = ∑j Π̂(1)
j /J as a part of Θ̂1 for simplicity.

Because we use the cubic spline functions to model the prior probabilities, it is necessary to introduce
an appropriate penalty to avoid overfitting. To this end, the integrated square of the second derivative is
used for each fi was not smooth (too wiggly, see Appendix C for details). The penalised log likelihoods
are now given by:

l1(Θ1) = log L1(Θ1)−
2

∑
i=1

νi
2

∫ 1

0
f ′′i (x)2dx

l2(Θ2; Θ̂1) = log L2(Θ2; Θ̂1)−
4

∑
i=3

νi
2

∫ 1

0
f ′′i (x)2dx

where νi (i = 1, . . . , 4) are the smoothing parameters. We set ν1 = 5.0, ν2 = ν3 = 1.0.
We used the Expectation-Maximisation (EM) to optimise the likelihoods [24]. In the E-step, we cal-

culate the posterior probability that a peak is a caQTL

Zj =
Π̂(1)

j
ˆRBFj

Π̂(0)
j + Π̂(1)

j
ˆRBFj

(8)

obtained from the marginal likelihood in Eq. 6. Similarly, the posterior probability that the j− k peak
pair belongs to each of the interaction categories is obtained by

Z(h)
jk =



Φ̂(0)
jk

Φ̂(0)
jk + ∑i∈H1

Φ̂(i)
jk

ˆRBF(i)
jk

h = H0

Φ̂(h)
jk

ˆRBF(h)
jk

Φ̂(0)
jk + ∑i∈H1

Φ̂(i)
jk

ˆRBF(i)
jk

h ∈ H1

(9)

from the pairwise likelihood in Eq. 7. In the M-step, the penalised iteratively reweighted least squares
(P-IRLS) is used to maximise the marginal and pairwise likelihoods with respect to Θ1 and Θ2. The
standard error of the model parameter is obtained from the approximated Fisher information matrix.
See Appendix D and E for details of parameter estimation for the marginal and pairwise likelihood.

Note that, all subsequent analyses are performed based on Z(h)
jk in Eq. 9. In the main text, posterior

probability of causality (PPC) from j to k is denoted by PPCjk(= Z(4.1)
jk ) and the converse is denoted by

PPCkj(= Z(4.2)
jk ) so that PPC= Z(4.1)

jk + Z(4.2)
jk .

3.6 Finding directed acyclic graphs (DAGs)

Although the result of the pairwise hierarchical model only provides a relationship between any given
two peaks, we can use the posterior probability of causality defined in Eq. 9 to construct multiway
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interactions of peaks as directed acyclic graphs (DAGs). We first considered the set of all peak pairs as
one large bi-directional graph with 277,128 nodes and more than 17 million edges. Then we selected

those edges with Z(4.1)
jk or Z(4.2)

jk greater than 0.5 to produce independent bi-directional graphs, each

of which consists of peaks connected by at least one or more directional edge(s) with Z(4.1)
jk > 0.5 or

Z(4.2)
jk > 0.5 (Fig. S8A). Then we came up with a naive algorithm to find the directed acyclic graph

(DAG) embedded in those peaks. Firstly, the most likely parent (MLP) is sequentially assigned for each

peak and then the cyclic graph is solved by discarding one of the edges with the lowest Z(4.1)
jk (or Z(4.2)

jk )
to find the DAG (Fig. S8B).

Fig. S8: (A) Bidirected graph shows there are 4 chromatin accessibility peaks (A-D) with arrows depict-

ing direction and posterior probability of causality (Z(4.1)
jk and Z(4.2)

jk ). For example PPC from peak A to
D is 80%. (B) The algorithm to find the directed acyclic graph embedded in those peaks: (1) assign the
most likely parent (MLP) of A as C (2) assign MLP of B as A (3) assign MLP of C as B (4) assign MLP of
D as A (5) discard the least likely arrow from A to B to find the most likely DAG (B→C→A→D).

3.7 Detection of lead caQTL variant

In this section, we describe the procedure we used to identify the most likely putative causal variant
for each peak j, using pairwise information from all peaks surrounding this peak. Within each window
Wj (500 Kb on either side of peak j), we calculate a posterior probability of each variant l ∈ Wj being
the causal caQTL for peak j and obtain the maximum a posteriori (MAP) probability of the lead variant.
The marginal likelihood in Eq. 6 naively provides the posterior probability that a variant l is the lead
QTL variant, such that:

z(l)j =
π̂
(l)
j BF(l)

j

∑m∈Wj
π̂
(m)
j BF(m)

j

given that the peak j is a QTL. If the peak j is an isolated caQTL (i.e. does not interact with any other
peak), it is reasonable to select the MAP variant as the lead QTL variant. However it is not appropriate
to use the posterior probability when multiple variants in strong linkage disequilibrium are found inside
multiple interacting peaks. The reason for this is that π

(l)
j aggressively upweights variants inside the
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peak j as causal variants. We observed that this has the effect that the variant located within the peak j (in
LD with the true causal variant) will always become the lead variant, even if the peak j is a downstream
peak in a regulatory cascade.

Therefore, we utilise the pairwise likelihood in Eq. 7 to define the lead caQTL variant for each peak
j by solving causal interactions between peaks. Let z(l)j be the indicator variable which is 1 if variant l is
causal (regardless of whether the causality is directly affecting peak j or mediated by any other peaks),
otherwise 0. The partial likelihood around the peak j is defined as

L2(Θ̂|yk; k ∈ Wj) = ∑
k∈Wj

∑
l∈Wj

∑
h∈Hj

1
Aj

p(yj, yk|z
(l)
j , hjk)p(z(l)j |hjk)Φ̂

(h)
jk ,

whereHj = {H1.1, H2, H3, H4.1, H4.2} denotes the set of interaction hypotheses given that the peak j is a
caQTL and Aj denotes the number of peaks inWj other than the peak j. The regression model to jointly
observe yj and yk given that l is the causal variant is defined in Section 3.2, such that

p(yj, yk|z
(l)
j , hjk) ∝



BF(l)
j hjk = H1.1

BF(l)
j

1
Rjk

∑
m∈Wj ,m 6=l

π̂
(km)
jk BF(m)

k hjk = H2

BF(l)
j BF(l)

k hjk = H3

BF(l)
j BF(jl)

k hjk = H4.1

BF(l)
k BF(kl)

j hjk = H4.2

except for the linkage hypothesis (H2), where associations to peak k is marginalised across all variants m
(m ∈ Wjk, m 6= l) because it is not of interest which variant m is causal to peak k. The prior probability
that the variant l is causal is also the same as before,

p(z(l)j |hjk) =

 π̂
(kl)
jk hjk = H4.2

π̂
(jl)
jk otherwise

Here we assume that the caQTL effect of variant l is mediated by peak k in H4.2, otherwise the variant l
directly affects peak j.

Hence, the posterior probability that the variant l is causal to peak j is obtained by Bayes’ rule, such
as

z(l)j =
∑k∈Wj

z(jl)
jk

∑k∈Wj ∑m∈Wj
z(jm)

jk

,

where

z(jl)
jk = ∑

h∈Hj

p(yj, yk|z
(l)
j , hjk)p(z(l)j |hjk)Φ̂

(h)
jk

= Ψ̂(0)
jk [Π̂(1)

j π̂
(jl)
jk BF(l)

j ]

Π̂(0)
k +

1
Rjk

Π̂(1)
k ∑

m∈Wjk ,m 6=l
π̂
(km)
jk BF(m)

k


+ Ψ̂(1)

jk Π̂(1)
∗ π̂

(∗l)
jk BF(l)

j BF(l)
k + Ψ̂(2)

jk Π̂(1)
j π̂

(jl)
jk BF(l)

j BF(jl)
k + Ψ̂(3)

jk Π̂(1)
k π̂

(kl)
jk BF(l)

k BF(kl)
j

denotes the strength of association of the variant l to the peak j, which is either direct or mediated
through peak k. Note that we implicitly assume p(yk|φ) = p(yk′ |φ) for k 6= k′, which holds true when
yk’s are normalised so that Var(yk) = Var(yk′).
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3.8 Detection of lead caQTL variant(s) for a peak pair

The lead variant for each j− k peak pair under the causality hypothesis is defined as the maximum a
posteriori variant, such that

l = argmax
l∈Wjk

π̂
(jl)
jk BF(l)

j BF(jl)
k .

Likewise, the lead variant under the reverse causality is also defined as

m = argmax
m∈Wjk

π̂
(km)
jk BF(m)

k BF(km)
j .

Under the pleiotropic hypothesis, the lead variant is defined as

l = argmax
l∈Wjk

π̂
(∗l)
jk BF(l)

j BF(l)
k .

For the linkage hypothesis, there are two causal variants l and m that are defined as

(l, m) = argmax
l,m∈Wjk ,l 6=m

π̂
(jl)
jk π̂

(km)
jk BF(l)

j BF(m)
k .

3.9 Probability of master regulator (PMR)

We here define the probability that a caQTL peak j is the master regulatory peak. Firstly, by using the

posterior probabilities of interaction hypotheses {Z(h)
jk } in Eq. 9, we denote the upstream/downstream

probability :

p(j is upstream of k|j is caQTL) =



Z(4.1)
jk

Z(1.1)
jk + Z(2)

jk + Z(3)
jk + Z(4.1)

jk + Z(4.2)
jk

j < k

Z(4.2)
kj

Z(1.2)
kj + Z(2)

kj + Z(3)
kj + Z(4.1)

kj + Z(4.2)
kj

k < j

≡ p(j)
j→k

p(j is downstream of k or a|j is caQTL) =



Z(3)
jk + Z(4.2)

jk

Z(1.1)
jk + Z(2)

jk + Z(3)
jk + Z(4.1)

jk + Z(4.2)
jk

j < k

Z(3)
kj + Z(4.1)

kj

Z(1.2)
kj + Z(2)

kj + Z(3)
kj + Z(4.1)

kj + Z(4.2)
kj

k < j

≡ p(j)
a,k→j
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Note that the peak a is the hypothesised anchor peak that affects both peak j and k in a pleiotropic
fashion, thereby it is upstream of the peak j. To use these notations, we define

p(j is master regulatory peak)

= p(j is master regulatory peak|j is caQTL)p(j is caQTL)

= p(j has downstream peaks|j is caQTL)p(j has no upstream peak|j is caQTL)Zj

= [1− p(j has no downstream peak|j is caQTL)] p(j has no upstream peak|j is caQTL)Zj

=

1− ∏
k∈Wj

(
1− p(j)

j→k

) ∏
k∈Wj

(
1− p(j)

a,k→j

)
Zj

≡ Pj,

where Zj is the posterior probability that peak j is a caQTL in Eq. 8.

3.10 Hierarchical model for expression QTL mapping

We use the standard hierarchical model [23] to perform fine-mapping of putative causal eQTL variants
with various genomic annotations. We used RNA-seq data from LCLs in 372 European samples (gEU-
VADIS Project [4]). For each gene k, we computed the Bayes factors, BF(l)

k , for all variants l existing in
the cis-regulatory windowWk (500 Kb on either side of the transcription start site). Let

L(Θ) ∝
K

∏
k=1

[(
1−Π(1)

k
)
+ Π(1)

k ∑
l∈Wk

π
(l)
k BF(l)

k

]
(10)

be the likelihood of the hierarchical model with a set of parameter Θ = {Π, π}, where Π(1)
k is the prior

probability that the gene k is an eQTL, which is modelled as a function of the expression level quantile
qk ∈ (0, 1] for all genes (K = 48, 325), such that

log
Π(1)

k

1−Π(1)
k

= f (qk; γ)

for k = 1, . . . , K, where f (·) is the cubic spline with 6 basis functions weighted by coefficients γ =

(γ1, . . . , γ6)
> (see Appendix C for details). Note that qk is based on the average CPM value (counts per

million) across all individuals.
The prior probability of a variant being the causal eQTL, π

(l)
k , is modelled as a function of over-

lapping genomic annotations. In order to demonstrate our mapped causal information can improve
fine-mapping, we compared various combinations of the following five annotations: (1) inside or out-
side an ATAC peak (referred to as ATAC); (2) eQTL variant location, relative to an ATAC peak (variant
location; VL); (3) promoter capture Hi-C contacts (CHi-C); (4) HiChIP loops from baited promoter re-
gions (HiChIP); and (5) PMR value at each ATAC peak (defined in the previous section). Because HiChIP
loops link both enhancers and promoters, we simply used only the HiChIP loops whose anchor region(s)
overlaps with a CHi-C baited promoter region to assign a specific gene to each loop. If two anchors are
overlapping with different genes, we used the loop twice for each gene. The prior probability π

(l)
k and
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these annotations are connected by the softmax function, such that

π
(l)
k =



1
#variants inWk

Flat

ebkl λ

∑m∈Wk
ebkmλ

HiChIP

eal bkl λ

∑m∈Wk
eambkmλ

HiChIP+ATAC

ecklλ

∑m∈Wk
eckmλ

CHi-C

eal λ

∑m∈Wk
eamλ

ATAC

eηl

∑m∈Wk
eηm

ATAC+VL

eal cklλ

∑m∈Wk
eamckmλ

ATAC+CHi-C

wφ
l eal λ

∑m∈Wk
wφ

meamλ
ATAC+PMR

wφ
l eηl

∑m∈Wk
wφ

meηm
ATAC+PMR+VL

where

al =

{
1 variant l is inside an ATAC peak
0 otherwise

bkl =

{
1 variant l is inside a HiChIP loop anchor region for gene k
0 otherwise

ckl =

{
1 variant l is inside a CHi-C baited promoter or enhancer region of gene k
0 otherwise

ηl =

{
g(hjl ; λ1, . . . , λ6) variant l is inside the peak j ∈ Wk

0 otherwise

wl =

{
Pj variant l is inside the ATAC peak j ∈ Wk

1 otherwise

Here g(·) is the cubic spline with 6 basis functions weighted by coefficients (λ1, . . . , λ6) (see Appendix C
for details) and hjl is the normalised coverage depth at variant l relative to the height of peak j introduced
in Section 3.4. The model parameters γ, λ and φ were estimated using the EM-algorithm with P-IRLS
(see Appendix F for details). Note that, the non-informative prior (referred to as Flat) is independent of
any genomic annotation so that each variant inWk has the same prior probability to be causal.

The fine-mapping is carried out by means of the posterior probability that the variant l ∈ Wk being
the putative causal eQTL variant,

z(l)k =
π̂
(l)
k BF(l)

k

∑m∈Wk
π̂
(m)
k BF(m)

k

,

given that the gene k is an eQTL. We defined the minimum set of loci that account for more than 90% of
cumulative posterior probability as the credible set of causal variants for each gene k.
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For the fine-mapping of BLK locus, we developed the full hierarchical model of eQTL with all the
genomic annotations previously used in the pairwise hierarchical model of caQTL. The prior probability
is defined as

π
(l)
k =

wφ
kle

ηl

∑m∈Wk
wφ

kmeηm
,

wkl =

{
PjCjk variant l is inside the ATAC peak j ∈ Wk

1 otherwise

ηl = x(l)INDELλ1 + x(l)CNVλ2 +

{
g(hkl ; λ3, λ4, . . . , λ8) l is inside the peak j ∈ Wk

0 otherwise

All model parameters Θ = {γ, λ, φ} are estimated using P-IRLS (see Appendix F for details). Here
we restrict our attention into variants that are in a peak potentially colocalised with the gene k, that
is, wkl = CjkPj if the variant l overlaps with peak j, where Cjk is the probability of pleiotropy over
linkage between gene k and peak j defined in Eq. 11 in Section 3.11. One may notice that Cjk was
calculated from the same expression data with which we perform the fine-mapping, and therefore the
fine-mapping result will be biased. However, by definition, Cjk is independent of the fact that the gene
k is an eQTL or not. Therefore it should be a proper annotation to perform the fine-mapping.

3.11 Colocalisation with other cellular QTLs

The pairwise hierarchical model can be utilised to perform the colocalisation analysis [25] of caQTLs
with other cellular QTLs such as expression QTLs (eQTLs). The reduced pairwise hierarchical model
without causal interaction hypothesis (H4.1 and H4.2) allows us to distinguish whether two traits are
pleiotropic or independent QTLs in linkage.

Because we don’t aim for fine-mapping with this model, we here used the non-informative prior
probability on the variant level. Then the regional Bayes factors are independent of any hyper-parameters
and thereby constant, such that

RBF(h)
jk ≡

1
Ljk



∑
l∈Wjk

BF(l)
j h = H1.1

∑
l∈Wjk

BF(l)
k h = H1.2

∑
l,m∈Wjk ,l 6=m

1
(Ljk − 1)

BF(l)
j BF(m)

k h = H2

∑
l∈Wjk

BF(l)
j BF(l)

k h = H3

where BF(l)
j and BF(m)

k are the Bayes factors for trait j and k at the putative causal variants l and m
obtained from the simple linear regressions, respectively. Here Ljk is the number of variants in the cis-
regulatory window Wjk so that the prior probability that variant l is causal is 1/Ljk in the window.
HereWjk is defined by the union of two 1 Mb cis-regulatory window for the trait j and k. For example,
trait j is chromatin accessibility at peak j and trait k is gene expression for gene k, Wjk is defined by
the union of 1 Mb window centred at peak j and the 1 Mb window (500 Kb on either side from the
transcription start site) for gene k. We also considered only j–k trait pairs whose distance is 500 Kb or
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less for simplicity. For example, if there are J chromatin accessibility peaks and gene expressions for
K genes genome-wide, there are potentially J × K trait pairs between chromatin accessibility and gene
expression, but the number of pairs is greatly reduced when we consider only traits that are 500 Kb
distant or less.

Using the regional Bayes factor definition, the pairwise likelihood can be written as

L2(Φ
(h)
jk ) ∝ ∏

1≤j≤J
1≤k≤K

d(j,k)<5×105

[
Φ(0)

jk + ∑
h∈H1

Φ(h)
jk RBF(h)

jk

]
,

whereH1 = {H1.1, H1.2, H2, H3}. The mixture probability Φ(h)
jk for the j–k trait pair under the hypothesis

h can be a function of various genomic annotations as before (such as genomic distance between trait
j and k). However, because we are not aiming to learn the prior probabilities here, we assume it is
constant for any trait pair, such that

Φ(h)
jk =



Ψ(0)Π(0)Ξ(0) + Ψ(1)∆(0) h = H0

Ψ(0)Π(1)Ξ(0) h = H1.1

Ψ(0)Π(0)Ξ(1) h = H1.2

Ψ(0)Π(1)Ξ(1) h = H2

Ψ(1)∆(1) h = H3

where Ψ(1) denotes the prior probability that a trait pair is pleiotropic, Π(1) denotes the prior probability
that the trait j is a QTL, Ξ(1) denotes the prior probability that the trait k is a QTL, ∆(1) denotes the prior
probability that an anchor trait (affecting the trait j and k simultaneously) is a QTL, and Ψ(0) = 1−Ψ(1),
Π(0) = 1−Π(1), Ξ(0) = 1− Ξ(1), and ∆(0) = 1− ∆(1). Note that the anchor trait can also be either trait
j or k itself, if there is causality between them. The maximum likelihood estimator of these parameters
{Π(1), Ψ(1), Ξ(1), ∆(1)} can be easily obtained by a standard EM-algorithm (see Appendix G for details).

In analogy with the pairwise hierarchical model for the single trait, the posterior probability Z(h)
jk can

be obtained from Eq. 9. The number of expected colocalised traits for the trait k (such as the number of
ATAC peaks that colocalised with the gene k) can be calculated by the sum of posterior probabilities

Nk ≡ ∑
j∈Wk

Z(h)
jk ,

whereWk is the cis-regulatory window for trait k (e.g., 500 Kb on either side of the transcription start site
of gene k). The set of genes with Nk > 1 for k = 1, . . . , K (K = 48, 325) was used to assess the efficiency
of fine-mapping eQTLs (Fig. 4A in the main text). The posterior probability of pleiotropy over linkage
is defined by

Cjk ≡
Z(3)

jk

Z(2)
jk + Z(3)

jk

(11)

which denotes the probability of pleiotropy given that trait j and k are both QTLs. This probability is
used in the hierarchical model of fine-mapping eQTLs in the previous section.

By using the colocalisation model, we also calculate the probability that ATAC peaks j and j′ are
jointly colocalised with an eQTL gene k under the causal interaction mapped between j and j′. How-
ever, the colocalisation model assumes each trait j (or k) is independent. Therefore we approximate the
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probability by its lower bound:

p(j and j′ are both colocalised with k|j and j′ are QTLs)

≤ p(j and j′ are both colocalised with k|j and j′ are causally interacting),

because the fact that j and j′ are both QTLs is a necessary condition of the existence of mapped causal
interaction, such that p(j and j′ are QTLs) ≥ p(j and j′ are causally interacting). Let Aj be the binary
random variable, such that Aj = 1 if j is a QTL; otherwise Aj = 0. Likewise Bk denotes the binary
random variable, such that Bk = 1 if k is a QTL; otherwise Bk = 0. Let Cjk denote the binary random
variable, such that Cjk = 1 if traits j and k are colocalised, otherwise Cjk = 0. Then the lower bound of
the colocalisation probability can be obtained by

Djj′k ≡ p(Cjk = 1, Cj′k = 1|Aj = 1, Aj′ = 1)

=
1

∑
bk=0

p(Cjk = 1, Cj′k = 1, Bk = bk|Aj = 1, Aj′ = 1)

=
1

∑
bk=0

p(Cjk = 1, Cj′k = 1|Bk = bk, Aj = 1, Aj′ = 1)p(Bk = bk|Aj = 1, Aj′ = 1)

=
1

∑
bk=0

p(Cjk = 1|Bk = bk, Aj = 1)p(Cjk = 1|Bk = bk, Aj′ = 1)p(Bk = bk|Aj = 1, Aj′ = 1)

= CjkCj′k p(Bk = 1|Aj = 1, Aj′ = 1)

= CjkCj′k
p(Aj = 1, Aj′ = 1|Bk = bk)p(Bk = 1)

p(Aj = 1, Aj′ = 1)

= CjkCj′k
p(Aj = 1|Bk = 1)p(Aj′ = 1|Bk = 1)p(Bk = 1)

p(Aj = 1)p(Aj′ = 1)

=
Z(3)

jk

(Z(1.1)
jk + Z(2)

jk + Z(3)
jk )(Z(1.2)

jk + Z(2)
jk + Z(3)

jk )

Z(3)
j′k

(Z(1.1)
j′k + Z(2)

j′k + Z(3)
j′k )(Z(1.2)

j′k + Z(2)
j′k + Z(3)

j′k )
Zk

since p(Cjk = 1|Aj = 1, Bk = 0) = 0, p(Aj = 1) = Z(1.1)
jk + Z(2)

jk + Z(3)
jk and p(Aj = 1|Bk = 1) =

(Z(2)
jk + Z(3)

jk )/(Z(1.2)
jk + Z(2)

jk + Z(3)
jk ). Here Zk was obtained from Eq. 14 (see Appendix. D) for the eQTL

hierarchical model without annotation (referred to as ”Flat” in Section 3.10). Using this probability we
can calculate the probability that the peak pair j and j′ are jointly colocalised with at least one gene

Djj′ ≡ p(j and j′ jointly colocalised with ≥ 1 genes|Aj = 1, Aj′ = 1)

= 1−∏
k
(1−Djj′k). (12)

The probability is used to calculate the enrichment of causal interactions for the ENCODE segmentation
categories in the next section.

3.12 Colocalisation analysis with GWAS traits

We also used the reduced pairwise hierarchical model (Section 3.11) to colocalise a GWAS locus to a
caQTL peak. We used genetic associations for the ATAC peak j and a GWAS trait within the 1Mb cis-
window Wj centred at peak j. The regional Bayes factors for the 4 alternative hypotheses are given
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by

RBF(h)
j ≡ 1

Lj



∑
l∈Wj

BF(l)
j h = H1.1

∑
l∈Wj

BF(l)
GWAS h = H1.2

∑
l,m∈Wj ,l 6=m

1
(Lj − 1)

BF(l)
j BF(m)

GWAS h = H2

∑
l∈Wj

BF(l)
j BF(l)

GWAS h = H3

where hypothesis H3 is colocalisation between a caQTL and a GWAS locus. Here BF(l)
GWAS denotes the

Bayes factor of disease association at genetic locus l ∈ Wj computed from GWAS summary statistics
(see Section 2.9 for details). The pairwise likelihood between chromatin accessibility and a GWAS trait
is given by

L2(Φ
(h)
j ) ∝ ∏

1≤j≤J

[
Φ(0)

j + ∑
h∈H1

Φ(h)
j RBF(h)

j

]
,

whereH1 = {H1.1, H1.2, H2, H3} denotes a set of alternative hypotheses and

Φ(h)
j =



Ψ(0)Π(0)Ξ(0) + Ψ(1)∆(0) h = H0

Ψ(0)Π(1)Ξ(0) h = H1.1

Ψ(0)Π(0)Ξ(1) h = H1.2

Ψ(0)Π(1)Ξ(1) h = H2

Ψ(1)∆(1) h = H3

is the mixture probability for each hypothesis h.
Because of the limited instances (j = 1, . . . , J) to estimate hyperparameters {Ψ, Π, Ξ, ∆}, we assumed

that the probability ∆1 (that there exists a genetic variant l affecting chromatin accessibility at peak j
and a GWAS trait, simultaneously) is identical to the probability Π1 (that there exists a genetic variant l
affecting chromatin accessibility at peak j) to reduce the degrees of freedom. In addition, Π̂(1) and Ξ̂(1)

are estimated by maximising the following likelihood functions

L1(Π) ∝ ∏
1≤j≤J

[
Π(0) + Π(1)RBF(1.1)

j

]
,

L1(Ξ) ∝ ∏
1≤j≤J

[
Ξ(0) + Ξ(1)RBF(1.2)

j

]
with respect to Π(1) and Ξ(1) in advance. We then plugged {Π̂, Ξ̂, ∆̂} into the pairwise likelihood to
maximise with respect to Ψ.

The posterior probability for each hypothesis was computed from

Z(h)
j =



Φ̂(0)
j

Φ̂(0)
j + ∑i∈H1

Φ̂(i)
j RBF(i)

j

h = H0

Φ̂(h)
j RBF(h)

j

Φ̂(0)
j + ∑i∈H1

Φ̂(i)
j RBF(i)

j

h ∈ H1
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and the probability of colocalisation given peak j is a caQTL is given by

p(GWAS Colocalisation|j is caQTL) =
Z(3)

j

Z(1.1)
j + Z(2)

j + Z(3)
j

which is used for the enrichment analysis of GWAS locus given that a ATAC peak is a caQTL.

3.13 Enrichment analysis

Any enrichment analysis is carried out based on the posterior probability of causality (PPC) between

peak j and k, Z(4.1)
jk and Z(4.2)

jk in Eq. 9. We don’t introduce any arbitrary threshold on PPC to binarise the
data. For a non-directional annotation Xjk for the j–k peak pair (e.g., overlapping with a topologically
associating domain)

Xjk =

{
1 j–k peak pair overlaps with a genomic annotation
0 otherwise,

we compute the 2×2 table

T = ∑
1≤j<k≤J

d(j,k)<5×105

 Xjk(Z(4.1)
jk + Z(4.2)

jk ) (1− Xjk)(Z(4.1)
jk + Z(4.2)

jk )

Xjk(1− Z(4.1)
jk − Z(4.2)

jk ) (1− Xjk)(1− Z(4.1)
jk − Z(4.2)

jk )


as if Z(4.1)

jk and Z(4.2)
jk are binary variables. The hypothesis testing of independence between causal peak

pair and the annotation is performed by

log OR = log
T11T22

T12T21
∼ N

(
0,

√
1

T11
+

1
T12

+
1

T21
+

1
T22

)
,

where Tij is the i–j element of the 2× 2 table T.
We can utilise peak level annotation, such as an ENCODE genome segmentation, to characterise

causal peak pairs. Let Aj be a binary variable which is Aj = 1 if peak j overlaps with the annotation
A, otherwise Aj = 0. Likewise, let Bj be another binary variable for the annotation B. We define a
directional annotation Yjk/Ykj, such that

Yjk =

{
1 peak j overlaps with annotation A and k overlaps with B (Aj = 1 and Bk = 1)
0 otherwise

Ykj =

{
1 peak k overlaps with annotation A and j overlaps with B (Ak = 1 and Bj = 1)
0 otherwise

Note that Yjk 6= Ykj in general. For the non-directional annotation, we compute the 2× 2 table

TD =
1
2 ∑

1≤j<k≤J
d(j,k)<5×105

 YjkZ(4.1)
jk + YkjZ

(4.2)
jk (1−Yjk)Z(4.1)

jk + (1−Ykj)Z(4.2)
jk

Yjk(1− Z(4.1)
jk ) + Ykj(1− Z(4.2)

jk ) (1−Yjk)(1− Z(4.1)
jk ) + (1−Ykj)(1− Z(4.2)

jk )


for the hypothesis testing of independence. The reason of the table divided by 2 is to avoid double
counting so that the total number of cells, TD

11 + TD
12 + TD

21 + TD
22, is equal to the number of peak pairs

used in the analysis.
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Intuitively, the odds ratio calculated from the TD captures the degree of asymmetry S between an-
notations A and B as well as enrichment E of the annotation pair A and B for the causal peak pair. Let p
be the probability that peak j and k are causally interacting (either way) and q be the peak j overlapping
with the annotation A and peak k overlapping with the annotation B (or vice versa). The underlying
model is written as

j = A, k = B j = B, k = A otherwise Total
j→ k pq + S + E pq− S + E p(1− 2q)− 2E p
j← k pq− S + E pq + S + E p(1− 2q)− 2E p

otherwise (1− 2p)q− 2E (1− 2p)q− 2E (1− 2p)(1− 2q) + 4E 1− 2p
Total q q 1− 2q 1

where S > 0 suggests the annotation pair A→ B drives the causality (i.e., A is more likely to be upstream
peaks and B is more likely to be downstream peaks) and E > 0 suggests A–B annotation pair is enriched
for the causal peak pairs. Namely, S = 0 and E = 0 suggest the A–B annotation pair is independent of
causality between peaks. It is worth noting that

E[TD] = (TD
11 + TD

12 + TD
21 + TD

22)×
(

pq + S + E p(1− q)− S− E
(1− p)q− S− E (1− p)(1− q) + S + E

)

suggesting the hypothesis testing on TD tests the compound effect S + E = 0 as the null hypothesis and
S + E > 0 for the alternative hypothesis.

We use the joint colocalisation probability defined in Eq. 12 to calculate the enrichment of an anno-
tation Yjk/Ykj for the mapped causal interactions that are also jointly colocalised with at least one eQTL.
We compute the following 2× 2 table

TD =
1
2 ∑

1≤j<k≤J
d(j,k)<5×105

 YjkZ(4.1)
jk Djk + YkjZ

(4.2)
jk Djk (1−Yjk)Z(4.1)

jk Djk + (1−Ykj)Z(4.2)
jk Djk

YjkZ(4.1)
jk (1−Djk) + YkjZ

(4.2)
jk (1−Djk) (1−Yjk)Z(4.1)

jk (1−Djk) + (1−Ykj)Z(4.2)
jk (1−Djk)

 ,

suggesting the enrichment is calculated over causally interacting peak pairs that are ”not” colocalised
with any eQTL.

To adjust a confounding effect, such as the peak height effect, for the enrichment, we stratify all peaks
J = {1, . . . , J} into 10 equally-sized quantile bins Bl = {j; (l − 1)/10 < qj ≤ l/10} for l = 1, . . . , 10,
where qj is the peak height quantile across all peaks as an example. Then we compose the direct product
Cn = Bl ×Bm for l, m = 1, . . . , 10, where n = (l − 1)× 10 + m. Now we can stratify peak pairs into 100
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quantile bins with which we compute the 2× 2 tables for each strata Cn, such that

Tn = ∑
1≤j<k≤J

d(j,k)<5×105
(j,k)∈Cn

 Xjk(Z(4.1)
jk + Z(4.2)

jk ) (1− Xjk)(Z(4.1)
jk + Z(4.2)

jk )

Xjk(1− Z(4.1)
jk − Z(4.2)

jk ) (1− Xjk)(1− Z(4.1)
jk − Z(4.2)

jk )



TD
n = ∑

1≤j<k≤J
d(j,k)<5×105

(j,k)∈Cn

 YjkZ(4.1)
jk (1−Yjk)Z(4.1)

jk

Yjk(1− Z(4.1)
jk ) (1−Yjk)(1− Z(4.1)

jk )



+ ∑
1≤j<k≤J

d(j,k)<5×105
(k,j)∈Cn

 YkjZ
(4.2)
jk (1−Ykj)Z(4.2)

jk

Ykj(1− Z(4.2)
jk ) (1−Ykj)(1− Z(4.2)

jk )



for n = 1, . . . , 100. Odds ratios derived from Tn or TD
n are then combined using the inverse variance

(fixed-effect) method which is often used in meta-analysis.

3.14 Simulation strategy

In order to simulate realistic data, we used the real genotypes in conjunction with estimated effect sizes
and standard errors from simple linear regression model and 2SLS model as well as the variant-level
prior probability. To simulate chromatin accessibility at peak j, we first selected one causal variant
l ∈ Wjk according to the estimated variant-level prior probability {π̂(jl)

jk } in the window Wjk. Then,
using Eq. 2, we simulated the chromatin accessibility at peak j for the individual i as

yij ∼ N (α̂
(l)
1j xil , (σ̂

(l)
j )2),

where σ̂
(l)
j denotes the estimated standard deviation for ε

(l)
ij in Eq. 2. For the linkage hypothesis, we

repeated the procedure for peak k by means of {π̂(km)
jk }, α̂

(m)
1k and σ̂

(m)
k , independently. For the causality

hypothesis, using Eq. 3, we further simulated the chromatin accessibility at peak k for the individual i
as

yik ∼ N (β̂
(jl)
1k yij, (σ̂

(jl)
jk )2),

where β̂
(jl)
1k = α̂

(l)
1k /α̂

(l)
1j and σ̂

(jl)
jk denotes the estimated standard deviation for ε

(jl)
ik in Eq 3. For the

assumption that peak j and k are pleiotropic, we first picked up the causal variant l ∈ Wjk according to

{π̂(∗l)
jk }, then simulated

yij ∼ N (α̂
(l)
1j xil , (σ̂

(l)
j )2),

yik ∼ N (α̂
(l)
1k xil , (σ̂

(l)
k )2),

simultaneously.
The readers might be keen to see the performance of PHM under more complicated scenarios in

which the assumptions of our mixture model are potentially violated. We first simulated two causal
variants under the hypotheses of linkage, pleiotropy and causality (top row of Supplementary Fig. 9).
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In these cases, we picked up the first causal variant l ∈ Wjk according to {π̂(jl)
jk } and then the second

causal variant l′ ∈ Wjk according to {π̂(jl′)
jk /(1− π̂

(jl)
jk )}l′ 6=l . The accessibility is simulated as

yij ∼ N (α̂
(l)
1j xil + α̂

(l′)
1j xil′ , (σ̂

(ll′)
j )2),

where we took an average of the estimated variances, (σ̂(ll′)
j )2 = [(σ̂

(l)
j )2 + (σ̂

(l′)
j )2]/2, for the variants l

and l′. We repeated the procedure for the peak k in the linkage hypothesis. For simulating the accessi-
bility at peak k downstream of j, we took an average of the MR effect sizes and the estimated variances,

β̂
(jll′)
1k = [β̂

(jl)
1k + β̂

(jl′)
1k ]/2 and (σ̂

(jll′)
jk )2 = [(σ̂

(jl)
jk )2 + (σ̂

(jl′)
jk )2]/2, for the variants l and l′. Then we simu-

lated
yik ∼ N (β̂

(jll′)
1k yij, (σ̂

(jll′)
jk )2).

For the hypothesis of pleiotropy, we picked up the two causal variants l and l′ according to {π̂(∗l)
jk } and

{π̂(∗l′)
jk /(1− π̂

(∗l)
jk )}l′ 6=l . Then we simulated

yij ∼ N (α̂
(l)
1j xil + α̂

(l′)
1j xil′ , (σ̂

(ll′)
j )2),

yik ∼ N (α̂
(l)
1k xil + α̂

(l′)
1k xil′ , (σ̂

(ll′)
k )2),

simultaneously. We also simulated chromatin accessibility at peak j and k under the hybrid hypothesis
(bottom row of Supplementary Fig. 9) in which a pair of linkage, pleiotropy and causality was consid-
ered. For the hybrid hypothesis of linkage and pleiotropy, we selected l ∈ Wjk according to {π̂(jl)

jk } and

m ∈ Wjk according to {π̂(km)
jk }, then simulated

yij ∼ N (α̂
(l)
1j xil , (σ̂

(l)
j )2),

yik ∼ N (α̂
(l)
1k xil + α̂

(m)
1k xim, (σ̂(lm)

k )2),

where (σ̂
(lm)
k )2 = [(σ̂

(l)
k )2 + (σ̂

(m)
k )2]/2. For the hybrid hypothesis of linkage and causality, we selected

l ∈ Wjk according to {π̂(jl)
jk } and m ∈ Wjk according to {π̂(km)

jk }, then simulated

yij ∼ N (α̂
(l)
1j xil , (σ̂

(l)
j )2),

yik ∼ N (β̂
(jl)
1k yij + α̂

(m)
1k xim, (σ̂(jlm)

jk )2),

where (σ̂
(jlm)
jk )2 = [(σ̂

(jl)
jk )2 + (σ̂

(m)
k )2]/2. For the hybrid hypothesis of pleiotropy and causality, we

simulated

yij ∼ N (α̂
(l)
1j xil , (σ̂

(l)
j )2),

yik ∼ N (β̂
(jl)
1k yij + α̂

(l)
1k xil , (σ̂

(jll)
jk )2),

where (σ̂
(jll)
jk )2 = [(σ̂

(jl)
jk )2 + (σ̂

(l)
k )2]/2.

3.15 Software

The software is available from GitHub https://github.com/natsuhiko/PHM.
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G1 G2 G3 G4

Pj Pk

Linkage (2 causal variants)

G1 G2

Pj Pk

Pleiotropy (2 causal variants)

G1 G2

Pj Pk

Causality (2 causal variants)

G1 G2

Pj Pk

Linkage & Pleiotropy

G1 G2

Pj Pk

Linkage & Causality

G

Pj Pk

Pleiotropy & Causality

Fig. S9: Schematic of simulation setting. All DAGs above are not considered in PHM and potentially
violate the assumption of the model.
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4 Knock-out of BLK-FAM167A locus (rs558245864)

All primers and oligonulceotides are summarised in Table S1.

4.1 Construction of enhanced Cas9-2a-GFP vector

pSpCas9(BB)-2A-GFP (PX458) and eSpCas9(1.1) were gifts from Feng Zhang (Addgene plasmid # 48138
and 71814, respectively) and pMAX-GFP was purchased from Lonza, Cologne, Germany. To remove
the hU6 promoter, gRNA scaffold and CAG enhancer sequences from PX459, the plasmid was digested
with PciI and AgeI (New England Biolabs). The ∼8 kb fragment was agarose gel-purified. The primers
pMAXcmvF and pMAXcmvR were used with 2x KAPA HiFi (Kapa Biosystems) to amplify a full length
fragment of the CMV and chimeric intron, using pMAX-GFP as a template, followed also by agarose-gel
purification. The PCR fragment containing the CMV and chimeric intron sequence was ligated into PciI
and AgeI-digested PX459 using a Gibson Assembly reaction (New England Biolabs), according the man-
ufacturer’s instructions. Following propagation in NEB5 alpha competent bacteria (New England Bio-
labs), plasmid preparations were performed with the GenElute endotoxin-free midi kit (Sigma Aldrich).
Plasmids were Sanger sequenced with the primers CMVmodQC and Cas9R1 to confirm correct insertion
events. To convert the wildtype Cas9 sequence to the enhanced Cas9 sequence, the modified PX458 plas-
mid was digested with EcoRV and BsmI (New England Biolabs), releasing a fragment of the Cas9 coding
sequence. The linearised plasmid was agarose-gel purified. To generate a replacement fragment span-
ning the three alanine substitutions in enhanced Cas9, the primers GIBeCas9FragF and GIBeCas9FragR
were used with 2× KAPA HiFi to amplify the partial Cas9 sequence from eSpCas9(1.1). This fragment
was ligated into the EcoRV and BsmI sites of the modified PX459 plasmid using a Gibson Assembly re-
action, according to the manufacturer’s instructions. Potential modified PX459 plasmids now carrying
enhanced Cas9 were prepared as above, before Sanger sequencing was performed to confirm the correct
modifications from wildtype Cas9 to enhanced Cas9.

4.2 Construction of rs558245864 targeting gRNA expression plasmid

The sgRNA expression plasmid p1261 was a kind gift from Sebastian Gerety, which was created based
on the work by [26]. p1261 was digested with BsaI to remove the stuffer sequence that sits in between the
human U6 promoter and the sgRNA backbone. BsaI digest of p1261 leaves a four-base 5’ overhang at ei-
ther end for cloning in the target-specific sgRNA sequence. Two partially complementary target-bearing
24mer oligos, rs558245864topgRNA and rs558245864botgRNA, were ordered from Sigma Aldrich and
were annealed before ligating into BsaI-digested p1261. Plasmids were prepared as above before Sanger
sequence verification of correct cloning of target-specific sgRNA sequences relative to the human U6
promoter and sgRNA backbone.

4.3 Nucleofection and GFP sorting

The LCL cell line HG00146 was cultured as described previously [1]. Two days prior to nucleofec-
tion, cells at a density of ∼ 1.5× 106 mL−1 were passaged with a one in three dilution. 2.5× 106 cells
were nucleofected with 6 µg of enhanced Cas9-2a-GFP, 0.83 µg of rs558245864 p1261 and 200 pmol of
rs558245864 alternate allele single-stranded donor (Integrated DNA Technologies) using Nucleofector
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Kit C (Lonza) with an Amaxa Nucelofector 2b (Lonza) on program X-001, according to the manufac-
turer’s method. Cells were recovered in 5 mL of conditioned growth media. Conditioned media was
made from an equal mix of fresh media and media collected from LCLs 48 hours after passage, followed
by sterile filtration. Nucleofected cells were grown for 24 hours before sorting GFP-positive and pro-
pidium iodide-negative cells into conditioned media. For GFP sorting, the top 30 % of GFP positive
cells were selected. This was about 1 % of the total cells that were nucleofected. GFP-positive cells were
expanded for 7 days before clonal selection.

4.4 Clonal selection and expansion of clones

Single propidium iodide-negative cells were flow-sorted into round bottom tissue culture-treated 96
well cluster plates (Costar) containing 150 µL of conditioned media, prepared as for the nucleofection
and supplemented with 0.25 µg mL−1 amphotericin B (Gibco). Plates were briefly spun and wells were
examined under a microscope to identify wells with a single cell. Although very rare, wells with two
or more cells were not expanded. Clonal cells were expanded with a 50 % media change with condi-
tioned media every 5 days until enough cells were present to make duplicate 96-well V-bottom plates
for genotyping.

4.5 Genotyping knock-out clones at the rs558245864 locus

Although an attempt was made to precisely engineer the alternate rs558245864 allele into HG00146, we
were unsuccessful and only succeeded in generating knock-out clones of the rs558245864 locus. Knock-
out clones were genotyped as follows: Duplicate 96-well V-bottom plates containing potential clones
were spun briefly to pellet cells. The media was removed before 20 µL of a lysis buffer containing 25
mM NaOH and 0.2 mM Na2-EDTA was added to the cells. Lysis was performed at 95 ◦C for 5 minutes
to release the genomic DNA, before the addition of 20 µL of neutralisation buffer containing 40 mM
Tris-HCL. Potential deletion clones were identified by performing a melt-curve analysis as follows: 2
µL of the genomic DNA was added to 12.5 µL of 2x KAPA SYBR Fast (Kapa Biosystems), 0.5 µL 10
µM rs558245864mcF primer, 0.5 µL 10 µM rs558245864mcR primer and 9.5 µL of nuclease-free water.
Samples were amplified on an ABI StepOne Plus real-time PCR machine (Thermo Fisher) by incubating
at 95 ◦C for 2 minutes, followed by 40 cycles of 95 ◦C for 20 seconds, 64 ◦C for 15 seconds and 72 ◦C for
15 seconds. Amplicons were then subject to a melt-curve dissociation ramping from 60 ◦C to 95 ◦C with
data collection at 0.3 ◦C increments. Possible deletion clones were identified by comparing to amplicons
generated from unedited cell lines and were then confirmed by Sanger sequencing as follows: 100 ng
of genomic DNA from potential deletion clones was mixed with 12.5 µL of 2x KAPA HiFi PCR master
mix, 1 µL 10 µM rs558245864seqF primer, 1 µL 10 µM rs558245864seqR primer and nuclease-free water,
to a final volume of 25 µL. Samples were amplified by incubating at 95 ◦C for 5 minutes, followed by
27 cycles of 98 ◦C for 20 seconds, 65 ◦C for 20 seconds and 72 ◦C for 30 seconds. PCR products were
agarose-gel purified before Sanger sequencing was performed (Eurofins Genomics) in both directions
using rs558245864seqF and rs558245864seqR primers.
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4.6 RNA-seq and ATAC-seq for rs558245864 knock-out and HG00142 lines

For each sample, total RNA was extracted from approximately 500,000 cells using the RNeasy Mini kit
(Qiagen), including the on-column DNase digestion, according the manufacturer’s instructions. RNA-
seq libraries were prepared using the KAPA Stranded mRNA-seq kit for the Illumina platform (KA-
PABiosystems) with 500 ng of total RNA, according to the manufacturer’s instructions. ATAC-seq on
the same samples was performed as previously described [1]. Paired-end reads of 75 bp were generated
on an Illumina HiSeq 4000 system for both ATAC-seq and RNA-seq. We obtained a total of 234 and 542
million fragments for ATAC-seq and RNA-seq on autosomes, respectively.

4.7 Differential chromatin accessibility and differential expression analyses

The ATAC-seq and RNA-seq data were processed in exactly the same way as described in Section 2
to obtain fragment counts for all the annotated peaks and annotated genes. For the ATAC-seq data,
instead of calling peaks from the data itself, we used the peak annotation called from the 100 samples
in the main study. We used DESeq [27] to perform differential chromatin accessibility and differential
expression analyses. We compared the two replicates from the parental line and the four replicates
from the knock-out lines. For the differential chromatin accessibility analysis, we used 214,584 peaks
with mean FPKM greater than 0 and the total fragment counts greater than 100. For the differential
expression analysis, we used 10,225 protein coding genes with mean FPKM greater than 0 and the total
fragment counts greater than 100.
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Appendices

A. Student’s t statistic to Z statistic conversion for Wakefield’s approximation

The Wakefield’s asymptotic Bayes factor approximation method assumes the input Z statistic follows
the standard normal distribution. However, the Wald test statistic of the slope from the simple linear
regression follows Student’s t distribution, which violates the asymptotic normality especially when the
sample size of the linear regression is small. In fact, the QQ-plot of approximated Bayes factors shows
the tail of the distribution is strongly deviated from the analytic Bayes factors (blue dots in Fig. S10),
suggesting the normal assumption of the Wakefield’s method is not valid for the linear regression T
statistic obtained from the 100 ATAC-seq samples.

Therefore we utilise the normal transformation Z(·) (as in Appendix C of [28]) to convert the linear
regression T statistic (from n samples) into the Z statistic, such as

Z = Z(T) = Φ−1(Fn−2(T)),

where Φ(·) and Fn(·) denote the cumulative density functions for the standard normal and Student’s
t distributions with n degrees of freedom, respectively. The transformation works perfectly for large
Bayes factors obtained from the linear regression model (red dots in Fig. S10). Note that this transfor-
mation is easily implemented, for example, on R,

T # T statistic from linear regression model

n # sample size of linear regression model

Z = sign(T) * qnorm(pt(-abs(T), n-2)) # Z to T conversion

B. Two stage least square method (2SLS)

Mendelian Randomisation (MR) is a powerful technique to perform causal inference [22]. It is often
used in Epidemiological studies to rigorously estimate the causal effect β1 of exposure X on outcome
Y, where various unknown confounding factors U hamper to perform the conventional randomised
controlled trial (Fig. S11). Instrumental variable (IV) technique is one of the few ways to estimate causal
effects without complete knowledge of all confounding factors of the exposure-outcome association.
The instrumental variable G is a genetic variant that satisfies the following assumptions. Firstly, G
has to be associated with X (IV1). Secondly, G is not associated with any confounding factor U of the
exposure-outcome association (IV2). Finally, G can only affect Y through its association with X (IV3).

Under these assumptions, the two stage least square method (2SLS) [22] is often used to estimate β1.
It comprises two regression stages: the first-stage regression of X on G, and the second-stage regression
of Y on the fitted values of X from the first stage. Suppose we have single IV with data on individuals
i = 1, . . . , n who have exposure value xi, outcome value yi and genotype dosage value gi. The first-stage
regression model is

xi = α01 + α1gi + εi (i = 1, . . . , n),
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Fig. S10: QQ-plot shows the Wakefield’s asymptotic Bayes factors (Y-axis) against the analytic Bayes
factor (X-axis) obtained by [21]. The blue dots show the linear regression T statistics of caQTL mapping
converted into Bayes factors by the Wakefield’s method. The red dots show the Bayes factors calculated
from the same T statistics, but obtained from the T to Z transformation [28] followed by the Wakefield’s
approximation. The data is based on the 100 ATAC-seq sample size. Here the variance parameter of
the prior distribution for the slope was W = 10 for the Wakefield’s approximation and σ2

a = 10 for the
analytic Bayes factor.

where εi
i.i.d.∼ N (0, σ2

X). Let us define the following sample means and (co)variances

E[G]≡ 1
n

n

∑
i=1

gi, Var(G)≡ 1
n

n

∑
i=1

(gi − E[G])2,

E[X]≡ 1
n

n

∑
i=1

xi, Cov(X, G)≡ 1
n

n

∑
i=1

(xi − E[X])(gi − E[G]),

E[Y] ≡ 1
n

n

∑
i=1

yi, Cov(Y, G)≡ 1
n

n

∑
i=1

(yi − E[Y])(gi − E[G]),

we have the least square estimate

α̂0 = E[X]− α̂1E[G],

α̂1 =
Cov(X, G)

Var(G)
.

Then the fitted values x̂i = α̂0 + α̂1gi are used in the second stage regression model

yi = β01 + β1 x̂i + ξi (i = 1, . . . , n),

where ξi
i.i.d.∼ N (0, σ2

Y) and it is also independent of εi. The least square estimate of the second-stage
regression is given by

β̂0 = E[Y]− β̂1E[X],

β̂1 =
Cov(Y, G)

Cov(X, G)
.
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G X Y
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IV3

β1

G: instrumental variable
X: exposure
Y: outcome
U: confounding factors

IV1

IV2

Fig. S 11: Schematic of Mendelian Randomisation setting. There are four key variables: instrumen-
tal variable (G), exposure (X), outcome (Y) and confounding factors (U). The arrow with solid line
indicates two variables are associated and the arrow with broken line indicates two variables are
marginally/conditionally independent. There are three assumption (IV1–IV3) that G has to satisfy.

Although the estimation of causal effect β̂1 gives the correct point estimate, the standard error from the
second-stage regression is not correct. This is because it does not take into account the uncertainty in
the first-stage regression. Under the homoscedasticity of the error term in the equation

yi = β01 + β1xi + ξi (i = 1, . . . , n),

the variance estimator of ξi in the second-stage regression is given by

σ̂2
Y =

∑n
i=1 ξ̂2

i
n− 2

where ξ̂i = yi − β̂0 − β̂1xi ( 6= yi − β̂0 − β̂1 x̂i). Therefore the asymptotic variance of the 2SLS estimator is

Var(β̂1) =
σ̂2

Y
nVar(X̂)

=
Var(Y− β̂1X)

(n− 2)Var(X)Cor(X, G)2 ,

where Var(X̂) ≡ ∑n
i=1(x̂i − E[X̂])2/n and E[X̂] ≡ ∑n

i=1 x̂i/n.

C. Nonlinear model with cubic spline function

We use the spline smoothing technique to model nonlinearity of the prior probabilities in the generalised
additive model framework [29]. The nonlinear function used in the hierarchical model

f (x; β) =
q

∑
i=1

bi(x)βi

is described as a linear combination of q cubic spline basis functions {bi(·); i = 1, . . . , q} with some
values of the unknown parameters {βi; i = 1, . . . , q}. Let the knot locations be denoted by {x∗i ; i =

1, . . . , q− 2}, a cubic spline basis is defined by b1(x) = 1, b2(x) = x, bi+2(x) = R(x, x∗i ) for i = 1, . . . , q−
2 where

R(x, z) =
1
4

[(
z− 1

2

)2
− 1

12

] [(
x− 1

2

)2
− 1

12

]
− 1

24

[(
|x− z| − 1

2

)4
− 1

2

(
|x− z| − 1

2

)2
+

7
240

]
.
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We normally introduce a penalty to secure the smoothness of f during the maximisation of likeli-
hood, because it usually overfits to the data. The integrated square of second derivative∫ 1

0
f ′′(x)2dx = β>Sβ

is often used as a penalty on wiggliness of f . Because f is linear in the parameters β = (β1, . . . , βq)>, the
penalty can always be written as a quadratic form in β, where S is a matrix whose element is Si+2,j+2 =

R(x∗i , x∗j ), for i, j = 1, . . . , q− 2 while the first two rows and columns of S are 0. (See Chapter 3.2.1 in [29]
for more details).

We have chosen a set of equi-spaced knots in [0, 1] region, such that

x∗i =
i− c

(q− 2) + 1− 2c

with the number of basis functions q = 6 and a constant c = 3/8 for the three levels of prior probabil-
ity. Given the knot locations, for example, the linear predictor of the variant level prior probability is
modelled by

ηjl = x(l)INDELλ1 + x(l)CNVλ2 +
6

∑
i=1

bi(hal)λi+3,

when the variant l is inside a flanking peak a ∈ Wjk (a 6= j).

D. Penalised iteratively reweighted least square on Θ1

We begin with maximisation of the marginal likelihood in Eq. 6 with respect to Θ1 = {Π(γ), π(λ)}. Let
Zj be the indicator variable that the peak j is a QTL and z(l)j be the indicator variable that the variant

l ∈ Wj is the putative causal caQTL for the peak j such that ∑l∈Wj
z(l)j = 1. The complete log likelihood

of the marginal structure is written by

lc
1(Θ1) =

J

∑
j=1

(1− Zj) log Π(0)
j + Zj log Π(1)

j + Zj ∑
l∈Wj

z(l)j log π
(l)
j BF(l)

j

− 1
2

λ>S1λ− 1
2

γ>S2γ, (13)

where the penalties of wiggliness for f1 and f2 are given by quadratic forms with λ = (λ1, . . . , λ9)
> and

γ = (γ1, . . . , γ6)
>, respectively (see Appendix C for detail.). The penalty matrices are defined by

S1 = ν1

(
0 0
0 S

)
+ τ I9 and S2 = ν2S + τ I6

where S is given in Appendix C and {ν1 = 5.0, ν2 = 1.0} are the smoothing parameters. Here we
also introduce a ridge-regression type penalty τ = 0.01 to address an ill-conditioned problem, such as
multiple optimum parameters (In is the n-dimensional identity matrix).

We use the Expectation-Maximisation (EM) algorithm [24] to estimate the parameters. In E-step,
the complete likelihood in Eq. 13 is averaged over the posterior distribution of missing variables Zj

and zj = (z(l)j ; l ∈ Wj)
> under the current estimate of parameters Θ̂1 to obtain the Q function, such

that Q(Θ1|Θ̂1) = E[lc
1(Θ1)|∏j p(Zj, zj|Y, Θ̂1)]. We can easily obtain the Q function from the complete

likelihood Eq. 13 by simply replacing Zj and zj with

Zj =
Π̂(1)

j
ˆRBFj

Π̂(0)
j + Π̂(1)

j
ˆRBFj

and z(l)j =
π̂
(l)
j BF(l)

j
ˆRBFj

(14)
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for j = 1, . . . , J, where ˆRBFj = ∑m∈Wj
π̂
(m)
j BF(m)

j .
In the M-step, the maximisation of Q function is performed alternately with λ and γ. Let

xjl =


(x(l)INDEL, x(l)CNV, 1, 0, b2(hjl), . . . , b6(hjl))

> l inside the focal peak j

(x(l)INDEL, x(l)CNV, 0, 1, b2(hal), . . . , b6(hal))
> l inside a flanking peak a ∈ Wj( 6= j)

(x(l)INDEL, x(l)CNV, 0, 0, 0, . . . , 0)> otherwise

(15)

be the covariates of the variant level prior probability with the relative coverage hjl or hal at variant l, so
that

π
(l)
j =

exp(x>jlλ)

∑m∈Wj
exp(x>jmλ)

.

The first and second derivative of Q with respect to λ are given by

∂Q
∂λ>

∣∣∣∣
λ=λ̂

=
J

∑
j=1

Zj ∑
l∈Wj

z(l)j x̃jl − S1λ̂ = X>1 z− S1λ̂

∂2Q
∂λ∂λ>

∣∣∣∣
λ=λ̂

= −
J

∑
j=1

Zj ∑
l∈Wj

π̂
(l)
j x̃jl x̃>jl − S1 = −X>1 W1X1 − S1

where x̃jl = xjl −∑l∈Wj
π̂
(l)
j xjl ,

z =


Z1z1

...
Z JzJ

 , X1 =


(x̃1l ; l ∈ W1)

>

...
(x̃Jl ; l ∈ WJ)

>

 and W1 = diag


Z1π̂1

...
Z Jπ̂J

 .

Note that (x̃jl ; l ∈ Wj) is a matrix whose column is x̃jl for all variants l inWj and π̂j = (π̂
(l)
j ; l ∈ Wj)

>.
The result implies that maximisation of the Q function does not require to compute the actual gradient
and hessian for an iterative optimisation approach, such as the Newton-Raphson method. Instead, each
Newton-Raphson step is equivalent to minimise the following weighted squared norm

‖y∗1 − X1λ‖2
W1

+ λ>S1λ

with respect to λ, where y∗1 = X1λ + W−1
1 z is so called the pseudodata as if it is a response variable of

the standard linear regression (see Chapter 3.4 of [29] for details). The solution to attain the minimum is
obtained by

λ̂new = R−1
1 Q>1 W

1
2

1 y∗1 , (16)

where the QR decomposition of the following expanded matrix(
W

1
2

1 X1

C1

)
= Q1R1

is used. Here C1 is a square root matrix such that S1 = C>1 C1 (e.g., obtained by Cholesky decomposition).
This optimisation approach is referred to as the penalised iteratively reweighted least square (P-IRLS)
method.
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In analogy with the optimisation with respect to λ, P-IRLS is also used to maximise the Q function
with respect to γ. Let

uj = (b1(qj), . . . , b6(qj))
>

be the covariates for the peak level prior probability for peak j with the peak height quantile qj, so that

Π(1)
j =

exp(u>j γ)

1 + exp(u>j γ)
.

The first and second derivatives of Q with respect to γ are obtained by

∂Q
∂γ>

∣∣∣∣
γ=γ̂

=
J

∑
j=1

(Zj − Π̂(1)
j )uj − S2γ̂ = X>2 (Z− Π̂(1))− S2γ̂

∂2Q
∂γ∂γ>

∣∣∣∣
γ=γ̂

= −
J

∑
j=1

Π̂(0)
j Π̂(1)

j uju>j − S2 = −X2
>W2X2 − S2,

where

Z =


Z1
...

Z J

 , Π̂(1) =


Π̂(1)

1
...

Π̂(1)
J

 , X2 =


u>1
...

u>J

 and W2 = diag


Π̂(0)

1 Π̂(1)
1

...

Π̂(0)
J Π̂(1)

J

 .

Again, each Newton-Raphson step is equivalent to minimise the weighted squared norm

‖y∗2 − X2γ‖2
W2

+ γ>S2γ

with respect to γ, where y∗2 = X2γ + W−1
2 (Z − Π̂(1)) is the pseudodata. The solution to attain the

minimum is obtained by

γ̂new = R−1
2 Q>2 W

1
2

2 y∗2 ,

where the QR decomposition of the expanded matrix(
W

1
2

2 X2

C2

)
= Q2R2

is used. Here C2 is a square root matrix such that S2 = C>2 C2. This alternate P-IRLS step for λ and γ is
performed once every M-step until arriving at a convergence.

In order to compute the standard error for λ̂ and γ̂, we use the empirical observed information matrix
(see Chapter 4.3 of [24] for details). Let us denote the expected score vector with respect to λ and γ for
peak j by

sλ
j =

∂Qj

∂λ>

∣∣∣∣
λ=λ̂

= Zj ∑
l∈Wj

z(l)j x̃jl ,

sγ
j =

∂Qj

∂γ>

∣∣∣∣
γ=γ̂

= (Zj − Π̂(1)
j )uj,

where Qj is a part of the Q function corresponding to peak j so that Q = ∑J
j=1 Qj. Then we have

Var(λ̂) ≈
[

J

∑
j=1

sλ
j (s

λ
j )
>
]−1

and Var(γ̂) ≈
[

J

∑
j=1

sγ
j (s

γ
j )
>
]−1

.
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E. Penalised iteratively reweighted least square on Θ2

By using the estimate of parameters Θ̂1 = {Π(γ̂), π(λ̂)} we then maximise the pairwise likelihood in
Eq. 7 with respect to Θ2 = {Ψ(δ)}. According to the full set of interaction hypotheses demonstrated in
Eq. 5, let Z(h)

jk be the indicator variable which is Z(h)
jk = 1 if interaction hypothesis h ∈ H is true for the

j–k peak pair; otherwise Z(h)
jk = 0. Then the complete log likelihood of the pairwise structure is written

as

lc
2(Θ2; Θ̂1) = ∑

1≤j<k≤J
d(j,k)<5×105

[
∑

h∈H0

Z(h)
jk log Φ(h)

jk + ∑
h∈H1

Z(h)
jk log Φ(h)

jk
ˆRBF(h)

jk

]
− 1

2
δ>S3δ, (17)

where the estimate of regional Bayes factors { ˆRBF(h)
jk } is followed from Eq. 4 with the estimate of variant

level prior probabilities π(λ̂) . The penalty matrix is defined by

S3 = ν3

(
S 0
0 S

)
+ τ I12

with S defined in Appendix C and the ridge regression penalty τ = 0.01.
We use the EM-algorithm to maximise Eq. 17. In the E-step, we compute the posterior probability of

each interaction hypothesis

Z(h)
jk =



Φ̂(h)
jk

∑i∈H0
Φ̂(i)

jk + ∑i∈H1
Φ̂(i)

jk
ˆRBF(i)

jk

h ∈ H0

Φ̂(h)
jk

ˆRBF(h)
jk

∑i∈H0
Φ̂(i)

jk + ∑i∈H1
Φ̂(i)

jk
ˆRBF(i)

jk

h ∈ H1

(18)

under the current estimate of parameters Θ̂2. The posterior probability is used to compute Q function
regarding the peak-pair level prior probabilities {Ψ(i)

jk ; i = 0, . . . , 3} in the M-step, such that

Q(Θ2|Θ̂2) = ∑
1≤j<k≤J

d(j,k)<5×105

[
3

∑
i=0

U(i)
jk log Ψ(i)

jk

]
− 1

2
δ>S3δ + const, (19)

where

U(i)
jk =


Z(0.0)

jk + Z(1.1)
jk + Z(1.2)

jk + Z(2)
jk i = 0 (no interaction)

Z(0.1)
jk + Z(3)

jk i = 1 (pleiotropy)

Z(0.2)
jk + Z(4.1)

jk i = 2 (causality j→ k)

Z(0.3)
jk + Z(4.2)

jk i = 3 (causality k→ j).

Let

V>jk =


v(1)jk

v(2)jk

v(3)jk

 =

 b1(djk) . . . b6(djk) 0 . . . 0
0 . . . 0 b1(djk) . . . b6(djk)

0 . . . 0 b1(djk) . . . b6(djk)
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be the covariates for the peak level prior probability for peak j with the peak pair distance djk, so that

Ψ(0)
jk =

1

1 + exp(v(1)jk δ) + exp(v(2)jk δ) + exp(v(3)jk δ)
,

Ψ(i)
jk =

exp(v(i)jk δ)

1 + exp(v(1)jk δ) + exp(v(2)jk δ) + exp(v(3)jk δ)
,

for i = 1, 2, 3. Note that v(i)jk (i = 0, . . . , 3) are row vectors. Using the following vector notations

U(−0)
jk =


U(1)

jk

U(2)
jk

U(3)
jk

 and Ψ̂(−0)
jk =


Ψ̂(1)

jk

Ψ̂(2)
jk

Ψ̂(3)
jk

 ,

the first and second derivatives of Q with respect to δ are given by

∂Q
∂δ>

∣∣∣∣
δ=δ̂

= ∑
1≤j<k≤J

d(j,k)<5×105

Vjk(U
(−0)
jk − Ψ̂(−0)

jk )− S3δ̂

= X>3 (U
(−0) − Ψ̂(−0))− S3δ̂

∂2Q
∂δ∂δ>

∣∣∣∣
δ=δ̂

= − ∑
1≤j<k≤J

d(j,k)<5×105

Vjk

[
diag

(
Ψ̂(−0)

jk

)
− Ψ̂(−0)

jk

(
Ψ̂(−0)

jk

)>]
V>jk − S3

= − ∑
1≤j<k≤J

d(j,k)<5×105

VjkPjkV>jk − S3

= −X>3 W3X3 − S3

where

U(−0)
=


U(−0)

1,2
...

U(−0)
J−1,J

 , Ψ̂(−0) =


Ψ̂(−0)

1,2
...

Ψ̂(−0)
J−1,J

 , X3 =


V>1,2

...
V>J−1,J

 and W3 =


P1,2 · · · 0

...
. . .

...
0 · · · PJ−1,J

 .

Note that the vectors and matrices above repeat the same structure across all j–k peak pairs, such that
1 ≤ j < k ≤ J and d(j, k) < 500, 000. W3 is a block diagonal matrix. This fact suggests, each Newton-
Raphson step is equivalent to minimise the weighted squared norm

‖y∗3 − X3δ‖2
W3

+ δ>S3δ

with respect to δ, where y∗3 = X3δ + W−1
3 (U(−0) − Ψ̂(−0)) is the pseudodata. The solution to attain the

minimum is obtained by

δ̂new = R−1
3 Q>3 W

1
2

3 y∗3 ,

where the QR decomposition of the expanded matrix(
W

1
2

3 X3

C3

)
= Q3R3
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is used. Here C3 is a square root matrix such that S3 = C>3 C3. In practice, it is not suitable to per-
form Cholesky Decomposition on W3 at every M-step. There is a analytic form for each block diagonal
element

P
1
2
jk =



√
(1− Ψ̂(1)

jk )Ψ̂(1)
jk −

Ψ̂(2)
jk

√
Ψ̂(1)

jk√
1− Ψ̂(1)

jk

−
Ψ̂(3)

jk

√
Ψ̂(1)

jk√
1− Ψ̂(1)

jk

0

√√√√√Ψ̂(2)
jk −

(Ψ̂(2)
jk )2

1− Ψ̂(1)
jk

−

√
Ψ̂(2)

jk Ψ̂(3)
jk√

(1− Ψ̂(1)
jk )(1− Ψ̂(1)

jk − Ψ̂(2)
jk )

0 0

√√√√√Ψ̂(3)
jk −

(Ψ̂(3)
jk )2

1− Ψ̂(1)
jk − Ψ̂(2)

jk



.

This square root matrix is also useful to compute the pseudodata with the back-solve algorithm.
In order to compute the standard error for δ̂, we use the empirical observed information matrix (see

Chapter 4.3 of [24] for details). Let us denote the expected score vector with respect to δ for j–k peak pair
by

sδ
jk =

∂Qjk

∂δ>

∣∣∣∣
δ=δ̂

= Vjk(U
(−0)
jk − Ψ̂(−0)

jk ),

where Qjk is a part of the Q function corresponding to j–k peak pair so that Q = ∑j,k Qjk. Then we have

Var(δ̂) ≈
[

∑
1≤j<k≤J

d(j,k)<5×105

sδ
jk(s

δ
jk)
>
]−1

.

Note that, the estimated standard error could be underestimated because: (1) the uncertainty in the
marginal structure (i.e., standard error of λ̂ and γ̂) is not taken into account; and (2) in reality, j–k peak
pair is not independent from j–k′ peak pair because summary statistics of peak j are shared.

F. Penalised iteratively reweighted least square for eQTL mapping

We maximise the marginal likelihood in Eq. 10 with respect to Θ = {Π(γ), π(λ)}. The complete
likelihood is essentially the same as in Eq. 13 where Zk is the indicator variable that the gene k is an
eQTL and z(l)k is the indicator variable that the variant l ∈ Wk is the putative causal eQTL for the gene k.
For the annotation comparison, the covariates for the variant level prior defined in Eq. 15 is written as

xkl ≡



bkl HiChIP
albkl HiChIP+ATAC
ckl CHi-C
al ATAC
dl ATAC+VL

alckl ATAC+CHi-C
(log wl , al)

> ATAC+PMR
(log wl , d>l )

> ATAC+PMR+VL
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with corresponding coefficients

λ ≡


(λ1, . . . , λ6)

> ATAC+VL
(φ, λ)> ATAC+PMR

(φ, λ1, . . . , λ6)
> ATAC+PMR+VL

Here

dl =

{
(b1(hjl), . . . , b6(hjl))

> l inside the peak j ∈ Wk

(0, . . . , 0)> otherwise

and bi(·), i = 1, . . . , 6 are the B-spline bases defined in Appendix C.
In the M-step, the maximisation of Q function with respect to λ is identical to minimising

‖y∗1 − X1λ‖2
W1

+ τ I

with respect to λ where y∗1 denotes the pseudodata, W1 denotes the diagonal matrix of weights and τ I
denotes the ridge type penalty, defined in Appendix D. The solution to attain the minimum is obtained
by Eq. 16 with the QR decomposition of the expanded model matrix(

W
1
2

1 X1√
τ I

)
= Q1R1.

Note that the E-step and the M-step with respect to γ are exactly same as in Appendix D.
For the full annotation model, we define the covariates

xkl = (log wkl , x(l)INDEL, x(l)CNV, d>l )
>

with λ ≡ (φ, λ1, . . . , λ8)
>. Then the identical EM-algorithm in Appendix D is applicable.

G. EM algorithm for colocalisation model

We split the mixture probability for the no QTL pair (H0) into two sub-hypotheses: (0) non-pleiotropic;
or (1) pleiotropic, such that

Φ(h)
jk =

{
Ψ(0)Π(0)Ξ(0) h = H0.0

Ψ(1)∆(0) h = H0.1,

then the E-step is identical to Eq. 18 withH0 = {H0.0, H0.1} andH1 = {H1.1, H1.2, H2, H3}.
The M-step does not require any iterative maximisation approach and the parameter estimate is

obtained only from the posterior probability Z(h)
jk . Each M-step updates the four parameters as follows:

Ψ̂(1) =
∑j,k(Z(0.1)

jk + Z(3)
jk )

∑j,k ∑h∈H Z(h)
jk

,

Π̂(1) =
∑j,k(Z(1.1)

jk + Z(2)
jk )

∑j,k(Z(0.0)
jk + Z(1.1)

jk + Z(1.2)
jk + Z(2)

jk )
,

Ξ̂(1) =
∑j,k(Z(1.2)

jk + Z(2)
jk )

∑j,k(Z(0.0)
jk + Z(1.1)

jk + Z(1.2)
jk + Z(2)

jk )
,

∆̂(1) =
∑j,k Z(3)

jk

∑j,k(Z(0.1)
jk + Z(3)

jk )
.
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