
1. Proof and Analysis of SFPEL-LPI 

1.1 Solution to the objective function for SFPEL-LPI 

The objective function for SFPEL-LPI: 

𝑚𝑖𝑛
𝐺𝑖,𝑅,𝜃

‖𝑅 − 𝑌‖𝐹
2 + 𝜇∑ ‖𝑋𝑖𝐺𝑖

𝑇 − 𝑅‖
𝐹

2𝑛
𝑖=1 + ∑ 𝜃𝑖

𝜂
𝑡𝑟(𝑅𝑇(𝐷𝑖 −𝑊𝑖 )𝑅)

𝑚
𝑖=1 + 𝜆∑ ‖𝐺𝑖‖1,2

2𝑛
𝑖=1      (1) 

s. t. 𝐺𝑖 ≥ 0,∑ 𝜃𝑖𝑖 = 1  

To solve the optimization problem in (1), we introduce the Lagrangian function: 

𝐿𝑓 = ‖𝑅 − 𝑌‖𝐹
2 + 𝜇∑ ‖𝑋𝑖𝐺𝑖

𝑇 − 𝑅‖
𝐹

2𝑛
𝑖=1 +∑ 𝜃𝑖

𝜂
𝑡𝑟(𝑅𝑇(𝐷𝑖 −𝑊𝑖 )𝑅)

𝑚
𝑖=1 + 𝜆∑ ‖𝐺𝑖‖1,2

2𝑛
𝑖=1 −

𝛿(∑ 𝜃𝑖
𝑚
𝑖=1 − 1) − ∑ 𝑡𝑟(𝛤𝑖𝐺𝑖)

𝑛
𝑖=1   

(2) 

The partial derivatives of above function with respect to 𝑅, 𝐺𝑖 and 𝜃𝑖: 

𝜕𝐿

𝜕𝑅
= 2(𝑅 − 𝑌) + 2𝜇 ∑ (𝑅−𝑋𝑖𝐺𝑖

𝑇)𝑛
𝑖=1 + 2∑ 𝜃𝑖

𝜂(𝐷𝑖 −𝑊𝑖 )𝑅
𝑚
𝑖=1                (3) 

𝜕𝐿

𝜕𝐺𝑖
= 2𝜇(𝑋𝑖

𝑇𝑋𝑖𝐺𝑖
𝑇 − 𝑋𝑖

𝑇𝑅) + 2𝜆𝑒𝑒𝑇𝐺𝑖
𝑇 − 𝛤𝑖

𝑇                      (4) 

𝜕𝐿

𝜕𝜃𝑖
= 𝜂𝜃𝑖

𝜂−1
𝑡𝑟(𝑅𝑇(𝐷𝑖 −𝑊𝑖 )𝑅) − 𝛿                         (5) 

Using the Karush–Kuhn–Tucker (KKT) conditions[1], 

{
 
 

 
 
𝜕𝐿

𝜕𝑅
= 0,

𝜕𝐿

𝜕𝐺𝑖
= 0,

𝜕𝐿

𝜕𝜃𝑖
= 0

𝛤𝑖 ≥ 0

𝛤𝑖⨀𝐺𝑖 = 0

∑ 𝜃𝑖
𝑚
𝑖=1 = 1

                                 (6) 

We can readily obtain the update rules about R, 𝜃𝑖 and 𝐺𝑖: 

𝑅 = (∑ 𝜃𝑖
𝜂(𝐷𝑖 −𝑊𝑖 )

𝑚
𝑖=1 + (1 + 𝑛𝜇)𝐼)

−1
(𝑌 + 𝜇 ∑ 𝑋𝑖𝐺𝑖

𝑇𝑛
𝑖=1 )                (7) 

𝜃𝑖 =
(

1

𝑡𝑟(𝑅𝑇(𝐷𝑖−𝑊𝑖 )𝑅)
)

1
𝜂−1

∑ (
1

𝑡𝑟(𝑅𝑇(𝐷𝑖−𝑊𝑖 )𝑅)
)

1
𝜂−1

𝑚
𝑖

                                (8) 

𝐺𝑖 = 𝐺𝑖⨀
𝜇𝑅𝑇𝑋𝑖

𝜇𝐺𝑖𝑋𝑖
𝑇𝑋𝑖+𝜆𝐺𝑖𝑒𝑒

𝑇                                (9) 

where 𝑒 is a column vector with all elements equal to 1, and has the same column dimension as 𝑋𝑖. ⨀ 

denotes element-wise multiplication (also well known as Hadamard product), and the division in (9) is 

element-wise division. However, since 𝑅 is not required to be non-negative, the update rule (9) fails to 

ensure that all elements of 𝐺𝑖  are non-negative. To solve this problem, we follow the similar 

optimization rule in [2]: 



𝐺𝑖 = 𝐺𝑖⨀√
𝐺𝑖(𝜇𝑋𝑖

𝑇𝑋𝑖+𝜆𝑒𝑒
𝑇)
+
+𝜇(𝑅𝑇𝑋𝑖)

−

𝐺𝑖(𝜇𝑋𝑖
𝑇𝑋𝑖+𝜆𝑒𝑒

𝑇)
−
+𝜇(𝑅𝑇𝑋𝑖)

+                          (10) 

where we separate the positive and negative parts of matrix 𝐴 as  

𝐴+ =
(|𝐴|+𝐴)

2
, 𝐴− =

(|𝐴|−𝐴)

2
                            (11) 

Thus, we can update 𝑅, 𝐺𝑖 and 𝜃𝑖 based on (7), (8) and (10) alternately until convergence. 

1.2 Proof of convergence 

Here, we discuss the convergence of update rules. As 𝑅 is fixed, the objective function is equivalent to 

the following equation: 

𝑚𝑖𝑛 
𝐺𝑖
 𝜇 ∑ ‖𝑋𝑖𝐺𝑖

𝑇 − 𝑅‖
𝐹

2𝑛
𝑖=1 + 𝜆∑ ‖𝐺𝑖‖1,2

2𝑛
𝑖=1                     (12)                    

s. t. 𝐺𝑖 ≥ 0 

For simplicity and generality, we reformulate the objective function (𝐺 ∈ {𝐺𝑖}𝑖=1
𝑛 ,): 

𝒪 =  𝑡𝑟(𝐺(𝜇𝑋𝑇𝑋 + 𝜆𝑒𝑒𝑇)𝐺𝑇) − 2𝑡𝑟(𝜇𝑋𝑇𝑅𝐺)                  (13) 

where 𝑒 is a column vector whose elements are set to 1. 

As presented above, the update rule of 𝐺 is: 

𝐺𝑡+1 = 𝐺𝑡⨀√
𝐺𝑡(𝜇𝑋𝑇𝑋+𝜆𝑒𝑒𝑇)

−
+𝜇(𝑅𝑇𝑋)

+

𝐺𝑡(𝜇𝑋𝑇𝑋+𝜆𝑒𝑒𝑇)
+
+𝜇(𝑅𝑇𝑋)

−                        (14) 

Theorem 1: The value of objective function (13) decreases monotonically under the update rule (14). 

To prove this theorem, an auxiliary function method is utilized as similar to [2]. Before giving the 

proof of the Theorem 1, some preparatory work is introduced, as well as the definition of auxiliary 

function is given and some useful lemmas are proved. 

Preparatory Work: according to (11), the objective function (13) is rewritten as: 

𝐹(𝐺) = 𝑡𝑟(𝐺𝑃𝐺𝑇) − 2𝑡𝑟(𝐺𝑇𝑄) = 𝑡𝑟(𝐺𝑃+𝐺𝑇) + 2𝑡𝑟(𝐺𝑇𝑄−) − 𝑡𝑟(𝐺𝑃−𝐺𝑇) − 2tr(𝐺𝑇𝑄+)  (15) 

where 𝑃 = 𝜇𝑋𝑇𝑋 + 𝜆𝑒𝑒𝑇, 𝑄 = 𝜇𝑅𝑇𝑋. 

Definition 1: 𝐻(𝐺, 𝐺𝑡) is called as auxiliary function for 𝐹(𝐺), if it satisfies the following conditions 

for any 𝐺: 

{
  𝐻(𝐺, 𝐺𝑡) ≥ 𝐹(𝐺)

𝐻(𝐺, 𝐺) = 𝐹(𝐺)
                             (16) 

Lemma 1: For any matrices 𝐴 ∈ ℝ+
𝑛×𝑛, 𝐵 ∈ ℝ+

𝑘×𝑘, 𝑆 ∈ ℝ+
𝑛×𝑘, 𝑆′ ∈ ℝ+

𝑛×𝑘, with 𝐴 and 𝐵 symmetric, 

the following inequality holds [2]: 

∑ ∑
(𝐴𝑆′𝐵)

𝑖𝑝
𝑆𝑖𝑝
2

𝑆𝑖𝑝
′

𝑘
𝑝=1

𝑛
𝑖=1 ≥ 𝑡𝑟(𝑆𝑇𝐴𝑆𝐵)                     (17) 

Lemma 2: If 𝐻(𝐺, 𝐺𝑡) is an auxiliary function of 𝐹(𝐺), and a sequence {𝐺𝑡} satisfies: 

𝐺𝑡+1 = argmin
𝐺
𝐻(𝐺, 𝐺𝑡)                            (18) 

{𝐹(𝐺𝑡)} is a monotonic decreasing sequence. 

Proof (Lemma2): According to the Definition 1, we have: 

{
𝐹(𝐺𝑡+1) ≤ 𝐻(𝐺𝑡+1, 𝐺𝑡)

𝐻(𝐺𝑡 , 𝐺𝑡) = 𝐹(𝐺𝑡)
                          (19) 

Then, according to the prerequisite of Lemma 2, we have: 



𝐻(𝐺𝑡+1, 𝐺𝑡) ≤ 𝐻(𝐺𝑡 , 𝐺𝑡)                          (20) 

Thus,  

𝐹(𝐺𝑡+1) ≤ 𝐹(𝐺𝑡)                            (21) 

Up to now, we have already proved that {𝐹(𝐺𝑡)} is a monotonic decreasing sequence. 

Lemma 3: The following function is an auxiliary function of 𝐹(𝐺) given by (15): 

Proof (Lemma3): According to the inequality (17) in Lemma 1, by setting 𝐴 = 𝐼, 𝐵 = 𝑃+, 𝑆 = 𝐺, 

𝑆′ = 𝐺𝑡, we obtain: 

𝑡𝑟(𝐺𝑃+𝐺𝑇) ≤ ∑
(𝐺𝑡𝑃+)

𝑝𝑞
𝐺𝑝𝑞
2

(𝐺𝑡)𝑝𝑞
𝑝𝑞                           (23) 

Using the common inequality 2𝑎 ≤ (𝑎2 + 𝑏2)/𝑏 with 𝑎, 𝑏 > 0, we have: 

2𝑡𝑟(𝐺𝑇𝑄−) = 2∑ 𝐺𝑝𝑞𝑄𝑝𝑞
−

𝑝𝑞 ≤ ∑ 𝑄𝑝𝑞
−

(𝐺𝑡)
𝑝𝑞

2
+𝐺𝑝𝑞

2

(𝐺𝑡)𝑝𝑞
𝑝𝑞              (24) 

From the common inequality 𝑥 ≥ 1 + log 𝑥 with 𝑥 > 0, we derive: 

2tr(𝐺𝑇𝑄+) = 2∑ 𝑄𝑝𝑞
+ 𝐺𝑝𝑞𝑝𝑞 = 2∑ 𝑄𝑝𝑞

+ (𝐺𝑡)𝑝𝑞
𝐺𝑝𝑞

(𝐺𝑡)𝑝𝑞
𝑝𝑞 ≥ 2∑ 𝑄𝑝𝑞

+ (𝐺𝑡)𝑝𝑞 (1 + log
𝐺𝑝𝑞

(𝐺𝑡)𝑝𝑞
)𝑝𝑞   (26) 

By combining inequalities (23), (24), (25) and (26), it is obvious that the function 𝐻(𝐺, 𝐺𝑡) given 

by (22) satisfies 𝐹(𝐺) ≤ 𝐻(𝐺, 𝐺𝑡)  and 𝐹(𝐺) = 𝐻(𝐺, 𝐺) . Hence, we prove that 𝐻(𝐺, 𝐺𝑡)  is an 

auxiliary function of 𝐹(𝐺). 

Proof (Theorem 1): Given 𝐻(𝐺, 𝐺𝑡) defined by (22), by forcing the derivative of 𝐻(𝐺, 𝐺𝑡) with 

regard to 𝐺 to zero: 

(
d𝐻(𝐺,𝐺𝑡)

d𝐺
)
𝑝𝑞
=

∂ 𝐻(𝐺,𝐺𝑡)

𝜕𝐺𝑝𝑞
= 2

(𝐺𝑡𝑃+)
𝑝𝑞
𝐺𝑝𝑞

(𝐺𝑡)𝑝𝑞
+ 2

𝑄𝑝𝑞
− 𝐺𝑝𝑞

(𝐺𝑡)𝑝𝑞
− 2

(𝐺𝑡𝑃−)
𝑝𝑞
(𝐺𝑡)

𝑝𝑞

𝐺𝑝𝑞
− 2

𝑄𝑝𝑞
+ (𝐺𝑡)

𝑝𝑞

𝐺𝑝𝑞
= 0  (27) 

Rearranging (27), we obtain: 

𝐺𝑝𝑞 = (𝐺
𝑡)𝑝𝑞√

(𝐺𝑡𝑃−)𝑝𝑞+𝑄𝑝𝑞
+

(𝐺𝑡𝑃+)𝑝𝑞+𝑄𝑝𝑞
−                            (28) 

In addition, the Hessian matrix given by (29): 

Φ =
d2 𝐻(𝐺,𝐺𝑡)

d𝐺2
                                (29) 

is a diagonal matrix and the 𝑖 ∗ 𝑗-th entry of its diagonal is: 

Φ𝑖𝑗 = 2
(𝐺𝑡𝑃+)

𝑖𝑗
+𝑄𝑖𝑗

−

(𝐺𝑡)𝑖𝑗
+ 2

[(𝐺𝑡𝑃−)
𝑖𝑗
+𝑄𝑖𝑗

+](𝐺𝑡)
𝑖𝑗

𝐺𝑖𝑗
2                      (30) 

It is obvious that Φ𝑖𝑗 ≥ 0 and hence Φ is a positive semi-definite matrix. That is to say, 𝐻(𝐺, 𝐺𝑡) 

is a convex function with regard to 𝐺, and its global minimum is given by (28). We reformulate (28) 

into matrix form: 

𝐻(𝐺, 𝐺𝑡) = ∑
(𝐺𝑡𝑃+)

𝑝𝑞
𝐺𝑝𝑞
2

(𝐺𝑡)𝑝𝑞
𝑝𝑞 +∑ 𝑄𝑝𝑞

−
(𝐺𝑡)

𝑝𝑞

2
+𝐺𝑝𝑞

2

(𝐺𝑡)𝑝𝑞
𝑝𝑞 −∑ 𝑃𝑞𝑘

− (𝐺𝑡)𝑝𝑞(𝐺
𝑡)𝑝𝑘 (1 +𝑝𝑞𝑘

log
𝐺𝑝𝑞𝐺𝑝𝑘

(𝐺𝑡)𝑝𝑞(𝐺
𝑡)𝑝𝑘

) − 2∑ 𝑄𝑝𝑞
+ (𝐺𝑡)𝑝𝑞 (1 + log

𝐺𝑝𝑞

(𝐺𝑡)𝑝𝑞
)𝑝𝑞   

(22) 

𝑡𝑟(𝐺𝑃−𝐺𝑇) =∑𝑃𝑞𝑘
− 𝐺𝑝𝑞𝐺𝑝𝑘

𝑝𝑞𝑘

=∑𝑃𝑞𝑘
− (𝐺𝑡)𝑝𝑞(𝐺

𝑡)𝑝𝑘
𝐺𝑝𝑞𝐺𝑝𝑘

(𝐺𝑡)𝑝𝑞(𝐺
𝑡)𝑝𝑘

𝑝𝑞𝑘

≥∑𝑃𝑞𝑘
− (𝐺𝑡)𝑝𝑞(𝐺

𝑡)𝑝𝑘 (1 + log
𝐺𝑝𝑞𝐺𝑝𝑘

(𝐺𝑡)𝑝𝑞(𝐺
𝑡)𝑝𝑘

)

𝑝𝑞𝑘

 

(25) 



𝐺𝑡+1 = argmin
𝐺
𝐻(𝐺, 𝐺𝑡) = 𝐺𝑡+1 = 𝐺𝑡⨀√

𝐺𝑡𝑃−+𝑄+

𝐺𝑡𝑃++𝑄−
                  (31) 

Then, according to Lemma 2 and Lemma 3, the sequence {𝐹(𝐺𝑡)} is a nonincreasing under the 

iterative rule (31). In other words, the value of objective function (13) decreases monotonically under 

the update rule (14). 

 

1.3 Analysis of the hyperparameters of SFPEL-LPI 

In this subsection, we give the interpretation for the exponent 𝜂 of 𝜃. In general, we often add a free 

hyperparameter as a constraint for the regularization term in the objective function. For example, in our 

objective function (32), we use 𝜇 and λ as regularization coefficients to balance the trade-off of each 

regularization terms.  

min
𝐺𝑖,𝑅

 ‖𝑅 − 𝑌‖𝐹
2 + 𝜇∑ ‖𝑋𝑖𝐺𝑖

𝑇 − 𝑅‖
𝐹

2𝑛
𝑖=1 + λ∑ ‖𝐺𝑖‖1,2

2𝑛
𝑖=1               (32) 

Similarly, when introducing the proposed ensemble weighted graph Laplacian regularization term, we 

add a free parameter 𝜂 as regularization coefficient. So we have:  

min
𝜃
 𝜂 ∑ 𝜃𝑖𝑡𝑟(𝑅

𝑇(𝐷𝑖 −𝑊𝑖 )𝑅)
𝑚
𝑖=1                          (33) 

s. t. ∑ 𝜃𝑖
𝑚
𝑖=1 = 1  

Then, we try to develop optimization rule to solve the problem (33). For simplicity, we denote 

𝑡𝑟(𝑅𝑇(𝐷𝑖 −𝑊𝑖 )𝑅) as 𝑡𝑟𝑖 , and 𝑡𝑟𝑘 = 𝑚𝑖𝑛(𝑡𝑟1, 𝑡𝑟2, ⋯ , 𝑡𝑟𝑖 , ⋯ , 𝑡𝑟𝑚). It is obvious that this problem is 

standard linear programming, and its solution is that 𝜃𝑖 = 1  while 𝑖 = 𝑘 ; 𝜃𝑖 = 0  while 𝑖 ≠ 𝑘 . 

Apparently, the solution fails to satisfy our demand. To ensure that all the graph Laplacian regularization 

terms contribute effectively for the maintaining of graph local structure, we rewrite the (33) by enforcing 

the hyperparameter 𝜂 as the exponent of 𝜃 and transforming the standard linear programming into a 

nonlinear programming problem: 

∑ 𝜃𝑖
𝜂
𝑡𝑟(𝑅𝑇(𝐷𝑖 −𝑊𝑖 )𝑅)

𝑚
𝑖=1                            (34) 

s. t. ∑ 𝜃𝑖
𝑚
𝑖=1 = 1  

The objective function (34) not only remains the capacity and the role of 𝜂 which balances the weight 

of the graph Laplacian regularization term in the model, but also makes it possible that we could obtain 

a satisfactory solution of 𝜃. The details of the optimization rule of 𝜃 is fully presented in section 1.1.  
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