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Supplementary Table 1: Patient groups, mutation data, and clinical data. Patient codes 

depicted in color represent samples included in the seven major defined mutation groups, or which 

have either 2 FLT-ITD mutations or a mutation in either CBL or NRAS. This table also indicates 

samples where DNaseI-Seq and RNA-Seq data are either available (Y) or not available (N). 

Further details can be found in Supplementary Data-set 1. 

  

patient code Signalling NPM1 Chrom RUNX Other mutations DHS
Seq

RNA
Seq Age Sex wbc case

ITD-1 FLT3-ITD DNMT3A, TET2x2, BCOR, TP53 Y Y 45 F 56 Rel
ITD-2 FLT3-ITD tri(13) DNMT3A, TET2 Y Y 68 F 2 Pres
ITD-3 FLT3-ITD DNMT3A Y Y 80 F 143 Pres
ITD/NMP1-1 FLT3-ITD NPM1 DNMT3A, WT1 Y Y 45 F 32 Pres
ITD/NPM1-2 FLT3-ITD NPM1 Y Y 61 F 7 Rel
ITD/NPM1-3 FLT3-ITD NPM1 Y Y 66 F 91 Pres
ITD/NPM1-4 FLT3-ITD NPM1 GATA2, DNMT3A Y Y 65 F 21 Pres
ITD/NPM1-5 FLT3-ITD NPM1 DNMT3A, BCOR Y Y 68 M 190 Pres
ITD/NPM1-6 FLT3-ITD NPM1 WT1, DNMT3A, TET2, PHF6 Y Y 58 F 195 Pres
NPM1-1 NPM1 IDH1 Y Y 37 M 60 Pres
NPM1-2 NPM1 DNMT3A, TET2x2 Y Y 75 M 94 Pres
t(8;21)-1 t(8;21) TET2 Y Y 72 M 29 Pres
t(8;21)/KIT-2 KIT t(8;21) NOTCH1 Y Y 48 M 36 Pres
t(8;21)-3 FLT3-TK t(8;21) Y Y 53 M 6 Pres
t(8;21)-4 t(8;21) Y Y 45 M 2 Pres
inv(16)-1 KIT inv(16) Y Y 40 M 22 Pres
inv(16)-2 inv(16) Y Y 26 M 63 Pres
inv(16)-3 inv(16) ASXL1 Y Y 75 M 54 Pres
RUNX1-DT-1 FLT3 tri(13) RUNX1 CREBBP, DNMT3A, SF3B1 Y Y 68 M 112 Rel
RUNX1-DT/CEBPA-2 FLT3-ITD RUNX1 CEBPA, WT1x2, SF3B1, TP53 Y Y 83 M 68 Pres
RUNX1-DT-3 RUNX1 Y Y 58 M 37 Pres
RUNX1(x2)-D&T-4 RUNX1x2 SRSF2, DNMT3A, IDH2 Y Y 82 M 55 Pres
RUNX1-D-5 RUNX1 IDH1, BCORL1x2, SRSF2x2 Y Y 65 M 8 Pres
RUNX1-T/CEBPA-6 NRAS tri (8) RUNX1 CEBPA, EZH2 Y Y 75 M 107 Pres
CEBPA(x2)-1 CEBPAx2 Y Y 76 F 238 Pres
CEBPA(x2)-2 CEBPAx2, GATA2 Y Y 21 F 10 Pres
CEBPA(x2)-3 CEBPAx2, GATA2, TET2 Y Y 75 M 106 Pres
ITD(2x)/NPM1-1 FLT3-ITDx2 NPM1 DNMT3A, IDH2 Y Y 78 F 26 Pres
ITD(2x(/NPM1-2 FLT3-ITDx2 NPM1 CEBPA, IDH2 Y Y 72 F 68 Pres
NPM1/RAS-3 NRAS NPM1 PTPN11, DNMT3A, IDH1 Y Y 30 F 4 Rel
inv(3)/RAS-3 NRAS inv(3) ETV6, SF3B1 N Y 54 M 104 Pres
inv(3)/RAS-1 NRAS inv(3) GATA2, SF3B1 Y Y 59 M 4 Rel
inv(3)/CBL-2 CBL inv(3) SF3B1 Y N 34 F 21 Rel
t(8;21)/ITD(x2)-5 FLT3-ITD t(8;21) SMC1A N Y 43 M 86 Pres
RUNX1-D/JAK-1 JAK2 tri (21, 9) RUNX1 IDH2, SRSF2 Y Y 79 M 12 Pres
RUNX1-T/JAK-2 JAK2 RUNX1 TET2x2, TP53 Y Y 77 F 79 Pres
RUNX1-T-7 (NHL) tri (21) RUNX1 TET2x2, PHF6 Y Y 73 F NA Pres
CEBPA-5 CEBPA, DNMT3A N Y 79 F 40 Pres
SRSF2-1 IDH2, SRSF2 N Y 67 M 2 Pres
SRSF2-2 SOCS1, DNMT3A, IDH2, SRSF2 N Y 71 M 2 Pres
t(8;21)-1R KIT t(8;21) TET2 Y Y 72 M 29 Rel



	

 

Supplementary Table 2: List of representative position weight matrices for TF families. 
 
To improve the process of linking regulatory factors with their binding sites on DNA, we 

consolidated the different versions of transcription factor consensus binding sequences for closely 

related family members where the motif signatures are indistinguishable. For most transcription 

factor families there are typically various alternate subtly different versions of position weight 

matrices for not just different family members but also for the same factor from different data sets. 

Logos of position weight matrices used for motifs shared within transcription factor families

motif logo motif logo motif logo
AHR HSF1 PRDM1

AP-1 IKZF PU.1

AR IRF RAR

BCL6 IRX REST

CAMTA KLF RFX

C/EBP LEF1 RUNX

CREB/ATF MAF RXR

CTCF MYC/MAX SMAD

CUT MEF2 SNAI

E2F MEIS SOX

EGR MITF Sp1

ESR1 MNX1 SRF

ESRRA MYB ST18

ETS NF1 STAT3

ETS:E-box NFAT STAT5

EVI1 NFE2 STAT6

FOX NFIL3 TAL1

FOX:E-box NF-kB TCF3

GATA NFY TEAD

GFI1B NKX TFCP2

GLI NR TFDP1

HBP1 NRF1 TGIF

HES OCT THR

HHEX PAX5 VDR

HIC1 PBX VENTX

HIF1A PKNOX1 XBP1

HINFP POU4F1

HOX PPAR



	

The prevalence of so many different related consensus sequences is a major impediment to the 

construction of regulatory networks from genome-wide analyses of DNA elements. For the current 

study, we first identified a subset of almost 300 transcription factor genes that are expressed in 

one or more of our AML samples. We then inspected the motifs listed on either the HOMER or 

JASPER databases (see URLs), motifs defined in a recent large-scale study of recombinant 

proteins66, or motifs described in various other publications. We grouped together those factors 

where the motifs are essentially the same, and chose the best representative example for further 

analysis. These selections were often validated by referring to the large body of literature which is 

devoted to defining specific motifs, which also informed the choices of which orientation of motifs 

represented the conventional form used in publications. The JASPAR motifs were viewed via their 

web link (see URL section).   



	

shRNA Target sequence 

shFOXC1_B GTCACAGAGGATCGGCTTGAA 

shFOXC1_C GCCGCACCATAGCCAGGGCTT 

shNFIX_B GGAATCCGGACAATCAGAT 

shNFIX_C GCAGTCTCAGTCCTGGTTCCT 

shPOU4F1_C GCCGAGAAACTGGACCTCAAA 

shPOU4F1_E GCCGATTAACAAGACTGAAAT 

shMM GCGCGATAGCGCTAATAATTT 

 
Supplementary Table 3: List shRNA target sequences. 
 
Target sequences of shRNA sequences used in validation experiments. 

  



 

 

Supplementary Figure 1: Different types of AML adopt unique transcriptomes. (a) 

Hierarchical clustering of gene expression as determined by RNA-Seq of all patient samples. 

Clustering of log2 FPKM values for all differentially expressed genes changing expression at least 

2 fold in at least one patient as compared to normal CD34+ PBSC.  

(b) UCSC genome browser screenshots of DNaseI-Seq in all AML patients with different classes of 

mutations and normal CD34+ PBSC at POU4F1 (left panel) and FOXC1 (right panel) locus.  

(c) Hierarchical clustering of Pearson correlation coefficient between all patient samples of RNA-

Seq data: (left panel), right panel: list of mutations in cells from each patient. The correlation 

between any two patients was obtained with log2 FPKM expression values over all genes.  
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(d) UCSC genome browser screenshots of RNA-Seq reads in AML patients at POU4F1 (left panel) 

and FOXC1 (right panel) locus. Asterisks denote samples for which the matching RNA-Seq or 

DNaseI-Seq data are unavailable.  



	

 

 Supplementary Figure 2: Different types of AML adopt unique transcriptome and chromatin 

landscapes. (a) Hierarchical clustering of Pearson correlation coefficients of DNaseI accessible 

sequences from all our patient samples with normalized read counts of DNase-Seq data for the 

Up-regulated transcriptional regulator genes
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different classes of mutations also including ATAC-Seq data from Corces et al.67, with similar 

mutations (SU(nnn), mostly FLT3-ITD). The mutation class is highlighted to the right of the panel 

and by a color code below the heatmap, again showing that specific elements from specific AML-

types cluster together. Note the tight clustering of FLT3 and RAS mutant AML.  

(b) Scatter plots comparing the DNaseI tag count signals of patients with (11) and without (8) 

DNMT3 mutations against each other and against PBSCs as indicated by colored shapes.  

(c) Smooth scatter plots showing the correlation between DNase-Seq and RNA-Seq data from 

AML patients. Shown are CD34+ PBSC cells from individual  #1 versus individual #2 (left plot), 

CD34+ PBSC from individual #2 versus a patient with NPM1 and NRAS mutation (right plot). RNA-

Seq plots (top panel) and DNaseI-Seq plots (bottom panel). The coefficients of determination (R-

squared) highlighting the significance of correlation are shown on each panel. Other comparisons 

can be retrieved from the webserver.  

(d) Hierarchical clustering of log2 gene expression fold difference for all differentially transcription 

factor (TFs) and transcriptional regulator genes changing expression at least 2 fold in at least one 

patient as compared to normal CD34+ PBSC. Clustering was done only on rows (i.e., genes) while 

samples were ranked based on the clustering in Fig.1c. The heatmap colour is related to the 

degree of differential expression (fold-change (FC)). Red is up-regulated compared to normal 

CD34+ and blue is a down regulated TF. 

 

 

 

 



	

Supplementary Figure 3: Different types of AML are blocked at different stages of 

differentiation and correlation with publicly available data-sets. (a) Smooth scatter plots show 

the correlation between AML DNase-Seq and ATAC-Seq data. Top panel shows the DNAseI-Seq 
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from normal CD34+ PBSC patient #1 & #2 versus the ATAC-Seq from Hematopoietic stem cells 

(HSC) and lower panel shows the DNaseI-Seq from normal CD34+ PBSC patient #1 & #2 versus 

the ATAC-Seq from Monocytes (Mono). The coefficients of determination (R-squared) highlighting 

the significance of correlation are shown on each panel. 

(b) Hierarchical clustering of Pearson correlation coefficient between DNaseI-Seq data from all 

patient samples together with ATAC-seq data from Corces et al.66 The correlation between any two 

patients was obtained with normalized read counts calculated with +/- 200 bases from the peak 

summit.  

(c) Gene set enrichment analysis for the up-regulated genes that are at least 2 fold difference 

compared to the normal CD34+. The AML up-regulated genes were tested for enrichment against 

the common myeloid progenitors (CMP) versus Granulocyte Macrophage Precursors (GMP) taken 

from Corces et al66 RNA-seq data. p and q(FDR) values highlighting the significance of enrichment 

are shown on each panel. 

(d) Heatmap showing density enrichment of H3K27Ac peaks from McKeown et al., 2017 ranked 

according to the same coordinates of the DNase-Seq within the clusters (left heatmap), the 

H3K27Ac densities were plotted with a window size of +/- 2 kb around the DNaseI-Seq peaks 

summit. Selected AML-specific blocks of peaks are highlighted. The asterisk highlights samples 

inv(3)/CBL-2 for which RNA-Seq data are unavailable. 
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Supplementary Figure 4: AML-specifically active cis-regulatory elements cluster into 

common and unique chromatin landscapes and correlate with the upregulation of 

expression of the nearest genes. (a) Venn diagrams depicting the overlaps of subsets of DHSs 

which are up regulated compared to CD34+ve PBSCs within each of the 7 mutation groups. These 

groups were generated as the average log2 values for 7 distinct subsets of AMLs that carried the 

same specific mutations in key regulators. These 7 mutation groups are defined on the basis of 

average values derived from 3 ITD patients, 6 ITD/NPM1 patients, 2 NPM1 patients, 4 t(8;21) 

patients, 3 inv(16) patients, 6 RUNX1 patients, and 3 patients with 2 CEBPA mutations. These 

groups are defined in Table S1 (note colour code). Up-regulated DHSs are defined as being at 

least 3-fold greater than in PBSCs, and have a DHS signal spanning a 400 bp window of at least 

64.  

(b) De novo motif search results using Homer for the up regulated DHSs groups and in overlapping 

deregulated DHSs for ITD and/or NPM1 and for CEBPA and RUNX1 that are shown in (a) the 

numbers indicate of percentage of each subset that contains the identified motif.  

(c) Gene set enrichment analysis for all expressed genes that are annotated to the DHSs identified 

in each of the AML specific 20 clusters, the enrichment scores (right panel) are aligned against 

each of the 20 clusters (left panel) that was initially described in Fig. 2a. The target genes were 

tested for enrichment against all AML RNA-seq data; red color indicates that these genes are 

enriched with up-regulated genes compared to CD34+ PBSC.  

(d) Correlation of gene expression with DNaseI tag count as exemplified for the POU4F1 gene 

(see also Supplementary Fig.1 b,d).  

(e) Bar graphs depicting the expression level for some of the targets differentially expressed 

genes, the FPKM values were plotted on the y-axis for each AML samples used in this study, the 

color code identified each of the mutation groups. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



	

 

Supplementary Figure 5: Common and group-specific DHS associate with genes belonging 

to different functional groups. Boxplots validating gene expression patterns for some of the 

differentially expressed genes using gene expression data from Verhaak et al (2009).  P-values 

highlighting the significance of differences are shown on each panel; the t-test was used to 

calculate the p-values.   
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Supplementary Figure 6: AML-specifically active cis-regulatory elements are characterized 

by specific transcription factor binding patterns. (a) UCSC genome browser screenshot of 

DNAseI-Seq data aligned with digital footprints at the C3AE1 locus. The screenshot shows the 

DHSs for one patient from each group. Footprint probabilities as calculated by Wellington are 
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indicated as grey density below the lines. The bottom indicates the precise location of occupied 

RUNX, C/EBP and AP-1 footprints.  

(b) Percentage of the footprints in the AML specific DHSs for the 20 clusters identified in Fig. 2a.  

The footprints were identified using the Wellington algorithm. We first identified differential 

footprints for each AML sample compared to the CD34+ PBSCs and then the percentage of these 

differential footprints in the DHS subsets in the 20 clusters was calculated.  

 (c) Percentage of footprints with RUNX motifs in the indicated AML-types peaks which are bound 

by RUNX1 or RUNX1-ETO in ChIP assays from 22,33,66.  

(d) Heatmap depicting the degree of motif enrichment after hierarchical clustering of all (not just 

the specific) motif enrichments for each of the mutation-specific AML groups. Enrichment scores 

were calculated by the level of motif enrichment in all the footprints of all Hi-read depth samples for 

each group, as compared to the union of footprints in all experiments.  

  



	

 

Supplementary Figure 7: Capture HiC shows differences in cis-regulatory interactions 

between different types of AML and normal cells. (a) Smooth scatter plots show the correlation 



	

between t(8;21)-1 presentation and t(8;21)-1 relapse AML DNAseI-Seq data. The coefficients of 

determination (R-squared) highlighting the significance of correlation are shown on each panel. 

 

(b) Heatmaps show the raw overall inter and intra interactions of the promoter capture HiC data for 

all chromosomes for FLT3-ITD (ITD/NPM1-2, left), t(8;21) (middle) and CD34+ (right) across all 

chromosomes.  

(c) Heatmaps showing the raw interactions of the promoter capture HiC data using purified patient 

blasts on chromosome 2 for the FLT3-ITD (FLT3-ITD/NPM1 patient) (left), t(8;21) (middle) and 

CD34+ (right), a UCSC tracks is shown below each heatmap.  

(d) Bar figure showing the percentage of DHSs within each of the 20 clusters identified in Fig. 2a 

that have differential interactions compared to CD34+ cells.  

(e, f) percentage of DHSs within each of the 20 clusters interacting with the nearest gene within 

differential interactions for all genes expressed genes as identified by the RNA-Seq data. e: FLT3-

ITD and f: t(8;21).  

(g) Heatmap of differential interactions ranked by the strength of interaction (-log p-value) from 

highly significant to less significant for the FLT3-ITD and from less significant to more significant for 

the t(8;21) (outer left panel). Plotted along-side is the gene expression fold-difference for the FLT3-

ITD compared to the t(8;21) (middle panel) and the DHS fold difference FLT3-ITD versus the 

t(8;21) (right panel). Outmost right panel top: The top enriched GO terms for up regulated genes 

associated with differentially interacting DHSs in the FLT3-ITD compared the t(8;21). Bottom: the 

top enriched GO terms for the up regulated genes in the t(8;21) compared to the FLT3-ITD.  

(h) UCSC genome browser showing a screenshot of KLF2. The top two tracks display the log p-

value of the capture HiC interaction for KLF2 promoter as viewpoint, the following two tracks 

display log p-value of the differential interaction of the t(8;21) and the FLT3-ITD compared to the 

CD34+. Shown are also the DNaseI-Seq and RNA-Seq data of t(8;21), FLT3-ITD and CD34+ 

PBSC.  

 

 

 

 

  



	

 

Supplemental Figure 8: Interactions are representative for their patient groups and the 

majority of interactions are shared. (a) Bar diagram showing the percentage of DHSs involved 
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in significant interactions. (I) Bar diagram showing the percentage of DHSs involved in significant 

differential interactions compared to CD34+ cells. (b) Bar diagram showing the percentage of 

DHSs involved in significant differential interactions for DHSs unique to FLT3-ITD or t(8;21) DHSs 

compared to CD34+ cells, with DHS common to FLT3-ITD and t(8;21) being excluded.  

(c) Enriched footprinted motifs in DHS associated each of the 20 clusters involved in differential 

interactions for the two patients. Motifs for transcription factors normally not expressed in myeloid 

cells are highlighted in yellow, motifs for inducible factors are marked in green.  

(d) Percentage of all DHSs with interactions present in each dataset of each individual patients,  

(e) Heatmap highlighting the percentage of AML-type specific DHS with interactions found in the 

different patient groups, indicating that the patient chosen for the Chi-C experiment are 

representative for each patient group.  

(f) Percentage of up-regulated gens associated with DHS clusters that have significant interactions 

in any of the three Chi-C experiments.  

(h) Overlap of all DHSs underlying interactions in all three samples as indicated demonstrating that 

the majority of interactions are the same in all three samples.  

  



	

 

 

Supplementary Figure 9: Identification of transcription factor network components driving 

the expression of TF genes in each AML subtype which are shared with CD34+ cells.  Here 

we projected the links from the indicated AML subtypes onto the CD34+ footprints.  
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(a) Analysis strategy. (b) Shared t(8;21) TF network, (c) Shared CEBPA(x2) TF, (d) Shared Inv(16) 

TF network, (e) Shared Mutant RUNX1 TF network, (f) Shared FLT3-ITD/NPM1 TF network, (g) 

Shared NPM1- TF network. Factor families binding to the same motif as shown in Table S2 form a 

node contained within a circle. Arrows going outwards from the entire node highlight footprinted 

motifs in individual genes generated by any member of this factor family whereby the footprint was 

annotated to the gene using the Chi-C data where possible, otherwise to the nearest gene. The 

expression level (FKPM) for the individual genes is depicted in white (low)/red (high) colour. An 

orange smooth ring around the circle indicates that this gene is specifically up-regulated in this 

type of AML compared to CD34+ PBSCs and/or other AML types, a dotted circle indicates a gene 

that is up-regulated as compared to CD34+ cells. Genes with no outgoing arrows due to a lack of 

know binding motifs are highlighted by an octagon shape. For a detailed guide to node and edge 

attributes: See legend of Fig 6. 

  



	

 

 

Supplementary Figure 10: AML type-specifically expressed transcription factors are 

required for leukemic growth. (a, b, c) Dot plots showing POU4F1 (a), FOXC1 (b) and NFIX   
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(c) mRNA expression after transduction with the indicated shRNA and control lentiviruses in 

Kasumi-1, MV4-11 and Fujioka cell lines, respectively. Note that Fujioka cells express high levels 

of FOXC1 and were only used to test the functionality of our lentiviral construct. FOXC1 is not 

highly expressed in MV4-11 cells.  

(d-f) Western Blots showing the efficiencies of shRNA knock-down for FOXC1 (d), NFIX (e) and 

POU4F1 (f), images are representative of three independent experiments.   

(g - i) Dot plots showing doubling time of t(8;21) Kasumi-1 cells after transduction with shPOU4F1 

(g), MV4-11 cells after transduction with shNFIX (h) and  of Kasumi-1 cells after transduction with 

shNFIX (i).   

(j, k): doubling times of Kasumi-1 (j) and MV4-11 cells (k) expressing a DOX inducible version of a 

dominant negative FOS peptide (dnFOS) (k,m) as well as an empty vector control (l,o).  

All experiments were performed in triplicate as detailed in Online Methods. In all dot plots n=3 

independent biological replicates with p values calculated using a two-tailed Student’s t-test. Error 

bars show standard error of the mean. (l) Pictures of representative colonies derived from FLT3-

ITD patient cells and CD34+ PBSCs transduced with the indicated lentiviral vectors. 

  



	

2. SUPPLEMENTARY NOTES AND DISCUSSION 
 
The complexity of our data allows extensive integration with published data-sets, and allows us to 

address specific questions of specialist interest which cannot be extensively discussed in the main 

paper. Here we show examples of such analyses.  

 

 

Determining the stage of the differentiation block in different AML subtypes 

We used our DHS data to examine whether the mutation class and its associated DHS pattern 

correlated with a block at a specific stage of the differentiation. Here we used published ATAC-Seq 

data67 describing the open chromatin landscape of normal stem and progenitor cells (Fig 2a). Our 

DNaseI-Seq data correlated well with these data (Fig S3a and S3b), whereby CD34+ PBSC 

sequences clustered with hematopoietic stem cells (HSCs) and early progenitors but not 

monocytic cells. When compared to the various types of progenitor cells, t(8;21), inv(16), 

CEBPA(x2) and NPM1-mutated AML displayed distal element patterns most similar to those of 

normal GMPs, with some differentiation into monocytes (Fig SN1b). In contrast, RUNX1 and 

FLT3-ITD/NPM1 mutated AML displayed a spread of lineage-specific patterns with little or no 

monocytic differentiation (Fig SN1b). Gene-set enrichment analysis comparing the gene 

expression patterns of AML cells with the various progenitor stages confirmed that the mutation-

group specific cistrome was mirrored by the gene expression pattern (Fig SN1c). However, 

although AML subtypes showed some characteristics of normal progenitor cells, they still clustered 

away from normal cells (Suppementary Fig 3b). These data indicate how AML cells reprogram 

their chromatin and that cell differentiation goes “sideways”, meaning that cells adopt a separate 

identity compared to all stages of normal myeloid cells. 



	
 

Figure SN1
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ATAC-Seq & RNA-Seq data from Corces et al., 2016
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Figure SN1: Different types of AML are blocked at different stages of differentiation and are 

regulated by different transcriptional network. (a) Hematopoietic hierarchy; shown are some of 

the precursor stages from which ATAC-seq and RNA-seq data were generated in Corces et al., 

2016: Hematopoietic stem cells (HSC), common myeloid progenitors (CMP), common lymphoid 

progenitors (CLP), Megakaryocyte Erythrocyte Precursors (MEP) and Granulocyte Macrophage 

Precursors (GMP). (b) Clustering of the correlation of percentage of peak overlap between 

DNaseI-Seq and ATAC-seq data by first generating a matrix with all overlap percentages between 

all DHS peaks, and ATAC-seq peaks and then hierarchically clustering. (c) Gene set enrichment 

analysis for the differentially expressed genes that are at least 2-fold different compared to the 

normal CD34+ PBSCs. Up and down regulated gene expression patterns were tested for their 

similarity to specific pairs of progenitor RNA-seq data from Corces et al. 2016, representing 

different steps of differentiation. Up-regulated genes are shown in top panel and the bottom panel 

shows the down-regulated genes. (d) The percentage of DHS peaks that overlap with ATAC-Seq 

data from different progenitor types, DHS clusters from Fig. 2a was overlapped with each of the 

progenitor ATAC peaks; these include CLP, CMP, GMP, MPP, LMPP, MEP and Monocyte 

populations. 

 

 

Comprehensive motif analysis of occupied sequences within DHS in AML patients 

The full complement of all DHSs in all cell types occupies a much larger sequence space within the 

genome than the DHSs present in any one cell type. To define the full complement of ~128,000 

distal DHSs present in either PBSCs or the AML samples included in this study we created a 

merged data set. To complement our digital footprinting analyses of these DHSs we identified 

enriched DNA-binding motifs in each of the 20 clusters in Fig. 2a using HOMER68 (Figure SN1a). 

The vast majority of all DHS clusters show an enrichment of occupied RUNX1 and ETS motifs 

which forms the backbone of each AML TF network. The same was true for AP-1 motifs which 

were enriched in most AML-specific clusters, consistent with the presence of signalling mutations 

in most samples. In general, this analysis confirmed the results of our footprinting analysis. We 

show that (i) the enrichment of a POU4F1 motif in DHSs in cluster 2 linked to t(8;21) and CEBPA 

double mutant AML, (ii) the E-box in cluster 17 is shared by RUNX1, CEBPA, t(8;21) and inv(16) 

AML, and (iii) the HOX and Nuclear Factor I (NFI) motif signatures in the FLT3-ITD/NPM1–specific 

Cluster 19.  

The mutation-specific DHS subgroups defined in Supplementary Fig 4 were also distinct 

from a subset of 5460 DHSs which were up-regulated in GMPs compared to PBSCs (Fig. SN1b). 

Just 146 of the 942 DHSs shared by the ITD and NPM1 subgroups, and 71 of the 228 DHSs 

shared by the RUNX1, CEBPA, t(8;21) and inv(16) subgroups were up-regulated in GMPs, the 

population which was otherwise the most similar to AML blasts. These AML-specific subsets of 

DHSs maintained a common AP-1/ETS signature, while the t(8;21), inv(16), RUNX1 group 



	

maintained an E-box signature. When analysed as scatter blots (Fig. SN1b), the 942 ITD/NPM1 

group-specific DHSs show strong upregulation in the ITD/NPM1 AML cells, but there is much less 

variation between these DHSs in PBSCs compared to ATAC peaks at these regions in GMPs.  
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Figure SN2a: Comprehensive motif analysis of footprinted sequences within DHS clusters 

1-20 (related to Figure 3A). The major differentially enriched motifs are depicted in red.  

 

 

 

 

Figure SN2b: Top: Venn diagrams depicting the overlaps of subsets of DHSs which are up-

regulated in specific AML mutation classes, and DHSs which are upregulated in GMPs, relative to 

PBSCs. This analysis evaluated 942 DHSs which are upregulated in FLT-ITD, FLT3-ITD/NPM1 

and NPM1 sub-types of AML relative to CD34+ PBSCs, and found that just 15% of these DHSs 

were also upregulated in GMPs relative to PBSCs (146 DHSs). We also evaluated 914 DHSs 

upregulated in the t(8;21), inv(16) and CEBPA subtypes of AML and another overlapping group of 
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340 DHSs upregulated in the t(8;21), inv(16) and RUNX1 subtypes of AML. The majority of these 

DHSs were also AML-specific as they were not upregulated in GMPs. Furthermore, the above two 

major groupings of upregulated DHSs were also unrelated to each other as just 179 DHSs were 

shared between the above groups of 942 and 914 DHSs that define these groupings. The main 

features distinguishing the major groupings were the enrichment for EGR and C/EBP motifs in the 

ITD/NPM1 grouping, and E-box motifs in the t(8;21/inv(16)/RUNX1 grouping. Bottom: Scatter 

plots showing DHS peak sizes for the 942 ITD/NPM1-specific DHSs in ITD/NPM1 AML cells 

relative to PBSCs, and ATAC peaks for the same regions in GMPs relative to DHSs in PBSCs. 

This analysis also confirms that it is the FLT3-ITD and not the DNMT3A mutation that underlies 

differences to CD34+ PBSCs. 

 

 

Our detailed analysis of AML-type-specific DHSs also allowed us to identify distal elements 

that were active in normal CD34+ cells but which were specifically lost in in AML cells. When 

investigated in parallel with the analyses of the progenitor-specific DHS profiles, and the block in 

differentiation seen in the AML cells, these analyses can shed additional light on the precise nature 

of the defect seen in the AML cells. Similar to the analysis of up-regulated DHSs shown in Fig. 3a, 

Fig. SN2a shows a supervised clustering analysis of down-regulated DHSs together with a search 

for enriched motifs in such sites (Fig. SN2b) as in Fig SN1, with the DHSs present in CD34+ cells 

but not in AML cells highlighted in yellow. The motif analyses of the cluster-specific groups (Fig. 

SN2B) revealed a loss of HOX motifs in clusters 4 and 20 which are specifically down-regulated in 

the closely related t(8;21), Inv(16) and CEBPA groups of AML samples, confirming that HOX 

factors play no role in programming these sub-types of AML-type. It also shows that GATA-motifs 

were enriched in cluster 5 spanning all of the mutation-specific subgroups of DHSs that are lost in 

AML cells compared to PBSCs, thereby explaining why no GATA motifs were enriched in the AML-

type specific DHSs (Fig.4; Supplementary Fig 4b). In combination, these results indicate that 

such cells are past the stage where they are dependent on GATA2 and are unrelated to the 

GATA1 dependent erythroid lineage 69,70. This is in contrast to another type of CBF AML, the 

t(3;21) which carries a translocation fusing the DNA binding domain of RUNX1 to the EVI1 

oncogene, whose survival is dependent on GATA2 expression3. 

 In parallel with the above clustering analysis, we also directly identified mutation group-

specific down-regulated DHSs (Fig. SN3a) by the same methodology as used for upregulated 

DHSs depicted in Supplementary Fig 4a. The motif analyses of these groups ((Fig. SN3b) 

confirmed the enrichment of GATA motifs in down-regulated DHSs in AML, together with a 

frequent loss of E-box motifs, which typically co-localize with GATA motifs in undifferentiated 

HSCs. DHSs lost in t(8;21) and inv(16) were enriched in HOX motifs, while IRF and/or NF-E2 

motifs were enriched in several clusters. Interestingly, ETS, RUNX and AP-1 motifs were just as 



	

likely to be enriched in down-regulated DHSs (Fig.SN3b) as in up-regulated DHSs 

(Supplementary Fig. 4b). 

 

 

 

Figure SN3: Analysis of DHSs lost in AML-type specific DHS clusters as compared 

toprogenitor cells 

(a) Heatmap depicting unsupervised K-mean clustering of the DNase-Seq log2 signals of DHS 

peaks in each AML sample which are either lost as compared to PBSCs (yellow) or shared with 
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PBSC (blue). Clustering was done only on rows (DHS peaks) while samples were ranked based 

on the clustering in Fig. 1c.  

(b) De novo motif search results for selected clusters as indicated.  

(c) The percentage of DHS peaks that overlap with ATAC-Seq data from different progenitor types, 

the overlap was done between the DHS clusters from Fig.SN2a and each of the primary ATAC 

peaks; these include CLP, CMP, GMP, MPP, LMPP, MEP and Monocyte populations.  
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Figure SN4: Analysis of down-regulated DHS groups.  
 
(a) Venn diagrams depicting the overlaps between mutation groups for DHSs that are down 

regulated compared to CD34+ve PBSCs. The down-regulated DHSs are defined as being at least 

3-fold less than in PBSCs, for DHSs where the signal spanning a 400 bp window is at least 64 in 

PBSCs.  

(b) De novo motif search results for the down regulated DHSs classes and in overlapping down-

regulated DHSs for ITD and/or NPM1 and for CEBPA and RUNX1 that are shown in Fig. SN2a. 

 

 

Analysis of transcription factor cooperation in different types of AML  

TFs do not work alone, but cooperate to form large cooperating complexes which may be potential 

target of therapeutic intervention using small molecule approaches as exemplified in the case of 

RUNX1 71. To examine whether it was possible to identify AML-type specific complexes in an 

unbiased way, we identified footprints within each mutation-specific AML group, but not in PBSCs, 

and used these sites to perform bootstrapping analyses searching for significant co-localizing 

occupied motifs within 50 bp for the main patient groups (Fig SN4, for the identity of motifs see 

Table S2). We have recently shown that such an analysis highlights the presence of co-localizing 

TF complexes identified by biochemical means such as pull-down or ChIP experiments. Such 

experiments showed that the product of the t(3;21) translocation, RUNX1-EVI1 associates with 

GATA2 and AP-172 or the complex assembled by RUNX1-ETO associates with ETS and E-box 

binding factors73,74. In both types of AML, knockdown of one component of the complex led to a 

reduction the growth of AML cells. We confirmed the co-localization of specific occupied motifs in 

the larger t(8;21) patient group analysed here (Fig SN4a). The occupied motifs for POU4F1 were 

not part of this cluster, suggesting that this factor is not part of a larger complex although its motif 

significantly co-localizes with a number of other factors individually. The CEBPA double mutant 

group (Fig SN1b) is characterized by the co-localization of occupied C/EBP and RUNX motifs, 

indicating that such cells contain still C/EBP binding activity. Again, occupied motifs for POU4F1 

were not part of this cluster and co-localized with individual motifs. The RUNX1 group contained 

two co-localizing motif clusters, one consisting of E-box (TCF3) and ETS motifs and the other of 

NF1 and E-box (MYC/MAX) motifs (Fig SN4c), respectively. 

 Inv(16) deregulates CBF function and, similar to RUNX1-ETO, RUNX1/CBFβ-MYH11 also 

co-localizes with ETS/RUNX1 and E-box factors as shown by ChIP in cell lines 75. However, our 

bootstrapping analysis of the inv(16) group in patient cells did not feature co-localisation of 

occupied RUNX motifs with other factors, but was associated with co-localising AP-1 motifs (Fig 

SN3d). This result could be explained by a different stability of the RUNX1/CBFβ-MYH11 complex 

in the nucleus as the ability to generate a footprint is directly correlated to the TF residence time 76.  

 The analysis of the ITD/NPM1 group revealed co-localizing NF1, AP-1, C/EBP and RUNX 

motifs (Fig SN4e) together with a number of co-localizing motif pairs which highlights the fact that 



	

AML blasts from this type of AML show a signature specific for different differentiation stages (Fig 

SN1b). RUNX1 appears to occupy centre stage in this group. Its expression is up-regulated77 and 

it cooperates with FLT3-ITD to establish AML in mice 78, indicating that blocking RUNX1 may be a 

valuable strategy for therapy for FLT3-ITD AML. Preliminary experiments indeed show that primary 

FLT3-ITD cells are indeed highly sensitive to small molecule inhibition71 of RUNX1 (data not 

shown). Occupied AP-1 motifs were prominently present and clustered with C/EBP motifs, 

providing an additional explanation for the sensitivity of FLT3-ITD cells to AP-1 inhibition via 

dnFOS. Similarly, normal CD34+ PBSCs showed multiple enriched co-localizing TF motifs (such 

as RUNX, ETS and GATA motifs), highlighting the multi-lineage differentiation capacity and 

precursor composition of these cells (Fig SN4f). In summary, our analysis highlights that different 

combinations of TFs cooperate to drive the activity of AML subtype-specific regulatory modules 

and highlight those combinations that may be of therapeutic relevance. Our data are preliminary 

and need to be confirmed by biochemical studies, but we believe that such analyses could form 

the foundation of more detailed experiments investigating the relevance of specific TF interactions 

for cis-element activity, similar to what has been described in3,5. 
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Figure SN5: Significance of co-localizing occupied TF binding motifs as indicated by 

bootstrapping analysis of the indicated mutation groups (a – f). In this analysis we determine 

the significance of co-localization of the indicated occupied factor binding motifs within 50 bp of 

sequence within specific DHSs as compared to the union of all DHSs. The heatmap shows 

hierarchical clustering of footprinted motif co-occurrences by z-score within AML specific DHSs. 

The motif search was done within footprint coordinates and motif frequencies were calculated 

within a window of 50 bp. Orange and green colours indicate statistically over- and 

underrepresented motif co-occurrences, respectively. Only motifs occurring >50 times were 

considered. Motifs in AML cells forming a cluster underlying a potential complex are boxed in. 

 

 

Identification of regulators of leukemogenesis and leukemia maintenance using 

footprinting-based TF network construction 

Besides the regulators and regulator families described in the main text (POU4F1, NFIX, FOXC1 

and AP-1), our analysis highlighted a number of transcription factor genes that form regulatory 

nodes in AML subtype specific networks of up-regulated TF genes and appear to have AML-

specific roles (Fig 6, Fig. SN6 a-f). Some of these factors had already been identified to play a role 

in AML in general, but had not yet been assigned to a specific type of AML. For example, the 

homeobox gene VENTX which forms a node in the t(8;21) and FLT3-ITD/NPM1 TF networks had 

been shown to promote myeloid proliferation and also to cooperate with RUNX1-ETO, the product 

of the t(8;21)79. VENTX forms a node in FLT3 ITD/NPM1 cells as well, but not in the CEBPA (x2) 

AML where this gene is not expressed. Another node in the t(8;21) is PAX5 which is responsible 

for the up-regulation of the B-cell marker CD19 in these cells80. It has previously been shown that 

POU4F1 activated PAX581 together with other B cell specific gens, but our network analysis shows 

a number of additional links to this gene. The most prominent link is coming from the AP-1 factor 

family which could explain why the expression of this gene responds to signalling modulation82. 

This factor family is also responsible for the up-regulation of the NRF5A2 gene in the t(8;21) and 

RUNX1 mutant AML which has been shown to be required to restrict the inflammatory response in 

pancreatic cells83. This again highlights the activation of multiple signalling pathways in this type of 

AML and at the same time indicates the potential activation of a feedback mechanism that may 

dampen excessive inflammatory signals in these cells. Last, but not least the FLT3-ITD/NPM1 

network shows highly specific IRX3 expression as a major node whose expression which is again 

linked to the AP-1 family and to the expression of the homeobox gene PBX3. Similar to FOXC1, 

activation of this gene has been shown to be linked to a differentiation block in myeloid cells 84.  

Another interesting observation concerns the role of the NFIL3 gene encoding the bZIP protein 

NFIL3 which is up-regulated in the majority of all our AML patients and forms a major node with 

multiple, but differential links in all our networks. NFIL3 plays multiple roles in the immune system, 



	

in particular in lymphoid development85, where it up-regulates cytokine genes such as IL-386 but 

also in other tissues. So far no connection was seem to AML, but our data would predict that this 

gene is a major coordinator of signalling processes in the myeloid lineage as it is linked with 

members of the AP-1 factor family as well as with CEBP family members,  

 Our analysis of the larger AML-type specific TF networks where we did not restrict our 

analysis to up-regulated genes (Fig. SN5 depicting links specific for AML subtype specific genes) 

or the full network  highlighted a number of additional interesting observations (links between all TF 

genes in all AML subtypes and CD34+ PBSCs, are shown on our webserver (see URL section)). 

We observed that the Aryl-hydrocarbon-receptor (AHR) formed a major node in all AML subtypes 

and shows a link to the AP-1 family. AHR has been implicated to control the balance between stem 

cell proliferation and quiescence87 and inhibitors of this factor have been used to maintain 

proliferating stem cells in culture88. It is tempting to speculate that this factor performs the same 

control function in leukemic cells. In summary, our analyses provide ample opportunities for 

hypothesis testing. The next step will be, to link the transcription factor networks to the up- or 

down-regulation of effector genes and exploit this information in systems pharmacology 

approaches. 
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CEBPA(x2)-specific TF network 
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Inv(16) specific TF network 
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Mutant RUNX1-specific TF network  
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FLT3-ITD/NPM1 specific TF network 
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NPM1-specific TF network 
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Figure SN6: Identification of transcription factor networks driving the expression of TF 

genes in each AML subtype.  Here we plotted links connecting all TF encoding genes which are 

specific for the respective AML subtype irrespective whether they were up-regulated or not. Top 

panels: Analysis strategy. (a) t(8;21)-specific TF network, (b) CEBPA(x2)-specific TF network, (c) 

Inv(16) specific TF network, (d) Mutant RUNX1-specific TF network, e) FLT3-ITD/NPM1 specific 

TF network, (f) NPM1-specific TF network. Factor families binding to the same motif as shown in 

Table S2 form a node contained within a circle. Arrows going outwards from the entire node 

highlight footprinted motifs in individual genes generated by any member of this factor family 

whereby the footprint was annotated to the gene using the CHiC data where possible, otherwise to 

the nearest gene. The expression level (FKPM) for the individual genes is depicted in white 

(low)/red (high) colour. An orange smooth ring around the circle indicates that this gene is 

specifically up-regulated in this type of AML compared to CD34+ PBSCs and/or other AML types, a 

dotted circle indicates a gene that is up-regulated as compared to CD34+ cells. Genes with no 

outgoing arrows due to a lack of know binding motifs are highlighted by their octagon shapes. For 

a detailed guide to node and edge attributes: See Fig. 6.  

 

 

 

3. ADDITIONAL SUPPLEMENTARY BIOINFORMATICS METHODS 

Further DNaseI-Seq data analysis 

 K-mean clustering of AML specific DHSs: A combined set of up-regulated distal DHSs that 

defined as being at least 3-fold greater than in PBSCs was used to perform unsupervised k-mean 

clustering. The number of reads that mapped to these peaks was counted in a 400bp window 

centered on the DHS summit, and subsequently normalized to total sample size using DEseq289. 

Clustering was done on rows (DHSs) while samples (columns) were ranked based on the 

hierarchical clustering in Fig. 1c. Initially the read counts output from DEseq2 89 was further 

quartile normalised using the “preprocessCore” package in R, The log2 of the normalised reads 

were clustered using k-means clustering with Euclidean distances (stats package in R) and the 

optimal number of clusters was determined to be 20 based on the lowest Bayesian Information 

Criterion (BIC) scores was generated using R. Each of the 20 clusters was then hierarchically 

clustered using the “complete linkage” agglomeration method. 

ATAC sequencing data analysis 

ATAC-seq profiles of hematopoietic and leukemic cell types taken 67 were downloaded from GEO 

with accession number GSE74912. ATAC-seq data of HSC, MPP, CMP, CLP, MEP, GMP and 

Monocytes were downloaded and aligned to the human genome version hg38. Aligned reads with 

the same cell line were merged and then ATAC peaks were obtained using MACS2 with default 

parameter. Overlaps between DHS and ATAC peaks were defined by requiring the summits of two 



	

peaks to lie within +/-200 bp.  Pair-wise peak overlaps between DHSs and ATAC peaks of 

hematopoietic i and j were performed in order to calculate the fraction (𝑀!")  

𝑀!" =
!!"
!!

   where Nij is the total peaks that overlap, Ni is the total number peaks in set i (DHSs) and 

Nj is the total peaks in j (ATAC).  A matrix with the calculated fraction multiply by 100 was 

generated and a heatmap was plotted (Fig. 2b) after hieratically clustered in R. Clustering of 

DNaseI-seq and ATAC-seq samples (Fig. S2a and Fig. S3b) was carried out using the merged 

distal DHSs as described earlier using the DNaseI-seq only. 

ChIP sequencing data analysis 

ChIP-Seq sequencing reads were downloaded from GEO with accession numbers (GSM1581788, 

GSM1693378, GSM1466000)77 (GSM722705, GSM722704)90, the reads were aligned to the 

human genome version hg38 with Bowtie version 2.3.191. Reads that mapped uniquely to the 

genome were retained and duplicated reads were removed using the MarkDuplicates function in 

Picard tools (http://broadinstitute.github.io/picard/). Peaks were identified with MACS version 1.4.2 
92 and DFilter software93 with recommended parameters (-bs=100 -ks=50 –refine).  Peaks common 

to both peak calling methods were considered for further analysis.  

H3K27Ac ChIP data analysis 

H3K27Ac ChIP data from94 were downloaded from NCBI with accession number SRP103200. The 

raw reads were aligned to the human reference genome hg38 and density profiles were generated 

using bedtools. The bedGraph files were used to generate the H3K27Ac average coverage plotted 

a long side the DHSs of the 20 clusters (Fig.S3d).   

Digital genomic footprinting 

Digital genomic footprinting was performed using the Wellington_footprints function of the 

Wellington algorithm95 on High-depth AML and CD34+ PBSC DHSs. DHS footprints probability and 

DNase forward and reverse cut coverages, were generated using the dnase_wig_tracks function of 

Wellington. AML-specific footprints compared to PBSC CD34+ cells were identified using 

wellington_bootstrap function of Wellington. Mutation-specific footprints of the groups were 

identified by using the Wellington_footprints function using the merged reads of the Mutation-

specific individual DNaseI-Seq of each group. 

 

Motif identification  

De novo motif analysis was performed on peaks using HOMER68. Motif lengths of 6, 8, 10, and 12 

bp were identified in within ± 200 bp from the peak summit. The annotatePeaks function in 

HOMER was used to find occurrences of motifs in peaks. In this case we used known motif 

position weight matrices (PWM).  

Motif co-localisation clustering: Motif co-localisation clustering was performed as previously 

described73. A motif position search was done within DHSs that are group mutation-specifically 

footprinted. The distance between the centres of each motif pairs was calculated and the motif 

frequency was counted if the first motif was within 50bps distance from the second motif. Z-scores 



	

were calculated from the mean and standard deviation of motif frequencies observed in random 

sets using bootstrap analysis, peak sets with a population equal to that of the footprinted peaks 

were randomly obtained from the merged footprints of all AML and CD34+ footprints sets. Motif 

search and motif frequencies calculations were repeated 1000 times for each random set. A matrix 

was generated and Z-scores were displayed after hierarchical clustering as a heatmap with R.  

Motif enrichment  

To identify motifs that are relatively enriched in the distal footprinted DHSs of each of AML 

mutation groups (Fig. S5) and the AML DHSs clusters (Fig. 2A). For a given set j of footprints, we 

defined a motif enrichment score (ESij) for motif i in footprint set j as 

𝐸𝑆!" =
!!" !!

!!"! !!!
   where nij is the number of footprints in each subset j (j=1,2,…,12)  containing 

motif i (i=1, 2,….,I), I is the total number of motifs used in the test, and Mj the total number of peaks 

in each subset j (j=1,2,…,30).  A matrix was generated and the motif enrichment scores were 

displayed as a heatmap after hierarchical clustering with Euclidean distance and complete linkage. 

The heatmap was generated using R. The statistical significance for a ESij score of a given motif i 

in peak set j is computed as Z-scores using bootstrapping (N=1000), where a random set of peaks 

is extracted from a global set of footprinted regions and ES is calculated. After N iterations the 

mean (µij) and the standard deviation (σij) are computed and the z-scores are computed as 

𝑍!" =
!"!" ! !!"

!!"
. The global set of regions is a merged set of all the AML footprints. These Z-scores 

are provided in Supplementary Dataset S3. Similarly the motif enrichment score displayed in Fig. 

4a was calculated using the 𝐸𝑆!"  function. Initially the AML mutant specific footprints were 

overlapped with each differentiated stages of the progenitors ATAC-Seq,peaks. Motif searches 

were conducted within the coordinates of overlapping FPs.  A matrix was generated with motif 

enrichment score 𝐸𝑆!" using FPs that overlapped with ATAC-seq peaks of the HSC, MPP, LMPP, 

MEP, CLP, CMP, GMP and Mono populations. Motifs with a number less than 20 were discharged. 

The statistical significance for an ESij score of a given motif i in FP set j is computed as Z-scores. 

The motif scores were displayed as a heatmap after hierarchical clustering with Euclidean distance 

and complete linkage.  

 

Gene expression analysis 

Differentially expressed genes were extracted using the limma R package96. Genes were said to 

be differentially expressed (DE) if there was a twofold change in expression between any each of 

the AML patient sample or each of the mutation-specific group and the PBSC CD34+ with a p-

value less than or equal to 0.01 and with FPKM greater than 1 in at least one AML sample. For 

each value of a DE gene a pseudo-count 𝛾 = 0.1 was added to the FPKM values and the binary 

logarithm of this value was considered as the expression value of the gene in each sample (j), 

𝑒!"  = 𝑙𝑜𝑔! 𝐹𝑃𝐾𝑀!" + 𝛾 . These DE values were then clustered (Supplementary Fig. 1a) using 

hierarchical clustering with Euclidean distances (stats package in R).  While Hierarchical clustering 



	

of transcription factors gene expression was carried out on fold-changes for genes associated with 

at least a 2-fold change compared to the CD34+. 

Gene set enrichment analysis 

A publically available RNA-seq data of hematopoietic cell types were downloaded from GEO with 

accession number GSE74246. The downloaded RNA-seq data were processed in similar way as 

described above. The GSEA software97 was used to perform gene set enrichment analysis on 

group of genes.  Module map98 implemented by Genomic software was used to find which groups 

of genes are significantly up- or down-regulated using a statistical test based on the hyper-

geometric distribution the fraction of up or down regulated is displayed as a heatmap (Fig 2c and 

Supplementary Fig 4c). 

Gene ontology (GO) analysis: Gene ontology (GO) analysis was performed using clueGO tools97 

with Hypergeometric for overrepresentation and Benjamini and Hochberg (FDR) correction for 

multiple testing corrections. KEGG Pathway network analysis was performed using clueGO tools97 

with kappa score = 0.3. A right-sided enrichment (depletion) test based on the hypergeometric 

distribution was used for terms and groups. The size of the nodes reflects the number of genes 

within the term. The color of nodes reflects the enrichment significance of the terms. The network 

is laid out using Cytoscape. The KEGG pathway network figures for all DHS-cluster associated 

genes are shown in Table S6.  

Expression profiles from larger patient cohort datasets 

Microarray data from Verhaak et al.99 were downloaded from GEO under the accession number 

GSE6891. Patients were split according to their mutational status; Boxplots showing the 

expression of the indicated genes in FLT3-ITD, NPM1, CEBPA, t(8;21), inv(16) and NRAS 

mutation groups. The statistical significance of the difference in expression between FLT3-ITD and 

other mutations was determined using an unpaired t-test. 
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