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Appendices 

Appendix 1 – Expected free energy: variational free energy is a functional of an approximate 

posterior distribution over states ( )Q s , given observed outcomes o, under a probabilistic 

generative model ( , )P o s : 
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The second equality expresses free energy as the difference between a Kullback-Leibler 

divergence (i.e., complexity) and the expected log likelihood (i.e., accuracy), given (observed) 

outcomes.  

In contrast, the expected free energy is a functional of the probability over hidden states and 

(unobserved) outcomes, given some policy π  that determines the distribution over states. This 

can be expressed as: 
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The expected free energy is therefore just the expected entropy (i.e. uncertainty) about outcomes 

under a particular policy. Things get more interesting if we express the generative model in terms 

of a prior over outcomes that does not depend upon the policy 
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The first equality expresses expected free energy in terms of (negative) intrinsic and extrinsic 

value, while the second expression shows an equivalent formulation in terms of the relative 

uncertainty about outcomes given prior beliefs (i.e., risk) and expected uncertainty about 

outcomes, given their causes (i.e., ambiguity). This is the form used in active inference, where the 

probabilities in (A.3) are conditioned upon past observations (such that the generative model P is 

replaced by an approximate posterior Q): see (A.5). 

 

Appendix 2 – Belief updating: approximate Bayesian inference corresponds to minimising 

marginal or variational free energy, with respect to sufficient statistics that constitute posterior 

beliefs. For generative models of discrete states, free energy can be expressed as the (time-

dependent) free energy under each policy plus the complexity incurred by posterior beliefs about 

(time-invariant) policies, where (with some simplifications): 
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The free energy of hidden states is then given by: 
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The expected free energy of a policy has a similar form but the expectation is over hidden states 

and outcomes that have yet to be observed (c.f., Equation A.3); namely, 
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Note that the free energy per se does not appear in the update equations in this paper. This is 

because we only consider policies that comprise past actions and one subsequent (allowable) 

action. This means that the free energies of all policies are the same. 

  



Table 1a – Expressions pertaining to models of discrete states: the shaded rows describe hidden 

states and auxiliary variables, while the remaining rows describe model parameters and 

functionals. 

Expression Description 
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Table 1b – Expressions pertaining to models of continuous states: the shaded rows describe hidden 

states and auxiliary variables, while the remaining rows describe model and link functions. 

Expression Description 

( ) ( , , , )o t o o o′ ′′= ∈    Outcomes in generalised coordinates of motion 

( ) ( , , , )x t x x x′ ′′= ∈    Hidden states in generalised coordinates of motion 

( ) ( , , , )v t v v v′ ′′= ∈    Hidden causes in generalised coordinates of motion 
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( )τ σ= −r F  Posterior expectation of discrete outcomes (Bayesian 
model comparison) 
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Functional partial derivative  
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