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SUMMARY

Lymph- and blood-borne retroviruses exploit CD169/
Siglec-1-mediated capture by subcapsular sinus and
marginal zone metallophilic macrophages for trans-
infection of permissive lymphocytes. However, the
impact of CD169-mediated virus capture on retro-
virus dissemination and pathogenesis in vivo is
unknown. In a murine model of the splenomegaly-
inducing retrovirus Friend virus complex (FVC) infec-
tion, we find that while CD169 promoted draining
lymph node infection, it limited systemic spread to
the spleen. At the spleen, CD169-expressing macro-
phages captured incoming blood-borne retroviruses
and limited their spread to the erythroblasts in the red
pulp where FVC manifests its pathogenesis. CD169-
mediated retroviral capture activated conventional
dendritic cells 1 (cDC1s) and promoted cytotoxic
CD8+ T cell responses, resulting in efficient clearing
of FVC-infected cells. Accordingly, CD169 blockade
led to higher viral loads and accelerated death in sus-
ceptible mouse strains. Thus, CD169 plays a protec-
tive role during FVC pathogenesis by reducing viral
dissemination to erythroblasts and eliciting an effec-
tive cytotoxic T lymphocyte response via cDC1s.

INTRODUCTION

Viruses are immotile but can disseminate within the host either

by exploiting the natural flow of body fluids or by using mobile

cells. Lymph- and blood-filtering lectin CD169/Siglec-1 ex-

pressed on sentinel marginal zone metallophilic macrophages

(MMMs) and subcapsular sinus (SCS) macrophages plays a

crucial role in capturing retroviral particles such as murine leuke-

mia virus (MLV) and human immunodeficiency virus 1 (HIV-1),

thereby promoting the transition of virus dissemination from a

cell-free to cell-associated mode (Sewald et al., 2015). CD169
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specifically interacted with gangliosides on retrovirus particles

to promote their capture. Retrovirus-laden SCS macrophages

then trans-infected susceptible lymphocytes, which further

spread the retroviral infection by formation of virological synap-

ses. Importantly, efficient MLV and HIV-1 infection in mouse

models required CD169, suggesting that CD169-mediated

trans-infection of permissive lymphocytes was exploited by ret-

roviruses. However, the impact of CD169-mediated virus cap-

ture and promotion of infection on long-term retrovirus dissemi-

nation and pathogenesis remains to be investigated.

This is of particular interest because the sentinel macrophages

have been observed to play an important role in immune

surveillance by capturing antigens, immune complexes, and tu-

mor-derived vesicles from circulation to orchestrate innate, cell-

mediated, and humoral immune responses (Pucci et al., 2016;

Saunderson et al., 2014). They also produce type I interferon

(IFN) in response to viral infections, activate CD8+ T cells, and

cross-present cell-associated viral and tumor antigens to CD8+

T cells (Asano et al., 2011; Backer et al., 2010; Bernhard et al.,

2015; Honke et al., 2012; Junt et al., 2007). In addition, they

have been observed to transfer captured antigens to Batf3-

dependent XCR1+ CD8a+ conventional dendritic cells 1

(cDC1s) in the spleen for cross-presentation to CD8+ T cells.

The coordination of the immune activities has been ascribed pri-

marily to the sentinel macrophages, but the specific role of the

lectin CD169 in these events and during retrovirus infections re-

mains to be elucidated (Sewald et al., 2015; van Dinther

et al., 2018).

To study a possible dual role of CD169 expressed on macro-

phages in promoting virus infection and/or initiating immune re-

sponses against the virus infection, we sought to compare the

murine non-pathogenic and pathogenic MLV models. Friend

MLV (FrMLV) and Friend virus complex (FVC) are two such

commonly used retrovirus models in mice. FrMLV is non-patho-

genic in adult mice, as the elicited humoral as well as cell-medi-

ated immune response controls the virus infection (Nowinski,

1976). In contrast, FVC can be pathogenic in sensitive strains

of mice. Like most pathogenic MLVs (Rosenberg and Jolicoeur,

1997), FVC consists of a replication-competent helper

virus (FrMLV) and a co-packaged pathogenesis-conferring
January 9, 2019 ª 2018 The Authors. Published by Elsevier Inc. 87
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replication-defective component. The pathogenic component

encodes for a fusion-defective truncated envelope glycoprotein

(gp55) from spleen focus-forming virus (SFFV). SFFV gp55 is an

agonist of the erythropoietin receptor (EpoR) (Chesebro et al.,

1990). Gp55 expression activates EpoR signaling in erythro-

blasts leading to their proliferation in the spleen, and fomenting

infection. Therefore, FVC has an expanded tropism as it

can establish infection in erythroblasts in addition to lympho-

cytes. The erythroblasts are prime targets for FVC-induced

pathogenesis as their infection and the subsequent chain of

events culminate in splenomegaly (Constantinescu et al., 1998;

Li et al., 1990).

Susceptibility to FVC infection depends on the specific mouse

strain. While C57BL/6J (B6) mice are resistant, BALB/cJ mice

succumb to FVC infection due to uncontrolled splenomegaly

(Hasenkrug and Chesebro, 1997; Miyazawa et al., 2008).

Susceptibility to FVC-induced splenomegaly is genetically deter-

mined by the expression of the Friend virus susceptibility 2 sen-

sitive allele (Fv2s) (Lilly, 1970). The Fv2s allele encodes the short

form of stem cell receptor tyrosine kinase (Sf-Stk) and deter-

mines the ability of FVC-infected erythroblasts to proliferate

autonomously in response to SFFV gp55 (Persons et al., 1999).

In addition, mice carrying major histocompatibility complex

(MHC) haplotype H-2b (e.g., B6) allow interrogation of the

elicited protective immune response, unlike mice with H-2d

(e.g., BALB/cJ) that succumb to severe FVC-instigated disease

(Hasenkrug and Chesebro, 1997). B6.Fv2 mice that carry the

Fv2s/s allele in the B6 background provide a model to study eli-

cited immune responses as they combine the susceptibility to

splenomegaly of Fv2s mice with high-recovery phenotype of

the resistant mouse strains (Marques et al., 2008).

Here, we study the role of CD169 in retrovirus capture at the

popliteal lymph node and its subsequent dissemination to the

spleen for the murine non-pathogenic retrovirus FrMLV, and

compare it with the pathogenic FVC. Our data revealed that by

capturing and promoting infection at the draining popliteal lymph

node (pLN), CD169 curtailed retrovirus dissemination systemi-

cally into the blood and spleen. In contrast to FrMLV, FVC infec-

tion was enhanced in CD169�/� mice at the spleen, as CD169

expressed on MMM was required to diminish FVC spread to

the susceptible erythroblast population in the red pulp. In addi-

tion to acting as a dissemination-limiting factor, the presence

of CD169 on MMM was required for effective cDC1 activation

and eliciting a protective cytotoxic CD8+ T cell response against

FVC. Thus, our data show that CD169 plays a protective role in

mitigating FVC pathogenesis, firstly by limiting viral dissemina-

tion to protect the erythroblast niche from FVC-induced patho-

genesis and secondly by eliciting an effective CD8+ cytotoxic

T lymphocyte (CTL) response via cDC1 activation to eliminate vi-

rus-infected cells.

RESULTS

CD169 Limits Systemic Retrovirus Dissemination
Retroviruses delivered subcutaneously (via footpad) are filtered

at the draining pLN by CD169+ SCS macrophages. In the

absence of CD169, viruses could escape the draining lymph

node and disseminate systemically, first through the lymphatics,

and then enter the blood through one of the two subclavian veins
88 Cell Host & Microbe 25, 87–100, January 9, 2019
(Shao et al., 2015) to reach the main blood-filtering lymphoid or-

gan, the spleen. We assessed the extent of retrovirus particle

spread 1 hr after subcutaneous (s.c.) injection in B6 and

CD169�/� mice using luciferase-encoding FrMLV (Figure 1A).

We incubated single-cell suspensions from harvested pLNs,

spleens, or plasma with MLV-susceptible DFJ8 cells in vitro

and measured luciferase activity after 36–48 hr. In B6 mice, the

majority of the virus particle-associated luciferase activity

was present at the pLN. In contrast, the luciferase activity was

10-fold lower in pLNs of CD169�/� mice (Figures 1B–1D), and

concomitantly increased in plasma and spleen, indicating that

virus escaped from the pLN into the blood to reach the spleen

(Figures 1B–1D). These data show that by capturing retroviruses

at the draining pLN, CD169 limits systemic dissemination.

We next monitored levels of FrMLV infection at the pLN and

spleen in B6 and CD169�/� mice 5 days post infection (dpi) after

s.c. challenge. As expected, FrMLV infection at the pLN was

significantly higher in B6 than in CD169�/� mice, as previously

observed (Sewald et al., 2015) (Figure 1E). Importantly, despite

the early high virus particle load in the spleen, FrMLV infection

was significantly lower in CD169�/� than in B6 mice (Figures

1D and 1F). These data indicated that CD169-mediated virus

capture was also required at the spleen to promote FrMLV infec-

tion. Taken together, our data indicate that the non-pathogenic

FrMLV likely evolved to exploit CD169-mediated capture to pro-

mote infection of its native host due to its coexistence in the

murine host over a million years (Figure 1G) (Yap et al., 2014).

This exploitation is not detrimental to the murine host, as the eli-

cited immune response eventually controls the FrMLV infection.

CD169 Plays a Protective Role during a Pathogenic
Retrovirus Challenge
We next explored whether CD169-dependent virus capture and

infection-promoting activities would be detrimental or protective

when the retrovirus infection was pathogenic to the host. We

used the FVC retrovirus model for this purpose, as it establishes

a pathogenic infection in susceptible strains of mice such as

BALB/cJ. Since CD169 knockouts were not available in this

background, we blocked CD169 function in BALB/cJ mice by

subcutaneously delivering blocking or isotype control antibodies

before FVC challenge (Figure 2A) (Sewald et al., 2015). We first

monitored mortality to FVC infection with 5-fold differing doses

of virus inoculum. If CD169 functions as a retrovirus infection-

promoting factor, CD169 blockade would extend survival of

treated animals. Unexpectedly, CD169 blockade accelerated

mortality in mice compared with controls (Figures 2B and 2C).

To gain insight into these results, we evaluated viral loads 8 dpi

in the draining pLN and the spleen in BALB/cJ mice (Figure 2D).

We also measured the spleen weight to determine the extent of

splenomegaly. Consistent with an infection-promoting role for

CD169, we observed higher numbers of infected cells in the

pLN of control animals compared with those treated with

CD169-blocking antibodies (Figure 2E). However, CD169

blockade led to higher plasma viral titers in mice than in the iso-

type controls (Figure 2F). Moreover, in contrast to FrMLV, where

CD169 expression in MMMs was required for efficient infection,

FVC-infected cell numbers in the spleen and splenomegaly

were higher after CD169 blockade compared with the control

(Figures 2G and 2H).



Figure 1. CD169 Limits Retrovirus Dissemination from pLN to Spleen and Is Required for Efficient FrMLV Infection

(A) Scheme indicating a possible path of virus dissemination from popliteal lymph node (pLN) to blood and spleen after subcutaneous (s.c.) footpad administration

of luciferase expressing FrMLV.

(B–D) The indicated organs and plasmawere harvested 1 hr after virus administration as in (A). The graphs show viral loadsmeasured as relative luciferase units at

indicated locations after performing highly sensitive virus load assay in which plasma (n = 5), pLN (n = 7), and splenocyte (n = 5) cell suspensions were incubated

with DFJ8 cells for 36–48 hr before measuring luciferase activity.

(E and F) FrMLV-infected cells 5 dpi (s.c., 4 3 105 IU) at pLN (n = 10) and spleen (n = 5) in B6 and CD169�/� mice.

(G) A model depicting FrMLV dissemination and subsequent levels of infection 5 dpi from pLN to blood and the spleen following subcutaneous challenge in B6

and CD169�/� mice to show the infection-promoting role of CD169.

p values derived from non-parametric Mann-Whitney test; mean values denoted by horizontal line.
We tested the potential contribution of cell-free versus cell-

associated viruses in spreading infection from the pLN to spleen

by treatingmice with FTY720 (a potent sphingosine 1-phosphate

receptor agonist) to prevent lymphocyte egress from lymphoid

tissues (Matloubian et al., 2004) (Figures S1A and S1B). These

experiments showed that blocking lymphocyte egress did not in-

fluence the enhancement of FVC infection seen in the spleen

when CD169 was blocked at the pLN (Figures S1C and S1D).

As such, our results corroborated the data obtained for FrMLV

spread (Figures 1A–1D), but indicated that in the case of FVC,

when CD169 function was compromised, the higher cell-free

viral load resulted in enhanced infection at the spleen.

We next challenged both B6 and B6.Fv2s/smice with FVC that,

unlike BALB/cJ mice, exhibit a transient splenomegaly, which is

heightened in the Fv2s/smodel before the infection progresses to

a low-level chronic phase (Marques et al., 2008; Santiago et al.,

2008). As was observed in BALB/cJ mice, the absence of CD169

reduced FVC infection at the draining pLN with concomitant

enhancement in the spleen and higher levels of splenomegaly

than B6 controls (Figures 2I–2K). B6.Fv2s/sCD169�/� mice also

displayed significantly higher levels of infection in the spleen

with heightened splenomegaly than the B6.Fv2s/s control mice

after s.c. challenge (Figures 2L and 2M). These data corrobo-
rated the protective role of CD169 during FVC infection in three

mouse models.

In the above experiments, FVC gained entry into the blood via

the lymphatics following s.c. administration of the virus. To

directly study the role of CD169 for blood-borne retroviruses,

we administered FVC via the retro-orbital (r.o.) route. We

observed that the number of FVC-infected cells as well as spleen

weight were higher in CD169�/� than in B6 mice (Figures 2N

and 2P). This indicated enhanced virus replication within the

spleen and suggested that CD169 may be required to diminish

FVC spread within the tissue architecture of the splenic marginal

zone (MZ).We also observed an enhancement in FVC infection at

the pLNs of CD169�/� compared with B6 mice (Figure 2Q).

Higher systemic viral loads in the absence of CD169

can contribute to increased infection at the pLN (Figures 1B

and 2F). In addition, infected cells from the spleen could also

be responsible for spreading the infection. We tested this hy-

pothesis by treating mice with FTY720 and monitoring FVC

dissemination from the spleen to the pLN at 8 dpi (Figure S1E).

Our data revealed that blocking lymphocyte egress led to accu-

mulation of infected cells in the spleen and indeed compromised

its dissemination to the pLN (Figures S1E–S1G). These data sug-

gested that both free virus and infected lymphocytes were
Cell Host & Microbe 25, 87–100, January 9, 2019 89



Figure 2. CD169 Plays a Protective Role during Pathogenic FVC Infection

(A–C) Kaplan-Meier survival curves of BALB/cJ mice treated with control or CD169-blocking antibodies (n = 4 or 5 per group) as indicated in the schematic

(A) after s.c. challenge with 2,500 spleen focus-forming units (SFFU) (B) or 500 SFFU (C) of FVC.

(D) Scheme showing administration regimen for FVC (s.c. 500 SFFU) and isotype control or CD169 blocking antibody via s.c. injections in BALB/cJ mice over a

period of 8 days.

(E–H) FVC-infected cells or plasma virus titer for the experiment outlined in (D) in pLNs (n = 8) (E), plasma (n = 5) (F), and spleen (n = 6) (G), as well as the weight of

the spleen (n = 6) (H).

(I–M) FVC-infected cells in the pLN (n = 8) (I) and the spleen (n = 5) (J and L), as well as theweight of the spleen (K andM) at indicated days after s.c. inoculation with

2,500 SFFU of FVC in B6, CD169�/�, B6.Fv2s/s, and B6.Fv2s/s CD169�/� mice.

(legend continued on next page)
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responsible for spreading infection. Together, our data reveal an

unexpected protective role for CD169 against pathogenic FVC in

contrast to non-pathogenic FrMLV.

FVC Infection of Erythroblasts Is Enhanced in the
Absence of CD169
Blood-borne viruses and antigens are filtered at the spleen in the

blood-draining MZ that demarcates the white pulp, and are lined

by CD169-expressing macrophages (Martinez-Pomares and

Gordon, 2012). In contrast, erythroblasts are located in the red

pulp beyond the MZ. Given the ability of FVC to establish infec-

tion in the erythroblast population, CD169-mediated retrovirus

capture from the blood could diminish virus spread into the red

pulp. When CD169 is absent, blood-borne FVC could escape

the MZ and gain increased access to erythroblasts in the red

pulp for fomenting infection. We tested this hypothesis by

measuring the number of FVC-infected cells and erythroblasts

(CD71+ Ter119+ CD19�) in the spleen of B6 and CD169�/�

mice 5 days after s.c. or r.o. administration (Figures 3A, 3B,

3D, 3F, 3G, and 3I). Strikingly, significantly higher numbers of

erythroblasts were infected in the absence of CD169 via both

routes. The number of infected B cells was similar (s.c.) or

enhanced marginally (r.o.) in CD169�/� mice compared with

B6 (Figures 3C and 3H). As a result, the ratios of infected eryth-

roblasts to B cells were significantly enhanced in CD169�/�

mice, implying that CD169 may indeed play a protective role

by limiting access to erythroblasts in the red pulp (Figures 3E

and 3J). Next, we visualized the distribution of FVC-infected cells

by immunostaining tissue sections of spleen from B6 and

CD169�/� mice 5 dpi (s.c and r.o.). As expected, FVC-infected

cells in the spleens of B6 mice after s.c. infection were rare

compared with CD169�/� mice due to the virus filtering at the

pLN (Figures 4A and 4B). We observed FVC-infected B cells in

close vicinity to the CD169+ MMMs at the marginal/follicular

zones and minimal erythroblast infection. In contrast, FVC-in-

fected proliferating erythroblasts were clearly visible in the red

pulp of CD169�/� mice, suggesting increased virus escape

into the red pulp. In splenic sections of r.o. challenged B6

mice, we observed only fewer foci of FVC-infected erythroblasts

(Figure 4C). In comparison, FVC-infected erythroblasts occupied

most of the red pulp in splenic sections of CD169�/� mice indi-

cating enhanced viral spread in the absence of CD169, corrobo-

rating the data obtained after s.c. challenge (Figures 4B and 4C).

We were also able to confirm viruses budding out from a cluster

of proliferating erythroblasts in the red pulp of splenic sections

fromCD169�/�mice (5 dpi, r.o.) using electron tomography (Fig-

ure 4D; Video S1). Taken together, our data indicated that CD169

expression on MZ macrophages impeded retrovirus dissemina-

tion into the red pulp and diminished FVC-induced pathogenesis

by protecting the highly susceptible erythroblast niche.

Since CD169 plays a major role in trans-infection of underlying

B cells at the pLN (Sewald et al., 2015), we also exploredwhether

the absence of CD169 led to changes in infection of specific B
(N) Scheme depicting possible path of blood-borne retrovirus via the heart to s

secondary draining sites such as pLN following r.o. inoculation.

(O–Q) FVC-infected cells in the spleen (n = 5) (O) and pLN (n = 10) (Q), as well

administration with 2,500 SFFU of FVC.

p values derived from non-parametric Mann-Whitney test; mean values denoted
cell subtypes in the splenic MZ during FVC infection. CD169-ex-

pressing MMM demarcate the white pulp that contains follicular

B cells on the inner side and MZ B cells on the outer rim (Arnon

et al., 2013; Cerutti et al., 2013; Martin and Kearney, 2002). We

characterized FVC-infected B cells into follicular (FO), MZ, and

transitional B cells using CD21 and CD23 staining 3 dpi (r.o.)

(Meyer-Bahlburg et al., 2008; Oliver et al., 1997) (Figure S3A).

Although FO B cells remained the major B cell types targeted

by FVC, there was a significant decrease in their infection

when CD169 was absent. Consequently, CD169�/� mice

showed higher infection of MZ B cells compared with B6 mice

(Figure S3B). The percentages of FVC-infected transitional B

cells were similar in both groups (Figure S3B). We were also

able to visualize infected MZ B cells (high immunoglobulin M

[IgMhi]) located near MZs in splenic sections of CD169�/� mice

(Figure S3C). Infected FO (IgD+ IgMlo) andMZ (IgMhi IgDlo) B cells

were primarily located within the white pulp of splenic sections in

B6 mice (Figure S3C) (Zouali and Richard, 2011). Immunostain-

ing also revealed close proximity of IgMhi MZ B cells to clusters

of infected erythroblasts in the red pulp. These data suggested

that enhanced infection of erythroblasts, in addition to increased

virus flow through the outer MZ, contributed to higher infection of

MZ B cells in CD169�/� mice. Thus, in addition to reducing

dissemination to the red pulp, CD169 expression influenced

the transmission of captured viruses to the target lymphocytes.

Site-Specific Antibody Blockade Reveals the
Importance of CD169 at Both the Draining Popliteal
Lymph Node and the Spleen
Retroviruses entering the lymph are first captured at the lymph

node in the subcapsular sinus, and those that escape into the

blood are captured at the splenic MZ by CD169+ macrophages.

Hence, there is a dual effect of CD169 on the total level of infec-

tion at the spleen. We decided to ascertain the relative impor-

tance of these two capture events by impairing CD169 function

in a site-specific manner at the pLN and/or spleen using locally

administered CD169 blocking antibodies in BALB/cJ mice. We

first determined that 5 mg of CD169 antibodies, when delivered

subcutaneously, led to its blockade in a site-specific manner at

the pLN, but not at the spleen (Figure 5A). We ascertained this

by determining the percentages of CD169+ cells in both com-

partments in comparison with isotype control-treated mice.

Similarly, 20 mg of blocking antibody delivered r.o. blocked

CD169 in a site-specific manner at the spleen, but not the pLN

(Figure 5A). We then challenged mice subcutaneously with

FVC when CD169 was blocked at the pLN, spleen, or both or-

gans, and determined the levels of infected cells in the spleen

3 dpi by co-culturing 23 106 splenocytes with MLV-susceptible

DFJ8 cells to enhance sensitivity. The data reveal that blocking

CD169 at the pLN led to a 15-fold increase in FVC infection at

the spleen as compared with the isotype control. Blocking

CD169 at the spleen alone resulted in a �5-fold increase in

splenic infection, whereas a blockade at both pLN and the
pleen, the main blood-filtering lymphoid tissue, and its subsequent spread to

as spleen weight (P), are shown for B6 and CD169�/� mice 8 days after r.o.

by horizontal line. See also Figure S1.
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Figure 3. CD169 Reduces FVC Spread to Erythroblasts in the Red Pulp

Fluorescence-activated cell sorting (FACS) plots showing the gating strategy and graphs depicting the numbers of FVC-infected cells, erythroblasts, B cells, and

ratios of infected erythroblasts and B cells in splenocytes of B6 and CD169�/� mice (n = 4) 5 days after s.c. (A–E) or r.o. (F–J) administration (2,500 SFFU).

Erythroblasts (CD71+ Ter119+ CD19�), B cells (CD19+), and FVC-infected cells (Glycogag+) were identified using the indicated fluorophore conjugates. p values

derived from non-parametric Mann-Whitney test; mean values denoted by horizontal line.

92 Cell Host & Microbe 25, 87–100, January 9, 2019



Figure 4. CD169 Limits Dissemination of FVC into Erythroblast Niche of the Splenic Red Pulp

(A and B) Merged immunostaining images of splenic tissue sections from B6 and CD169�/� mice 5 dpi after s.c. administration (2 3 106 IU) of Ypet expressing

FVC (green). B cells, erythroblasts, andmetallophilic macrophageswere identified using antibodies to surfacemarkers B220 (blue), CD71 (red), and CD169 (pink),

respectively. The B cell follicular area (white pulp) and extrafollicular erythroblast rich areas (red pulp) are demarcated by dashed white lines. Magnified images of

merged and individual channels of insets are shown on the right.

(C) Merged immunostaining images of splenic tissue sections from B6 and CD169�/� mice 5 dpi after r.o. administration of FVC (2,500 SFFU). Metallophilic

macrophages lining the white pulp and FVC-infected cells were identified using antibodies to surface marker CD169 (red) and viral protein Glycogag (green).

(D) Electron tomography of a spleen section from CD169�/� mice for an experiment as in (A). The image shows a cluster of clonally expanded FVC-infected

erythroblasts (labeled E). Insets show details from serial tomographic reconstructions, demonstrating nascent viruses (red arrowheads) budding from the sur-

faces or invaginations of infected erythroblasts.

See also Figures S2 and S3 and Video S1. Scale bars as indicated.
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Figure 5. CD169 Function Is Required at Both pLN and Spleen for Limiting Retrovirus Dissemination

(A) The upper panel depicts a scheme showing administration of isotype control or CD169 blocking antibodies via s.c. (5 mg) or r.o. (20 mg) route to elicit site-

specific blocking at pLN (n = 7–9) or spleen (n = 5), respectively, in BALB/cJmice. The graph in the lower panel shows percentages of CD169-positive cells in pLN

or spleen, 1 hr after CD169 blockade via indicated routes.

(B) Scheme showing administration of CD169 blocking antibodies via mentioned routes as in (A) followed by s.c. inoculation of BALB/cJ mice (n = 6; 2,500 SFFU)

with FVC after 1 hr. The splenocytes were harvested 3 dpi and co-cultured with DFJ8 cells to determine the levels of infection by FACS analyses of

Glycogag+ cells.

(C) Image of spleens from BALB/cJ mice that were uninfected or infected with FVC (500 SFFU) 15 dpi via mentioned routes.

p values derived from non-parametric Mann-Whitney test; mean values denoted by horizontal line.
spleen had a synergistic effect with infection levels reaching

24-fold above control antibody-treated animals (Figure 5B).

These data suggest that CD169 function is likely important at

both the pLN and spleen. However, the contribution of virus-

filtering activity at the pLN is higher in the outcome of total

infection at the spleen for subcutaneously administered virus.

To illustrate this point, we administered equal amounts of virus

via the s.c. and r.o. route in BALB/cJmice andmonitored spleno-

megaly 15 dpi. The images reveal that the extent of infection in

the spleen, as indicated by splenomegaly, was drastically low

when FVCwas administered via the s.c. comparedwith r.o. route

due to the virus-filtering activity of the pLN (Figure 5C).

Analyses of Innate, Humoral, andCell-Mediated Immune
Responses Reveal a Role for CD169 in Eliciting Effective
Cytotoxic CD8+ T Cell Activity
In addition to altered dissemination of virus, a blunted innate,

humoral, and/or cell-mediated immune responsemay contribute

to the high viral loads observed in CD169�/� mice. Immune

response to FVC infection is well characterized (Hasenkrug and

Chesebro, 1997). The innate, humoral, and cell-mediated arms

of the immune response control FVC during various phases of

infection (Hasenkrug and Dittmer, 2000). Given that CD169mac-

rophages at the pLN are known to produce type I IFNs that can

protect neurons from lethal vesicular stomatitis virus (VSV) infec-

tion (Iannacone et al., 2010), we assessed the mRNA levels of

IFN-a and IFN-b in addition to IFN-stimulated genes (ISGs) in

the two groups. Although there were differences in induction of
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some ISGs (IFITM3, IRF3, ISG15, VIG1, and MX1), mRNA levels

of type I IFNs were below the detection limit in pLNs or similar

in spleens of B6 and CD169�/�mice post-FVC infection (Figures

S4A–S4D). We functionally tested the role of type I IFNs by

generating CD169�/�Ifnar1�/� mice and found that the infection

levels in their spleens were still significantly elevated (5-fold)

compared with the control Ifnar1�/� mice (Figures S4E and

S4F). Thus, the role of CD169 was not rescued in Ifnar1�/� mice.

We next assessed the humoral immune response by

comparing FVC-neutralizing antibody titers in the sera of B6

and CD169�/� mice at 7, 14, and 21 dpi (s.c.). Neutralizing

activity and the calculated IC50 in the sera of both groups of

mice were similar (Figures S4G and S4H). To compare FVC-spe-

cific CD4+ T cell responses in B6 and CD169�/�mice, we utilized

EF4.1 mice, which transgenically express a T cell receptor b

chain that can specifically recognize MHC class II-presented

FrMLV envelope epitope (Antunes et al., 2008). We estimated

the percentage of CD44hi proliferating EF4.1 CD4+ T cells

(CD45.1) after adoptively transferring them (r.o.) to mice 8 dpi

(s.c.) (Figure S5A). Our data suggested that FVC-specific CD4+

T cells proliferated to similar extent in B6 and CD169�/� mice

compared with uninfected controls at both spleen and pLN (Fig-

ures S5B and S5C). Taken together, these data suggested that

type I IFN, humoral, and CD4+ T cell proliferative responses

were similar in both groups and excluded their contribution to

enhanced viral loads in CD169�/� mice.

The role of MZ CD169+ macrophages in cross-presenting

antigens to both CD8+ T cells and DCs is well established



(legend on next page)
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(Backer et al., 2010; Bernhard et al., 2015). Therefore, reduced

killing of infected cells by impaired CD8+ T cell activity could

contribute to the enhanced infection in the absence of CD169.

To test this possibility, we first depleted CD8+ T cells using

CD8a-specific antibodies in B6 and CD169�/� mice challenged

subcutaneously with FVC and monitored infection in the spleen

(Figure 6A). There was a significant increase in the infection levels

of splenocytes when CD8+ T cells were depleted in B6, but not in

CD169�/�, mice (Figure 6B). These data suggest that CD8+ T cell

activity could be impaired in CD169�/� mice. To test their func-

tion directly, we investigated in vivo CD8+ CTL activity in the

Fv2s/s background mice after r.o. challenge with FVC. We adop-

tively transferred a 1:1 mix of non-pulsed splenocytes fromGFP-

expressing mice and FrMLV Gag peptide (6 mM) pulsed spleno-

cytes from dsRed-expressing mice 7 dpi (Figure 6C). The ratio

of DsRed- and GFP-positive cells were analyzed a day later in

the spleen and pLN. The data showed that the FVC-specific

CD8+ CTL lysis was significantly impaired in absence of CD169

at both the spleen and pLN (Figures 6D and 6E). We then tested

CTL function in vitro, using purified CD8+ T cells from B6 and

CD169�/� mice 7 dpi and incubating them with peptide-pulsed

dsRed and non-pulsed GFP-expressing splenocytes at various

effector and target ratios. We observed a diminished ability of

CD8+ T cells from CD169�/� mice compared with B6 mice to

kill target cells across various effector-to-target ratios tested (Fig-

ure 6F). Analyses of degranulation activity by staining for surface

exposure of lysosomal marker CD107A following in vitro stimula-

tion of infected splenocytes with FrMLV Gag peptide revealed

that CD8+ T cells were significantly compromised in their degran-

ulation activity when CD169 was absent (Figure 6G). This led to

concomitant intracellular accumulation of cytotoxic granular

components (granzymeA andB) (Figures 6H and 6I). Importantly,

there was a significant reduction in IFN-g-producing CD8+ T cells

in Gag-peptide- and PMA/ionomycin-stimulated splenocyte

culture from CD169�/� mice compared with B6 mice in the

Fv2s/s background (Figures 6J and S6). Furthermore, when

CD169 was absent, CD8+ T cells showed signs of dysfunction,

as they expressed higher levels of the immune checkpoint pro-

tein PD-1 (Figure 6K). Finally, we carried out adoptive transfer

of primed CD8+ T cells from infected B6 or CD169�/� mice to in-

fected CD169�/� mice (Figure 6L). CD169�/� mice that did not

receive CD8+ T cells served as controls. The data revealed the
Figure 6. CD8+ CTL Response Is Compromised in CD169–/– Mice

(A) Comparison of percent CD8+ T cell population in the spleen of B6 and CD169

(B) FVC-infected cells in the spleen of B6 and CD169�/� mice (n = 4, 8 dpi, 2,500

(C) Experimental design for estimating in vivo CTL activity using a 1:1 ratio of Fr

infected (r.o., 2,500 SFFU) mice.

(D) Representative FACS plots showing comparative killing of Gag peptide pulse

B6.Fv2s/sCD169�/� (n = 5) mice for an experiment as in (C).

(E) The graph in the left panel shows the ratio of non-pulsed to pulsed peptide ce

spleen. The right panel shows specific CTL killing activity of peptide-pulsed cells

(F) Specific CTL activity determined using in vitro assay at indicated effector-to-ta

or CD169�/�mice (7 dpi, 2,500 SFFU r.o.). 1:1 ratio of peptide pulsed dsRed+ and

as in (D) after culturing cells for 48 hr.

(G–K) 23 106 splenocytes from FVC-infected B6.Fv2s/s (n = 5) and B6.Fv2s/sCD169

6 mM Gag peptide for 15–18 hr. The plots show a comparison of cells that staine

(L) Experimental design to test the in vivo efficacy of adoptively transferred prim

(M) FVC-infected cells in the spleen of CD169�/� mice for an experiment depic

exogenous CD8+ T cells were used as control.

p values derived from non-parametric Mann-Whitney test; mean values denoted
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significantly superior ability of CD8+ T cells from B6 compared

with CD169�/� mice in reducing FVC-infected cell numbers (Fig-

ure 6M). These data complemented the CD8 depletion experi-

ment (Figures 6B and 7C) and indicated that reduced CD8+

CTL activity contributed to enhanced viral loads in addition to

altered virus dissemination in CD169�/� mice.

CD169 Contributes to Activation of Batf3-Dependent
cDC1s for Cross-Priming CD8+ T Cells
In addition to directly priming some CTLs, MMMs also activate

Batf3-dependent XCR1+ CD8a+ cDC1s by binding to surface

sialic acids via CD169 for cross-priming CD8+ T cells (Backer

et al., 2010; van Dinther et al., 2018). In agreement with these

earlier studies, we found that activation of DCs, monitored by

surface expression of CD80, was reduced in the CD11chi DCs

and CD11c+CD8a+ cDC1 population in the absence of CD169

(Figures 7A and 7B). These data suggested that retrovirus-bind-

ing CD169+ macrophages likely interacted with DCs and acti-

vated them. To test this possibility, we immunostained splenic

sections 2 hr after r.o. administration of Gag-GFP-labeled retro-

viral particles. The images revealed that CD11c+ and XCR1+ DCs

were in close proximity to retrovirus capturing CD169+ MMM

(Figure S7; Video S2). XCR1+ cDC1s are known for their CD8+

T cell cross-priming abilities and require the transcription factor

Batf3 for their development (Hildner et al., 2008). We therefore

tested the contribution of cDC1 during FVC infection (r.o.) using

Batf3�/� mice. FVC-infected cell numbers were significantly

elevated in spleens ofBatf3�/�mice compared with B6 and phe-

nocopied CD8+ T cell-depleted B6 mice (Figure 7C). These data

revealed that cross-priming Batf3-dependent cDC1s contrib-

uted to FVC-specific CTL activity and control of FVC infection.

The higher levels of FVC infection in CD169�/� compared with

Batf3�/� mice are consistent with our hypothesis that CD169 or-

chestrates both efficient capture of blood-borne retroviruses to

limit virus dissemination within the spleen and induction of effec-

tive CD8+ CTL response by collaborating with cDC1s.

DISCUSSION

Previously we were able to demonstrate retrovirus spread

through cell-cell contacts of transsynaptic and virological synap-

ses within pLNs (Sewald et al., 2015). Here, using FTY720 to
�/� mice (n = 4) after i.p. administration of CD8a T cell depleting antibodies.

SFFU s.c.) with and without CD8 T cell depletion for an experiment as in (A).

MLV Gag peptide pulsed dsRed+ and non-pulsed GFP+ splenocytes in FVC-

d dsRed+ splenocytes in uninfected (n = 5) and infected B6.Fv2s/s (n = 10) and

lls in uninfected and infected mice for the experiment shown in (D) in pLN and

after normalization to uninfected mice.

rget ratios using purified CD8+ T cells from spleens of uninfected or infected B6

non-pulsed GFP+ splenocytes were used as targets and CTL activity monitored

�/� (n = 5) (8 dpi, 2,500 SFFU s.c.) or uninfectedmice were cultured in vitrowith

d positive for indicated markers in the CD8+ T cell population.

ed CD8+ T cells from B6 or CD169�/� mice to target FVC-infected cells.

ted in (L) (n = 4, 7 dpi, 2,500 SFFU r.o.). CD169�/� mice that did not receive

by horizontal line, error bars denote SD. See also Figures S4–S6.



Figure 7. CD169 Plays a Crucial Role in Acti-

vating cDC1s to Elicit Effective CD8+ T Cell

Response during FVC Infection

(A andB) CD80+-activated dendritic cells in CD11chi

(A) and CD11c+CD8a+ (cDC1) (B) populations from

splenocytes of FVC-infected B6.Fv2s/s (n = 5) and

B6.Fv2s/sCD169�/� (n = 5) (8 dpi, 2,500 SFFU s.c.).

(C) FVC-infected cells in the spleens of B6 (with

and without CD8 T cell depletion), Batf3�/�, and
CD169�/� mice (n = 4, 7 dpi, 2,500 SFFU r.o.).

p values derived from non-parametric Mann-

Whitney test; mean values denoted by horizontal

line; error bars denote SD. Scale bars as indicated.

See also Figure S7 and Video S2.
block lymphocyte emigration, we show that retroviruses initially

exploit lymph and blood flow (Figures 1 and S1A–S1D) to spread

in cell-free mode. Host factors such as CD169 expressed on

sentinel macrophages in the SCS andMZ located at the fluid-tis-

sue interface played a crucial role in the transition of virus

dissemination from a cell-free to cell-associated mode by

capturing them and promoting trans-infection of permissive lym-

phocytes. Once the infection was established, retroviruses also

exploited the migratory behavior of infected lymphocytes for

their dissemination (Figures S1E–S1G). These data indicated

that retroviruses are adept at using the advantages of both

modes of transmission to facilitate their spread within the host.

How CD169-mediated capture and dissemination-limiting

events affect retroviral pathogenesis was unknown. Here we uti-

lized the non-pathogenic and pathogenic nature of two retrovi-

ruses, FrMLV and FVC, respectively, to study this aspect. For

both viruses, CD169 reduced systemic viral dissemination by

efficiently capturing free retroviruses from lymph and promoted

infection at the pLN after s.c. challenge. Despite virus escape

from pLN and higher viral loads in the spleen, FrMLV infection

was lower in the spleens of CD169�/� compared with B6 mice.

These data implied that regardless of the tissue, FrMLV relied

on CD169-mediated capture event to efficiently infect target

lymphocytes and corroborated the infection-promoting role for

CD169 from our earlier study (Sewald et al., 2015). Our data

are consistent with non-pathogenic FrMLV having evolved over

a million years to exploit CD169-mediated capture for promoting

infection of its native host (Figure 1G). Incorporation of sialic acid

ligands to exploit CD169-mediated sequestration appears to be

an evolutionary choice, as all enveloped viruses do not co-opt

this mechanism. HIV-2 does not efficiently incorporate sialic

acids and hence cannot exploit CD169 to promote its infection

(Kijewski et al., 2016).

The observed infection-promoting function for CD169+ SCS

macrophages was contrary to that seen for other viruses

such as murid herpesvirus-4 (MuHV-4) and VSV (Frederico

et al., 2015; Iannacone et al., 2010). SCS macrophages were

readily infected by lymph-borne MuHV-4 and protected target

B cells from infection as it usurped the incoming virus into a

non-amplifying pathway. VSV similarly infected CD169+ SCS

macrophages to initiate a type I IFN response that prevented

lethal virus spread to the central nervous system. Thus, the

frontline position of SCS macrophages posed a significant bar-

rier for both MuHV-4 and VSV to infect their target cells con-

trary to FrMLV (Sewald et al., 2015). Importantly, analogous
to its infection-hindering role for MuHV-4 and VSV, CD169

assumed a protective role during the pathogenic FVC infection.

In the absence of CD169, FVC displayed enhanced infection at

the spleen and led to accelerated death in susceptible BALB/cJ

mice. This surprising opposite outcome was in part due to the

expanded tropism of FVC that can also productively infect and

proliferate in erythroblasts. Lack of CD169-mediated virus-

filtering activity in the MZ provided FVC enhanced access to

the red pulp, which is rich in target erythroblast population, re-

sulting in elevated levels of infection. In contrast, FrMLV cannot

productively infect erythroblasts and required CD169 expres-

sion to promote its infection of permissive lymphocytes. Our

data highlight an interesting facet of host-pathogen interaction

whereby retroviruses co-evolved to hijack the surveillance

function of CD169+ macrophages for their efficient infection

and spread in mice. Despite this exploitation, the protective

function of the CD169+ macrophages dominate when a patho-

genic virus arises with an expanded tropism. Thus, by

comparing FrMLV and FVC we were able to reveal both infec-

tion-promoting and protective roles for CD169 on sentinel mac-

rophages during retrovirus infection.

A protective role for CD169, though similar to other pathogens

as noted in previous studies, could not be attributed solely to the

lectin CD169 (Farrell et al., 2015, 2016; Gupta et al., 2016; Honke

et al., 2012; Iannacone et al., 2010; Kastenmuller et al., 2012;

Sagoo et al., 2016). Many of the previous studies employed

clodronate liposomes or diphtheria toxin receptor-based strate-

gies that eliminated SCS or MMM macrophage populations

entirely. Thus, the strength of our work over previous studies is

that we document a direct role of CD169 per se with an intact

macrophage layer.

In addition to regulating dissemination, CD169 expression

could also influence several immune related functions that are

orchestrated by sentinel macrophages. CD169-expressing

SCS macrophages were shown to capture tumor-derived ves-

icles and exosomes from the lymph, preventing them from ac-

cessing the B cell follicular area. This step protected the host

from deleterious effects of tumor-promoting humoral immunity

(Pucci et al., 2016). However, we did not observe significant

differences in FVC-specific humoral immune CD4+ T cell re-

sponses when CD169 was absent (Figures S4 and S5).

CD169+ macrophages can also promote activation of tumor-

specific CD8+ T cells by promoting cross-presentation of tu-

mor-derived antigens (Asano et al., 2011). We found that

CD169 expression on MZ macrophages was required to elicit
Cell Host & Microbe 25, 87–100, January 9, 2019 97



an effective FVC-specific CD8+ T cytotoxic response (Figures 6

and 7) for elimination of infected cells. When CD169 was ab-

sent, we observed an overall reduction in numbers of IFN-g-ex-

pressing CD8+ T cells stimulated by PMA/ionomycin or Gag-

specific peptide (Figures S6 and 6J). A weak CD8+ T cell

response in CD169�/� mice was associated with compromised

activation of cDCs. Given that CD169+ MMM capture incoming

retroviruses, efficient activation could be limited to interrogating

DCs. Unlike VSV, retrovirus-laden CD169+ macrophages are

not infected early during infection (Honke et al., 2012; Sewald

et al., 2015), and hence suggested a role for naturally proficient

cross-presenting cDC1s in mounting a rapid CD8+ CTL

response. Indeed, we observed that FVC-specific CD8+ T cell

responses were severely compromised in Batf3�/� mice lack-

ing cDC1 cells and phenocopied mice in which CD8+ T cells

were depleted (Figure 7C). These data suggested a crucial

contribution of CD169 in cross-presentation of captured natural

ligands such as retroviruses via cDC1s to elicit effective CD8+

T cell response. Our data imply that exploration of CD169-

blockade-based strategy to reduce HIV-1 acquisition needs

to be considered with caution as it can also compromise anti-

gen cross-presentation and/or alter protective CD8+ T cell re-

sponses. Our data are in agreement with a recent study in

which CD169 expressed on MZ macrophages was shown to

bind sialic acids on the cell surface of interrogating cDC1s for

cross-presentation of antigens to promote effective CD8+

T cell responses (van Dinther et al., 2018). Our studies highlight

the emerging importance of the I-type lectin CD169 expressed

on sentinel macrophages in curbing systemic dissemination of

retroviruses and promoting cell-cell interactions for orches-

trating effective immune responses. A detailed understanding

of how the early events shape the outcome of viral infections

is therefore required to inform the design of effective antiviral

and vaccination strategies.
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STAR+METHODS
KEY RESOURCES TABLE
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Antibodies

Ultra-LEAF purified anti-mouse CD169 (3D6.112) BioLegend Cat # 94019

Ultra-LEAF purified Rat IgG2a isotype control

antibody (RTK2758)

BioLegend Cat # 400543, RRID: AB_11148951

Fc block anti mouse-CD16/CD32 (93) BioLegend Cat # 101302, RRID: AB_312801

Anti-MLV Glycogag (mab34) Santiago Lab/ Bruce Chesebro Recognizes MLV (MA, p15) part of

Glycogag (Chesebro et al., 1981)

Anti-MLV Gag p30 hybridoma (R187) ATCC Cat # CRL-1912

AF647 anti-MLV Glycogag (mab34) Prepared in this work N/A

FITC anti-mouse CD19 (6D5) BioLegend Cat # 115505, RRID: AB_313640

PE/Cy7 anti-mouse CD19(6D5) BioLegend Cat # 115519, RRID: AB_313654

APC anti-mouse CD4(RM4-5) BioLegend Cat # 100515, RRID: AB_312718

AF647 anti-mouse CD4 (GK1.5) BioLegend Cat # 100426, RRID: AB_493519

PE/Cy7 anti-mouse CD4 (GK1.5) BioLegend Cat # 100421, RRID: AB_312706

APC/Cy7 anti-mouse CD3 3(145-2C11) BioLegend Cat # 100329, RRID: AB_1877171

PE anti-mouse CD71 (RI7217) BioLegend Cat # 113807, RRID: AB_313568

APC/Cy7 anti-mouse TER-119 (TER-119) BioLegend Cat # 116223, RRID: AB_2137788

AF647 anti-mouse CD169 (3D6.112) BioLegend Cat # 142407, RRID: AB_2563620

PE anti-mouse CD169 (3D6.112) BioLegend Cat # 142403, RRID: AB_10915470

AF594 anti-mouse CD169 (3D6.112) BioLegend Cat # 142416, RRID: AB_2565620

FITC anti-mouse CD21/CD35 (CR2/CR1) (7E9) BioLegend Cat # 123407, RRID: AB_940403

PE anti-mouse CD23 (B3B4) BioLegend Cat # 101607, RRID: AB_312832

eFluor450 anti-mouse IgD, eBioscience (11-26c(11-26)) Invitrogen REF # 48-5993-80, RRID: AB_1272239

Dylight 550 goat anti-mouse IgM cross-abosorbed

secondary antibody

Invitrogen Cat # SA5-10151, RRID: AB_2556731

PE anti-mouse CD45.1 (A20) BioLegend Cat # 110707, RRID: AB_313496

FITC anti-mouse CD45.2 (104) BioLegend Cat # 109805, RRID: AB_313442

APC anti-mouse/human CD44 (IM7) BioLegend Cat # 103011, RRID: AB_312962

InVivoMAb anti-mouse CD8a (YTS 169.4) Bio X cell Cat # BE0117, RRID: AB_10950145

AF488 anti-mouse CD8a (53-6.7) BioLegend Cat # 100723, RRID: AB_389304

AF647 anti-mouse CD107A (LAMP-1) (1D4B) BioLegend Cat #121609, RRID: AB_571990

PE anti-mouse Granzyme A (3G8.5) BioLegend Cat # 149703, RRID: AB_2565309

PE Anti-human/mouse Granzyme B Recombinant

(QA16A02)

BioLegend Cat # 372207, RRID: AB_2687031

PE anti-mouse IFNg (XMG1.2) BioLegend Cat # 505807, RRID: AB_315401

PE anti-mouse CD279 (PD-1) (RMP1-30) BioLegend Cat # 109103, RRID: AB_313420

PE anti-mouse CD80 (16-10A1) BioLegend Cat # 104707, RRID: AB_313128

APC anti-mouse CD80 (16-10A1) BioLegend Cat # 104713, RRID: AB_313134

AF647 anti-mouse CD11c (N418) BioLegend Cat # 117314, RRID: AB_492850

APC/Cy7 anti-mouse CD11c (N418) BioLegend Cat # 117323, RRID: AB_830646

Alexa Fluor 647 anti-mouse/rat XCR1 (ZET) BioLegend Cat # 148213, RRID: AB_2564368

Alexa Fluor 647 anti-mouse CD11c BioLegend Cat # 117312, RRID: AB_389328

(Continued on next page)
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Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

Bacterial and Virus Strains

Lactate dehydrogenase-elevating virus (LDV)-free FVC Generated in this work by passaging

the virus in BALB/cJ mice

N/A

FrMLV copackaged with MLV LTR Antares Generated in this work N/A

FrMLV co-packaged with MLV LTR GFP Mothes Lab, Yale University N/A

FVCYpet Generated in this work N/A

FVC GFP Generated in this work N/A

Chemicals, Peptides, and Recombinant Proteins

Liberase TL Research Grade Sigma-Aldrich Cat# 5401020001

DNAse I recombinant, RNAse-free Roche Ref # 04716728001

RPMI medium 1640 (1X) Life technologies Ref # 11875-093

Fetal bovine serum Atlanta Biologicals Cat # S11550

MEM Non-essential amino acid (NEAA) solution (100X) Life technologies Ref # 11140-050

Penicillin-streptomycin solution (10,000 U/ml) Life technologies Ref # 15140122

Sodium pyruvate (100 mM) Life technologies Ref # 11360-070

2-Mercaptoethanol Sigma-Aldrich Cat # M3148

L-Glutamine (200mM) Life technologies Ref # 25030-081

Red blood cell lysis buffer-Hybri-Max Sigma-Aldrich Cat # R7757-100ML

RBC Lysis Buffer (10X) BioLegend Cat # 420301

Dulbecco’s Phosphate Buffered Saline (DPBS) 1X Life technologies Ref # 14190-144

Hybridoma-SFM Gibco Cat # 12045-076

Ultra-low IgG FBS Life technologies Cat # 16250-086

Bovine Serum Albumin (BSA) Sigma-Aldrich Cat# A9647-100G CAS:

9048-46-8

Accutase Biolegend Cat # 423201

0.05% Trypsin-EDTA (1X) Life Technologies Cat # 25300-054

K3 EDTA 15% Solution Fisher Scientific Cat # BD 366450

Gelatin (Teleostean gelatin) Type A Sigma-Aldrich Cat # G7041 CAS: 9000-70-8

Triton-X 100 t-octyl phenoxy polyethoxyethanol American Bioanalytical Cat # AB02025-00500 CAS:

9002-93-1

PMA (phorbol 12-myristate-13-acetate) Sigma Cat # 19-144

Ionomycin Sigma Cat # I3909-1ML

GolgiStop BD Biosciences Cat # 554724

Brefeldin A Sigma-Aldrich Cat # B7651-5MG CAS:

20350-15-6

Paraformaldehyde (PFA) Electron Microscopy Sciences Cat # 19200 CAS: 30525-89-4

Rat serum Stemcell Biotechnologies Cat # 13551

L-lysine Monohydrochloride Sigma-Aldrich Cat # L1262

Sodium (meta)periodate Sigma-Aldrich Cat # 30323-100G CAS:

7790-28-5

Sucrose/ a-D-glucopyranosyl-b-D-fructofuranoside americanBIO Ref # AB01900-01000

CAS: 57-50-1

Tissue-Tek O.C.T Compound Sakura Cat # 4583

Fc receptor blocker Innovex Cat # NB335

ProLong Gold antifade reagent Invitrogen Cat # P36934

Glutaraldehyde Electron Microscopy Sciences Cat # 16220 CAS: 111-30-8

Sodium cacodylate trihydrate Electron Microscopy Sciences Cat #12300

Ficoll Sigma-Aldrich Cat #F2878-100g

Osmium tetroxide Electron Microscopy Sciences Cat #19110

(Continued on next page)
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REAGENT or RESOURCE SOURCE IDENTIFIER

Uranyl acetate Electron Microscopy Sciences Cat #22400

Acetone, EM-Grade, Glass-Distilled Electron Microscopy Sciences Cat #10015

Epon-Araldite resin Electron Microscopy Sciences Cat #13940

Lead citrate Electron Microscopy Sciences Cat #17800 CAS: 512-26-5

Gold beads (10 nm) Ted Pella Cat. #15703-1

Bouin’s solution Sigma-Aldrich Cat # HT10132-1L

FTY720 Cayman Chemical Cat # 10006292 CAS:

162359-56-0

Dimethyl sulfoxide (DMSO) Sigma-Aldrich Cat # D2650-5X5ML

CAS: 67-68-5

Sodium azide Sigma-Aldrich Cat # S-8032 EC No: 247-852-1

Sodium phosphate, Monobasic, Monohydrate,

Crystal (NaH2PO4,H2O)

J.T.Baker Cat # 3818-01 CAS: 10049-21-5

Sodium phosphate, Dibasic, Anhydrous (Na2HPO4) J.T.Baker Cat # 3828-01 CAS: 7558-79-4

Glycine American Bioanalytical Cat # AB00730-01000

CAS: 56-40-6

Passive lysis buffer (5X) Promega Cat # E194A

Guinea pig complement MP Biomedical Cat # 55854

DNase inactivation reagent Ambion Cat # 8173G

MLV specific peptide (GK1754) (KKCCLCLTVFL) Genscript N/A

FrMLV Gag peptide (CCLCLTVFL) Peptide 2.0 N/A

Critical Commercial Assays

Mix-n-Stain CF 488A Antibody Labeling Kit (50-100mg) Sigma-Aldrich Cat # MX488AS100 SIGMA

Mix-n-Stain CF 647 Antibody Labeling Kit (50-100mg) Sigma-Aldrich Cat # MX647S100 SIGMA

Nano-Glo Luciferase Assay System Promega Cat # N1120

KAPA SYBR FAST qPCR Master Mix (2X) Kit KAPA Biosystems Cat # KK4600 and KK4601

Ambion DNase I (RNase-free) Thermo Fisher Scientific Cat # AM2222

RNeasy Mini Kit (50) Qiagen Cat #/ID 74104

qScript cDNA Synthesis Kit Quanta Biosciences Cat # 95047-100

Negative selection mouse CD4+ T cell enrichment kit Stemcell technologies Cat # 19752A

MojoSort mouse CD8 T cell isolation kit BioLegend Cat # 480008

Experimental Models: Cell Lines

Rat hybridoma mAb34 Santiago Lab/ Bruce Chesebro Recognizes MLV (MA, p15) part of

Glycogag (Chesebro et al., 1981)

HEK293 ATCC Cat # CRL-1573

S49.1 ATCC Cat # TIB-28

DFJ8 Mothes Lab (From Jim Cunningham,

Dana Farber)

N/A

Experimental Models: Organisms/Strains

C57BL/6J (B6) The Jackson Laboratory The Jackson Laboratory Stock

No: 000664

BALB/cJ The Jackson Laboratory The Jackson Laboratory Stock

No: 000651

CD169-/- (B6 background) Paul Crocker, University of

Dundee UK

N/A

B6.A-Fv2s/s (B6 background) The Francis Crick Institute, UK Colony ID: GKAF

B6.A-Fv2s/sCD169-/- (B6 background) Generated in this work N/A

Ifnar1-/- (B6 background) Iwasaki Lab, Yale University MMRRC Stock No: 32045-JAX

Ifnar1-/-CD169-/- (B6 background) Generated in this work N/A

(Continued on next page)
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REAGENT or RESOURCE SOURCE IDENTIFIER

NagyDsRed.T3 (B6 background) The Jackson Laboratory Jackson Laboratory Stock

No: 006051

UBI-GFP (B6 background) The Jackson Laboratory Jackson Laboratory Stock

No: 004353

F-MuLV env-specific TCR-transgenic mouse (EF4.1

strain TCRb transgenic mouse)

The Francis Crick Institute, UK Colony ID: GKAA

Batf3-/- (B6 background) Eisenbarth Lab, Yale University Jackson Laboratory Stock

No: 013755

Oligonucleotides

Mouse Actin, F: 5’-CATGTAGATGCACGACTAGCTTC-3’

R: 5’-GTTTCCTTGTTTAGCAGAACAGC-3’

Yale School of Medicine, W. M. Keck

Foundation, Oligo Synthesis Resource

N/A

Mouse IFNB1, F: 5’-CTGGCTTCCATCATGAACAA-3’

R: 5’-AGAGGGCTGTGGTGGAGAA-3’

Yale School of Medicine, W. M. Keck

Foundation, Oligo Synthesis Resource

N/A

Mouse IFNA2, F: 5’-TCTGTGCTTTCCTCGTGATG-3’

R: 5’-TTGAGCCTTCTGGATCTGCT-3’

Yale School of Medicine, W. M. Keck

Foundation, Oligo Synthesis Resource

N/A

Mouse IFNA4, F: 5’-GCAGAAGTCTGGAGAGCCCTC-3’

R: 5’-TGAGATGCAGTGTTCTGGTCC-3’

Yale School of Medicine, W. M. Keck

Foundation, Oligo Synthesis Resource

N/A

Mouse IFITM3, F: 5’-CTGAAGGGGAGCGATTGATT-3’

R: 5’-AACGGCACATGACCAAAGAGTAGA-3’

Yale School of Medicine, W. M. Keck

Foundation, Oligo Synthesis Resource

N/A

Mouse IRF7, F: 5’-GCCAGGAGCAAGACCGTGTT-3’

R: 5’-TGCCCCACCACTGCCTGTA-3’

Yale School of Medicine, W. M. Keck

Foundation, Oligo Synthesis Resource

N/A

Mouse ISG15, F: 5’-GATTGCCCAGAAGATTGGTG -3’

R: 5’-TCTGCGTCAGAAAGACCTCA-3’

Yale School of Medicine, W. M. Keck

Foundation, Oligo Synthesis Resource

N/A

Mouse VIG1, F: 5’-AACCCCCGTGAGTGTCAACTA-3’

R: 5’-AACCAGCCTGTTTGAGCAGAA-3’

Yale School of Medicine, W. M. Keck

Foundation, Oligo Synthesis Resource

N/A

Mouse GBP4, F: 5’-TGGGGGACACAGGCTCTACA-3’

R: 5’-GCCTGCAGGATGGAACTCTCAA-3’

Yale School of Medicine, W. M. Keck

Foundation, Oligo Synthesis Resource

N/A

Mouse CXCL10, F: 5’-CCAAGTGCTGCCGTCATTTTC-3’

R: 5’-GGCTCGCAGGGATGATTTCAA-3’

Yale School of Medicine, W. M. Keck

Foundation, Oligo Synthesis Resource

N/A

Mouse STAT1, F: 5’-CACATTCACATGGGTGGAAC-3’

R: 5’-TCTGGTGCTTCCTTTGGTCT-3’

Yale School of Medicine, W. M. Keck

Foundation, Oligo Synthesis Resource

N/A

Mouse STAT2, F: 5’-ACCAGTGGGACCACTACAGC-3’

R: 5’-ATCTCAAGCTGCTGGCTCTC-3’

Yale School of Medicine, W. M. Keck

Foundation, Oligo Synthesis Resource

N/A

Mouse IL10, F: 5’-CTCTTACTGACTGGCATGAGGAT-3’

R: 5’-GAGTCGGTTAGCAGTATGTTGT-3’

Yale School of Medicine, W. M. Keck

Foundation, Oligo Synthesis Resource

N/A

Mouse 25OAS, F: 5’-ACTGTCTGAAGCAGATTGCG-3’

R: 5’-TGGAACTGTTGGAAGCAGTC-3’

Yale School of Medicine, W. M. Keck

Foundation, Oligo Synthesis Resource

N/A

Mouse MX1, F: 5’-AACCCTGCTACCTTTCAA-3’

R: 5’-AAGCATCGTTTTCTCTATTTC-3’

Yale School of Medicine, W. M. Keck

Foundation, Oligo Synthesis Resource

N/A

Recombinant DNA

pLRB303-FrMLV Mothes Lab, Yale University N/A

pMMP-LTR-GFP Mothes Lab, Yale University N/A

pMIG-Antares Generated in this work N/A

pLRB303-FrMLVYpet Generated in this work N/A

pBR322-SFFV LS Leonard Evans (NIH) N/A

pLRB303-SFFV GFP Generated in this work N/A

pLRB303-GagGFP Mothes Lab, Yale University (Jin et al., 2009)

MLV GagPol Mothes Lab, Yale University N/A

pcDNA3-FrMLV Env Mothes Lab, Yale University N/A

Software and Algorithms

Accuri CSampler BD Biosciences N/A

FlowJo Treestar N/A

(Continued on next page)

e4 Cell Host & Microbe 25, 87–100.e1–e10, January 9, 2019



Continued
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Volocity version 6.3 PerkinElmer N/A

Photoshop CC Adobe Systems N/A

Illustrator CC Adobe Systems N/A

qPCR software Biorad N/A

Graphpad Prism GraphPad Software N/A

SerialEM software package N/A N/A

IMOD software package N/A N/A

Other

Luminometer Berthold Technologies N/A

Accuri C6 BD Biosciences N/A

Leica Cryostat CM1950 Leica CM1950 (Pietro Di Camilli Lab)

Leica TCS DMi8 SP8 microscope Leica CCMI Yale Central Facility

HPM-010 high-pressure freezing machine Leica Microsystems, Vienna Austria N/A

AFS-2 freeze-substitution machine Leica Microsystems N/A

Stereo dissecting microscope Nikon SMZ645

UC6 ultramicrotome Leica Microsystems N/A

Transmission electron microscope Tecnai TF30ST-FEG

2k x 2k CCD camera Gatan, Inc XP1000

C1000 Touch thermal cycler Bio-Rad N/A

CFX Connect Real-Time PCR Detection System Bio-Rad N/A

Nanodrop Spectrophotometer ND-1000 Thermo Fisher Scientific N/A

27G 3 ½’’ insulin syringe with needle TERUMO Cat # SS*05M2713

31G insulin syringe BD Biosciences Cat # 328468

70 mm Nylon cell strainer FALCON Cat # 352350

Acrodisc 25 mm Syringe Filter w/0.45 mm HT Tuffryn

Membrane

PALL Life Sciences Cat # 4184

HiTrap Protein G HP antibody purification columns GE Healthcare Life Sciences Cat # 29048581

Superfrost Plus Microscope Slides Thermo Scientific Cat # 4951PLUS-001

96-well white plates for luciferase assays Costar Cat # 3917

Accu-Edge High Profile Microtome Blades SAKURA Ref # 4685

Microcover glasses 1 ounce No.1 VWR Cat # 48393 106

Tissue-Tek Cryomold SAKURA Ref # 4557

Brass planchettes Ted Pella Type A

Brass planchettes Ted Pella Type B

Cryotubes Nunc N/A

Teflon-coated glass microscope slides N/A N/A

Microsurgical scalpel N/A N/A

Plastic sectioning stubs N/A N/A

Diamond knife Diatome, Ltd N/A

Formvar-coated copper-rhodium slot grids Electron Microscopy Sciences N/A

Dual-axis tomography holder E.A. Fischione Instruments, Export PA Model 2040

Polystyrene Round-bottom Tube FALCON Ref # 352058

Optical Flat 8-Cap Strips for 0.2 ml tube stripes/plates Bio-Rad Cat # TCS0803

Individual PCR tubes 8-tube Strip, clear Bio-Rad Cat # TLS0801

ThermalGrid Rigid Strip PCR tubes Denville Scientific Ref # C18064

96 well U bottom plate FALCON Ref # 353077

Easy-Sep Magnet Stemcell Cat # 18000
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CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Walther

Mothes (walther.mothes@yale.edu).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Mice
C57BL/6 (B6), BALB/cJ, NagyDsRed.T3 and UBI-GFP mice were obtained from Jackson Laboratory. CD169�/� mice (B6 back-

ground) were from Paul Crocker, University of Dundee UK (Oetke et al., 2006). Requests for CD169-/- mice should be directed

to Paul Crocker. Ifnar1-/- mice were from Akiko Iwasaki, Yale University. Ifnar1-/-CD169-/- mice were generated in this work by

crossing CD169-/- mice with Ifnar1-/- mice. B6.A-Fv2s/s mice were from the George Kassiotis of the Francis Crick Institute (former

National Institute for Medical Research), UK (Antunes et al., 2008). Requests for B6.A-Fv2s/s should be directed to George Kassiotis.

Fv2s/sCD169-/- mice were generated in this work by crossing B6.A-Fv2s/smice with CD169-/- mice. All the animals were housed under

specific pathogen-free conditions in the facility of Yale Animal Resources Center (YARC). FrMLV env-specific TCR-transgenic mice

(EF4.1 strain TCR-b transgenic mice) were generated and maintained at the Francis Crick Institute (former National Institute for Med-

ical Research), UK. Batf3-/- mice were from Stephanie Eisenbarth, Yale University. All experiments were approved by the Institutional

Animal Care and Use Committees (IACUC) of and Institutional Biosafety Committee of Yale University. 6–8 week old male and female

mice were used for all the experiments. NagyDsRed.T3 and UBI-GFP mice of the same sex as the recipient mice were used in the

in vivo CTL experiments.

Virus Production and Titration
Friend Virus Complex

A stock of Lactate dehydrogenase-elevating virus (LDV)-free FVC was used for the study. They were prepared by retro-orbital infec-

tion of BALB/cJ mice and harvesting spleens at 8 dpi. 10% spleen homogenates were made in serum-free RPMI by passing through

75 mm mesh. Excess cells were removed by sedimentation and aliquots of supernatants were stored at -80�C. Titers of fresh virus

stocks were determined in BALB/cJ mice 8 days after retro-orbital administration of diluted virus stocks by counting the foci on the

spleen stained with Bouin’s solution and expressed as spleen focus forming units (SFFU). An amount of virus equivalent to 2,500

SFFU or 500 SFFU as indicated was used for our experiments. In addition, serial dilutions of viruses were plated on DFJ8 cells

(DF-1 chicken cells expressing FrMLV receptor mCAT-1) and cultured for 36-48 h. The cells were fixed and stained with antibodies

to Glycogag (purified from culture supernatants of mAb34 hybridoma; conjugated to Alexa 647) and analyzed by FACS to estimate

titers in terms of infectious units.

For cryo-histology experiments we generated FVCYpet and FVC GFP that express fluorescent proteins in the cytoplasm of in-

fected cells. For producing FVCYpet, we first generated a full-length replication competent MLV in pLRB303 backbone expressing

the fluorescent protein Ypet (FrMLVYpet) inserted after the envelope ORF under a modified IRES (6ATRI) using a strategy described

earlier (Alberti et al., 2015; Logg et al., 2001; Nguyen and Daugherty, 2005; Yoon et al., 2013). FVCYpet was made by co-transfecting

HEK293 cells with equal amounts of plasmid DNA encoding FrMLVYpet and HindIII fragment released from pBR322 plasmid encod-

ing SFFV LS strain (gift from Frank Malik and Leonard Evans). For FVC GFP, a BamHI to BlpI fragment encoding the SFFV gp55 from

pBR322 SFFV LS plasmid was inserted in to pLRB303 backbone digested with BamHI and BlpI. Next, a Pac I site was introduced

using site directed mutagenesis right after the Gp55 ORF to insert a 6ATRI GFP cassette for obtaining the pLRB303 SFFV GFP

construct. FVC GFP was made by co-transfecting HEK293 cells with equal amounts of plasmid DNA encoding FrMLV (pLRB303)

and SFFV (pLRB303 SFFV GFP). Culture supernatants were harvested 48 h later and in vitro virus titers were determined by infecting

murine T lymphoid cell line S49.1 for 24 h followed by flow cytometry to enumerate MLV glycoGag, Ypet and GFP expressing cells.

FVCYpet or FVC GFP particles were concentrated by sedimentation through a 15 % sucrose-PBS cushion. Concentrated virus

(equivalent to 2 x 106 infectious units, in vitro) was suspended in phosphate buffered saline (PBS) containing 0.1% bovine serum al-

bumin (BSA) and administered s.c. into the footpad or retro-orbitally for infection of mice.

FrMLV Expressing GFP and Luciferase

FrMLV expressing GFP were generated by co-transfecting HEK293 cells with plasmids pLRB303-FrMLV (encodes full-length repli-

cation competent Friend57 MLV) (Oliff et al., 1980) and pMMP-LTR-GFP (encodes cytoplasmic GFP driven by MLV LTR) at a ratio of

10:1 (Sewald et al., 2015). FrMLV expressing luciferase was generated similarly by co-transfection with pMIGw-Antares generated in

this study by replacing IRES GFP cassette with Antares luciferase from pNCS-Antares. pMIG-w was a gift from Luk Parijs (Addgene

plasmid # 12282) and pNCS-Antares was a gift fromMichael Lin (Addgene plasmid # 74279) (Chu et al., 2016; Refaeli et al., 2002). The

culture supernatants were harvested 48 h later, filtered, aliquoted and stored at -80�C. Virus titers were determined by infecting mu-

rine T lymphoid cell line S49.1 for 24 h or DFJ8 cells for 36-48 h followed by flow cytometry to enumerate MLV Glycogag, GFP or

Antares expressing cells. Antares luciferase activity was monitored where applicable in cell lysates of infected cells in 1X passive

lysis buffer using 1 in 40 dilution of the Nano-Glo luciferase assay reagent (Promega Corp) and luminometer (Berthold technologies).

Viral particles in the culture supernatants were concentrated by sedimentation through a 15% sucrose-PBS cushion. Concentrated

virus (equivalent to 4 x 105 infectious units, in vitro) was suspended in phosphate buffered saline (PBS) containing 0.1%bovine serum

albumin (BSA) and injected with 31 guage insulin syringes either retro-orbital (r.o.) or s.c. into the footpad of mice.
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For producing MLV Gag-GFP labeled virions, we generated a construct where eGFP was introduced in frame at the C-terminus

of the Gag gene in the full length MLV context using pLRB303 plasmid (FrMLVFL Gag-GFP) as described previously (Jin et al.,

2009). This renders the virus replication defective as the Pol gene is non-functional. MLV particles were generated by transfecting

cells with this FrMLVFL Gag-GFP in the additional presence of a plasmids expressing MLV GagPol and FrMLV Env at a ratio of

6:3:1 (Jin et al., 2009). For capture experiments, we retroorbitally injected a virus amount equivalent to 2 x 106 infectious units as

ascertained by comparison of gag signals in sedimented virus using antibodies to MLV gag p30 (R187) by western blot (Sewald

et al., 2015).

METHOD DETAILS

Retrovirus Infection and Treatment Conditions
Retrovirus infection of mice was initiated by administering 500 or 2,500 SFFU equivalent of virus (see above) into the footpad

(s.c.) or via retro-orbital (i.v.) injections. For CD169-blocking experiments in BALB/cJ mice, 5 mg of antibodies to CD169 (clone

3D6.112, BioLegend, San Diego, CA, USA) or rat IgG2a isotype control were injected into the footpad (s.c.) 24 h and 30 min prior

to virus injection and/or every 48 h thereafter for the duration of the experiment to block CD169 at the pLN. For the CD8+ T cell

depletion experiment, 250 mg of CD8+ T cell depletion antibody (clone YTS 169.4, Cat # BE0117, Bio X Cell) was administered

intraperitoneally (i.p.) into the mice at 5 dpi (s.c) with FVC. Lymphocyte emigration from lymphoid tissues was inhibited by intra-

peritoneal (i.p.) administration of FTY720 (1 mg per gram of body weight) or equivalent amount of vehicle 24 h prior to virus inoc-

ulation and every 24 h for the duration of the experiment. For survival experiments, mice were monitored every 6-12 h starting six

days after virus administration. Lethargic and moribund mice were sacrificed and considered to have succumbed to infection for

Kaplan-Meier survival plots.

Single Cell Preparation from Mouse Tissue
Popliteal lymph nodes and spleens harvested after necropsy were disrupted in serum free media, treated with Liberase TL

(0.2 mg/ml, Sigma-Aldrich, Cat # 5401020001) and DNase I (20 mg/ml, Roche, REF # 04716728001) at 37�C for 20 min and passed

through a 70 mm cell strainer (Falcon, Cat # 352350). Splenic cell suspensions were treated additionally with red blood cell lysis

buffer at room temperature for 10 min (Sigma-Aldrich, Cat # R7757-100ML or BioLegend, Cat # 420301) for removing RBCs to

obtain single cell suspensions. Single cells suspensions from each lymphoid tissue were stimulated ex vivo, cultured for functional

analysis or fixed with 4 % PFA (Cat # 19200, Electron Microscopy Sciences) before processing for flow cytometric analysis.

Monitoring Virus Particle Flow
The estimation of viral load 1 h post s.c. infection at the draining popliteal lymph node, serum and spleen was carried out using FrMLV

luciferase reporter virus and amplified using highly susceptible DFJ8 cells. Virus that was equivalent to 5.83107 I.U. was injected s.c.

into mice. Dilutions of single cell suspensions from lymph node and spleen as well as serum collected through heart-puncture was

incubated with 1.25 3 104 DFJ8 cells in a 48-well plate. 36-48 h later, DFJ8 cells were lysed with 150 ml 1X passive lysis buffer

(Promega Corp). 25 ml of lysate was tested for nanoluc activity using the Nano-Glo Luciferase Assay System (Cat # N1120, Promega)

in a luminometer (Berthold technologies). Cell lysates from uninfected DFJ8s were used for normalization and determining relative

luminescence units.

Glycogag-Alexa Conjugates
mAb34 (anti-MLV Glycogag) hybridoma (Chesebro et al., 1981) was cultured in Hybridoma-SFMmedia supplemented with Ultra-low

Ig FBS (Cat # 16250-086, Life technologies) in 15 cm tissue culture dishes. Culture supernatants were collected every three days

followed by passage through 0.45 mm low-protein binding cellulose acetate filters. Filtrate was diluted 9:1 with 200mM phosphate

buffer containing 82mMNaCl (pH 7.0) and loaded to a HiTrap Protein G HP column (GE Healthcare, USA). Column-bound antibodies

were eluted with 0.1 M glycine (pH 3.0) and concentrations of purified antibodies were measured using Nanodrop Spectrophotom-

eter ND-1000. 100 mg of antibody was conjugated to AF488A or AF647 using the Mix-n-Stain antibody labeling kit (Cat #

MX488AS100 and MX647S100, Biotium, Sigma-Aldrich) and stored in antibody storage buffer at 4�C for routine use.

Flow Cytometric Analyses
PFA-fixed cells from lymph nodes and spleens were blocked for 15 min in PBS containing 2 % BSA, 5 % rat serum and Fc blocking

antibody against CD16/CD32 (BioLegend) before staining with antibodies listed in the table above for flow cytometry analysis. FVC-

infected erythroblasts were determined by gating for cells that were Glycogag+ CD71+ Ter119+ in the CD19- population. Similarly

double positive CD71+ Ter119+ were gated out to determine FVC-infected CD19+ Glycogag+ B cells. All staining for flow cytometry

was performed in staining buffer (1X PBS containing 2% FBS, 1%BSA and 0.2% gelatin). For intracellular staining, cells are permea-

bilized with staining buffer supplemented with 0.2 % Triton X-100. The details of the antibodies used in the study are listed in key

sources table. Data were acquired on an Accuri C6 (BDBiosciences) andwere analyzedwith Accuri C6 or FlowJo software (Treestar).

200,000 – 500,000 viable cells were acquired for each sample. Each data point represents results from a single lymph node or spleen

as indicated.
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DFJ8 Co-culture for Determining Infectivity
We employed DFJ8 co-culture assay for enhancing our sensitivity to determine productively infected cells in pLN and spleen. 53 105

cells from each pLN or 2 3 106 splenocytes were co-cultured with 13105 DFJ8 cells in 24-well plate for 48 h. The co-cultured cells

were washed thrice with 1X PBS to remove all the non-adhered cells, treated with 0.05 % trypsin and fixed with 4 % PFA. Infected

DFJ8 cells gated by FACS as Glycogag+ CD45.2- cells were used to determine the level of infection.

Cryo-Immunohistology of Spleen
FVC-infected spleens were harvested 5 dpi (2,500 SFFU, r.o.) and fixed in 1X PBS containing freshly prepared 4 % PFA for 12 h at

4�C. The spleens were washed with PBS, cryoprotected with 10, 20 and 30 % ascending sucrose series, snap-frozen in Tissue-Tek

O.C.T. compound and stored at –80�C. 15-30 mm thick sections were permeabilized with Triton X-100 and treated with Fc receptor

blocker (Innovex Biosciences) before staining with indicated antibodies in PBS containing 2%BSA. Stained sections cured with Pro-

Long Gold antifade reagent were analyzed by confocal microscopy using Leica TCS SP8microscope equipped with white light laser.

The images were processed using Volocity version 6.3 software (PerkinElmer, Waltham, MA, USA) and figures assembled with Pho-

toshop CC and Illustrator CC (Adobe Systems, San Jose, CA, USA).

Sample Preparation for Electron Microscopy
Spleens from B6 and CD169-/- mice were challenged retro-orbitally with FVC (2,500 SFFU, 5 dpi) isolated, divided into 8 equal pieces

and immediately fixed with 3 % glutaraldehyde, 1 % paraformaldehyde, 5 % sucrose in 0.1 M sodium cacodylate trihydrate. Pre-

fixed pieces of spleen were rinsed with fresh cacodylate buffer and placed individually into brass planchettes (Type A; Ted Pella,

Redding, CA) prefilled with 10% Ficoll in cacodylate buffer. The tissues were covered with the flat side of a Type-B brass planchette

and rapidly frozen with a HPM-010 high-pressure freezing machine (Leica Microsystems, Vienna Austria). The frozen samples were

transferred under liquid nitrogen to cryotubes (Nunc) containing a frozen solution of 2.5%osmium tetroxide, 0.05%uranyl acetate in

acetone. Tubes were loaded into an AFS-2 freeze-substitution machine (Leica Microsystems) and processed at -90�C for 72 h,

warmed over 12 h to -20�C, held at that temperature for 6 h, then warmed to 4�C for 2 h. The fixative was removed and the samples

rinsed 4 x with cold acetone, following which they were infiltrated with Epon-Araldite resin (Electron Microscopy Sciences, Port

Washington PA) over 48 h. The spleen tissue was flat-embedded between two Teflon-coated glass microscope slides. Resin was

polymerized at 60�C for 48 h.

Electron Microscopy and Dual-Axis Tomography
Flat-embedded splenic samples were observed with a stereo dissecting microscope and appropriate regions were extracted with a

microsurgical scalpel and glued to the tips of plastic sectioning stubs. Semi-thick (400 nm) serial sections were cut with a UC6 ul-

tramicrotome (LeicaMicrosystems) using a diamond knife (Diatome, Ltd. Switzerland). Sectionswere placed on formvar-coated cop-

per-rhodium slot grids (ElectronMicroscopy Sciences) and stained with 3%uranyl acetate and lead citrate. Gold beads (10 nm) were

placed on both surfaces of the grid to serve as fiducial markers for subsequent image alignment. Sections were placed in a dual-axis

tomography holder (Model 2040, E.A. Fischione Instruments, Export PA) and imaged with a Tecnai TF30ST-FEG transmission elec-

tron microscope (300 KeV) equipped with a 2k x 2k CCD camera (XP1000; Gatan, Pleasanton CA). Tomographic tilt-series and large-

area montaged overviews were acquired automatically using the SerialEM software package (35). For tomography, samples were

tilted +/- 64� and images collected at 1� intervals. The grid was then rotated 90� and a similar series taken about the orthogonal

axis. Tomographic data was calculated, analyzed and modeled using the IMOD software package (36, 37) on MacPro computers

(Apple, Cupertino, CA). Lower resolution montaged overviews were used to identify cell types and frequency within the tissue sec-

tions. High-resolution electron tomography was used to confirm and characterize virus particles and budding profiles on the surfaces

of infected cells.

Neutralizing Antibody Titer
Mice were bled retro-orbitally at days 7, 14, and 21 post infection with FVC (2,500 SFFU) and allowed to clot at room temperature for

1 h. The samples were sedimented at 14,000 rpm for 30min at 25�C to collect the sera and stored at -80�C. Serial two-fold dilutions of

indicated heat-inactivated (56�C for 30 min) serum samples were incubated for 1 h at 37�C with MLV expressing Antares luciferase

(luciferase values corresponding to 2 x 104 I.U.) and 1 ml of guinea pig complement (MP Biomedical,1:64 hemolytic titer) in a total

volume of 50 ml (serum-free media) in a 96-well plate. Equal volumes of media with 2X serum containing S49.1 T cells (2 x 105)

were added to each well and incubated further at 37�C for 24 h. Sedimented cells were lysed using 1X passive lysis buffer (Promega

Corp) and the luciferase activity was measured as above. Luciferase activity in samples with pooled sera from uninfected mice was

set as 100 %. The log (dose-dependent inhibition/ sera dilution) was plotted against log of sera dilution to fit a linear regression. The

slope was used to calculate IC50 values defined as the amount of serum that neutralizes half theMLV infectivity. The IC50 values were

analyzed for statistical significance by applying correction for multiple comparisons using the Bonferroni-Dunnmethod usingmultiple

t-test option in GraphPad Prism v6.0.

FVC-Specific CD4+ T Cell Proliferation
Previous studies have shown that FVC-specific CD4+ T cells constitute a very small proportion of the entire the CD4+ T cell

population precluding direct assessment of their proliferation potential (Antunes et al., 2008). Therefore, we used EF4.1 mice, which
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transgenically express a TCRb chain that can specifically recognize MHC class II-presented FrMLV envelope epitope to compare

FVC-specific CD4+ T cell responses in B6 and CD169-/- mice (Antunes et al., 2008). CD45.1+ CD4+ T cells were isolated from spleens

of EF4.1 mice using a negative selection CD4+ T cell enrichment kit (Cat # 19752A, STEMCELL Technologies). 13106 cells were

adoptively transferred (r.o) with 27 guage insulin syringes into either CD45.2 uninfected or FVC-infected B6 or CD169-/- mice

8 dpi (s.c, 2500 SFFU). Recipient mice were sacrificed 4 days post transfer and cells from pLNs and spleens analyzed for proliferating

CD44hi antigen-experienced adoptively transferred CD45.1+ CD4+ T cells by FACS.

Type I Interferon Response
Micewere challenged s.c. (2,500 SFFU) for 8 hr or r.o. (2500 SFFU) for 12 hwith FVC. RNAwas extracted from single cell suspensions

of an entire popliteal lymph node or from 13 107 splenocytes with RNeasy Mini Kit (QIAGEN Catalog number 74104). Contaminating

DNAwas removedwith DNase I (Cat # AM2222, Ambion, Thermo Fisher Scientific) followed by a treatment with a DNase I inactivation

reagent (Cat # 8173G, Ambion). 100 ng of RNA from each sample was used for cDNA synthesis with qScript cDNA Synthesis kit

(Quanta Biosciences, Cat # 95047-100). cDNAswere used for quantitative PCR analyses to determine themRNA levels of type I inter-

feron (IFN) and interferon-stimulated genes (ISGs) with a SYBR FAST qPCRMasterMix (2X) Kit (KAPABiosystems, Cat # KK4600 and

KK4601). CFX Connect Real-Time PCRDetection System (Bio-Rad Laboratories) was used for carrying out quantitative PCR and the

data analyzed using the built-in CFX Maestro Software. The primers used for amplification are as listed above. The PCR conditions

were 95�C 3 min, 40 cycles of 95�C for 15 s and 60�C for 1min, followed by a melting curve analysis to ensure that each primer pair

resulted in amplification of a single PCRproduct. mRNA levels of IFNB1, IFNA2 and IFNA4 in the cDNA samples of infectedmicewere

normalized to actin with the formula 2�½Ct ðIFNÞ�CtðactinÞ�. The fold increase in the mRNA level of ISGs in an infected mouse compared to

the average in three uninfected mice was calculated as 2�f½CtðISG infectedÞ�Ctðactin infectedÞ��average of ½CtðISG noninfectedÞ�Ctðactin noninfectedÞ�g

(Schmittgen and Livak, 2008).

Measuring CTL Activity In Vivo and In Vitro

Singlecell suspensionsof splenocytes fromaNagyDsRed.T3andaUBI-GFPmousewerepreparedasdescribedabove.13108cells /ml

suspensions of NagyDsRed.T3 and UBI-GFP splenocytes were incubated with 6 mM FrMLV Gag-specific peptide (KKCCLCLTVFL) or

same amount DMSO respectively for 2 h at 37�C. For measuring in vivo CTL activity, A 1:1 ratio (2 3106 cells of each population)

was injected retro-orbitally (r.o.) using a 27-guage needle for adoptive transfer into uninfected or FVC-infected mice (7 dpi ; r.o.). The

recipient mice were euthanized 24 h later and FVC-specific CTL activity analyzed in harvested pLNs and spleens by estimating the

ratio of DsRed.T3+ and GFP+ cells by FACS. We acquired a minimum of 7000-5000 adoptively transferred non-pulsed GFP+ cells for

analyses.

For measuring CTL activity, in vitro, effector CD8+ T cells were purified from the spleens of non-infectedmice or FVC-infectedmice

(7 dpi; r.o.) using a negative selection-based CD8+ T cell enrichment kit (STEMCELL Technologies). 1.5 3 105 cells comprising 1:1

ratio of peptide-pulsed DsRed.T3+ and non-pulsed GFP+ splenocytes prepared as above were used as targets. Effector CD8+ T cells

were added to target cells at a ratio of 1:1, 2:1, 4:1 and 8:1 and co-cultured in a U-bottom of 96-well plate for 24-36 h. Cells were fixed

and ratios of DsRed.T3+ and GFP+ cells analyzed by FACS as above.

Specific CTL activity was calculated as below according the formula described by Quah et al. (2012)

% Specific killing=

�
1�

�
TargetsDsRedinfected

�
TargetsGFP

infected

TargetsDsRednoninfected

�
TargetsGFP

noninfected

��
3 100

CD8+ T Cell Analyses
In vitro culture and stimulation of cells were performed in U-bottom 96-well plates with 1X RPMI 1640 medium supplemented with

10% FBS, 1XMEMNon-essential amino acid (NEAA) solution, 1mM sodium pyruvate and 56 mM b-mercaptoethanol. CD107A stain-

ing to determine degranulation activity of FVC-specific CD8+ T cells was carried out by stimulating 23106 splenocytes from unin-

fected or FVC-infected mice (7-8 dpi) with 6 mM FrMLV Gag-specific peptide and 1:500 diluted AF647 anti-mouse CD107a (clone

1D4B). GolgiStop (BDBiosciences, San Jose, CA, USA) was added 1 h later and the splenocytes cultured for additional 12-15 h. Cells

were fixed and stained with antibodies to CD3 and CD8 to identify CD107A+ CD8+ cells in the CD3+ T cell population. For intracellular

IFNg staining, 23106 splenocytes from uninfected or infected mice were re-stimulated in vitrowith peptide as above for 16 h in pres-

ence of 2 mg/ml Brefeldin A to inhibit secretion of IFNg. In addition, we also monitored IFNg in single cell suspensions from lymph

nodes (1 x 106 cells) or spleen (2 x 106 cells) of infected mice after generalized stimulation with 50 ng/mL PMA and 1 mM ionomycin

for 3 h in RPMI containing GolgiStop. Granzyme A and B staining was carried out on splenocytes stimulated with peptide 16-24 h

without GolgiStop.

CD8+ T Cell Adoptive Transfer
Single cell suspensions of splenocytes from FVC-infected B6 and CD169-/- mice (7 dpi; r.o. 2,500 SFFU) were prepared as

described above. Effector CD8+ T cells were purified from the splenocytes using a negative selection-based CD8+ T cell enrich-

ment kit (STEMCELL Technologies). 6.43106 CD8+ T cells from infected B6 or CD169-/- mice were injected retro-orbitally (r.o.)
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using a 27-gauge needle for adoptive transfer into infected CD169-/- mice (5 dpi; r.o. 2,500 SFFU). The recipient mice were eutha-

nized 2 days later and infected cells were analyzed in harvested spleens.

QUANTIFICATION AND STATISTICAL ANALYSIS

Statistical comparisons were performed using non-parametric Mann-Whitney test (two-tailed) available in GraphPad Prism software

(La Jolla, CA, USA). Statistical analyses for multiple comparisons such as shown in Figure S4Hwas calculated by applying correction

for multiple comparisons using the Bonferroni-Dunn method using multiple t-test option in GraphPad Prism v6.0. Exact P values and

the numbers of independent replicates (n) are mentioned in the figures or figure legends. A difference was considered significant if

P < 0.05.
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Supplemental Information: 1 

2 
Figure S1, Related to Figure 2. Retroviruses Use Both Cell-free and Cell-Associated 3 

Modes for Dissemination in Mice 4 

(A) Scheme depicting possible spread of infection via cell-free viruses (blue) or virus-infected 5 

cells (orange) from the draining pLN via the subclavian vein (break in the arrow) to the spleen 6 

following s.c. administration of virus. 7 

(B) An experiment to show block in lymphocyte infiltration upon FTY720 treatment. After 8 

infection, the primary draining lymph node allows the normal entry of lymphocytes from 9 

circulation to sample and identify antigen-specific lymphocytes that then proliferate leading to 10 

lymph node expansion. FTY720 treatment blocks egress of lymphocytes from all lymphoid 11 



 

 

tissue. Thus, fewer lymphocytes enter the circulation as well as infected primary draining lymph 12 

node. The graph shows the number of cells in the pLN 8 days after s.c. administration of 2,500 13 

SFFU FVC in BALB/cJ mice (n=8) treated 24 h before and every 24 h for 7 days with vehicle or 14 

FTY720. Upon FTY720 treatment the number of cells in the primary draining lymph node did not 15 

expand as normal showing efficient block in lymphocyte trafficking.  16 

(C) Flow chart showing route and administration regimen for FTY720, antibodies to CD169 as 17 

well as virus. 18 

(D) Number of infected cells in the spleen (n = 7-8) 2 days after s.c. administration of 2,500 19 

SFFU FVC in mice treated with or without antibodies to CD169 or FTY720 as indicated for an 20 

experiment shown in C. 21 

(E) Scheme depicting possible modes of spread from the spleen to the pLN after r.o. challenge 22 

via cell-free viruses (blue) or virus-infected cells (orange) The flow chart shows the route and 23 

administration regimen for FTY720 (i.p.) and FVC in BALB/cJ mice (r.o.; 500 SFFU). 24 

(F) Representative FACS plot showing percentages of FVC-infected (Glycogag+) cells after 25 

gating on live cells in the spleen and pLN of BALB/cJ mice for an experiment as in E. FTY720 26 

treatment blocks lymphocyte egress leading to their accumulation in the spleen compared to 27 

vehicle. There is a concomitant reduction in spread of infection from the spleen to the pLN  28 

(G) Graph showing percentages of FVC-infected cells in the spleen and pLN for an experiment 29 

as in E. 30 

Significance p values were obtained using non-parametric Mann-Whitney statistical test. 31 



 

 

 32 

Figure S2, Related to Figure 4. FVC-infection Spreads Extensively Into the Splenic Red 33 

Pulp in CD169-/- Mice  34 

(A, B) Merged stitched images of immunostained splenic tissue sections are shown for two 35 

FVC-infected B6 in A and CD169-/- mice in B (5 d.p.i., r.o., 2,500 SFFU). Metallophilic 36 

macrophages within white pulp and FVC-infected cells were identified using antibodies to 37 

surface marker CD169 (red) and viral protein Glycogag (green). Magnified images of indicated 38 



 

 

insets are shown below that were labeled additionally with antibodies to Ter119 (blue) for 39 

staining cells of erythroblast lineages in the red pulp. The red and white pulp border is marked 40 

with dotted lines for clarity in B. Scale bars as indicated.  41 



 

 

 42 

Figure S3, Related to Figure 4. CD169 Influences the Type of FVC-infected B Cells in the 43 

Splenic Marginal Zone  44 

(A) Gating strategy and representative FACS plot showing characterization of FVC-infected 45 

(Glycogag+) cells in the CD19+ B cell population for presence of mentioned markers in B6 and 46 



 

 

CD169-/- mice 3 d.p.i. (n=4, s.c, 2,500 SFFU). The gating strategy used for delineating marginal 47 

zone precursor/ marginal zone B (MZ/MZP) cells from follicular (FO) and transitional B cells in 48 

the CD23 vs CD21 plot. 49 

(B) Graph showing percentages of MZ/MZP, FO and transitional B cells in the FVC-infected B 50 

cell population for experiment as in A. 51 

(C) Merged immunostaining images of splenic tissue sections from B6 and CD169-/- mice 52 

infected with FVC-expressing cytoplasmic GFP (3 d.p.i, r.o.;2 x 106 I.U.). MZ B cells (IgMhi), FO 53 

B cells (IgD+ IgMlo) and metallophilic macrophages were identified using antibodies to surface 54 

markers IgM (red), IgD (blue), CD169 (white) respectively. Magnified images of individual 55 

channels from numerically labeled areas within the inset are shown either below for B6 or 56 

towards the right for CD169-/- mice. GFP+ FVC-infected B cells types (FO and MZ) within the 57 

follicle in B6 mice are indicated with arrows. Examples of infected B cells in splenic sections of 58 

CD169-/- mice that are largely IgMhi near the marginal zone (dotted white lines) as well as in 59 

white pulp are also shown with arrows. Green boxes demarcate clusters of infected 60 

erythroblasts that are close to the marginal zones and IgMhi MZ B cells. Scale bars as indicated. 61 

p values; non-parametric Mann-Whitney test. 62 



 

 

 63 

Figure S4, Related to Figure 6. Innate Immune Response and Neutralizing Antibodies Do 64 

Not Contribute to Enhanced Viral Loads in the Spleen of CD169-/- Mice  65 

(A-D) mRNA levels of indicated interferons (A, C) and interferon-induced genes (B, D) in pLNs 66 

(n=6-8) and spleens (n= 4-6) of B6 or CD169-/- mice at specified times and indicated routes of 67 

challenge (s.c or r.o) with FVC (2,500 SFFU) as determined by real-time PCR. The mRNA 68 

levels were normalized to either actin (A, C) or actin followed by levels in uninfected cells for 69 

comparing fold increase (B, D). The levels of interferon RNA were below detection in pLNs 70 

under our experimental conditions. 71 

(E, F) FVC-infected cells in the pLN (n = 10) and the spleen (n = 6), 5 d.p.i. after s.c. inoculation 72 

with 2,500 SFFU of FVC in Ifnar1-/- and Ifnar1-/-CD169-/- mice.  73 

(G) FVC-neutralizing activity in serially diluted sera from B6 and CD169-/- mice (n=5) at indicated 74 

times post subcutaneous challenge with FVC (2,500 SFFU). 75 



 

 

(H) Neutralizing titers (IC50) in sera from experiment shown in G. 76 

Significance p values were obtained using non-parametric Mann-Whitney statistical test and 77 

multiple comparisons were carried out by the Bonferroni-Dunn method using multiple t-test 78 

option. 79 

  80 



 

 

 81 

Figure S5, Related to Figure 6. FVC-Specific CD4+ T Cell Proliferative Responses Are 82 

Unaffected in CD169-/- Mice 83 

(A) Flow chart showing experimental strategy to determine CD4+ T cell proliferation after 84 

adoptive transfer of CD45.1 FVC-specific EF4.1 cells in uninfected or FVC-infected B6 or 85 

CD169-/- CD45.2 mice (n=5).  86 

(B) Representative FACS plots of splenocytes showing the percentage of CD44hi (proliferating) 87 

cells (boxed) among the adoptively transferred CD45.1 EF4.1 cells. 88 

(C) Graph showing percentage of CD44hi proliferating EF4.1 cells at pLN and spleen for 89 

experiment shown in B. 90 

Significance p values were obtained using non-parametric Mann-Whitney statistical test. 91 



 

 

 92 

Figure S6, Related to Figure 6. Induction of IFNProducing CD8+ T Cells is Compromised 93 

During FVC-Infection in Absence of CD169  94 

(A) Representative FACS plot for IFN+cells in the CD3+CD8+ gated T cell population at 5 d.p.i. 95 

after s.c. delivery of 2,500 SFFU FVC in the draining pLNs (top) and spleens (bottom) from B6 96 

and CD169-/- mice (n=2-5).  97 

(B) Number of IFNproducing CD3+CD8+ T cells 3 and 5 d.p.i. for experiment as in A. 98 

Significance p values were obtained using non-parametric Mann-Whitney statistical test. 99 



 

 

 100 

Figure S7, Related to Figure 7 and Video S2. CD11c+ and XCR1+ DCs Localize in Close 101 

Proximity to Retrovirus-Capturing CD169+ Marginal Metallophilic Macrophages 102 



 

 

(A, B) Merged immunostaining images of splenic tissue sections from B6 mice 2 h after r.o. 103 

administration (4 x 106 I.U.) of retroviral particles labeled with Gag-GFP (green). DCs, cDC1s 104 

and metallophilic macrophages were identified using antibodies to surface markers CD11c 105 

(magenta), XCR1 (magenta) and CD169 (red) respectively. Magnified images of numerically 106 

labeled areas within the inset are shown towards the right demonstrate close contacts between 107 

Gag-GFP labeled virion-capturing CD169+ macrophages and CD11c+ DCs (A) or XCR1+ cDC1s 108 

(B). 109 
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