An innovative "unlocked mechanism" by a double key avenue for one-pot detection of microRNA-21 and microRNA-141

Weipan Peng^{1#}, Qian Zhao^{1#}, Minghui Chen¹, Jiafang Piao¹, Weichen Gao¹, Xiaoqun Gong^{1,2*}, Jin Chang^{1*}

¹ School of Life Sciences, Tianjin University and Tianjin Engineering Center of Micro-Nano Biomaterials and Detection-Treatment Technology (Tianjin), Tianjin 300072, China

² State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300072, China

[#]Authors who contributed equally to this work.

*Corresponding authors: Xiaoqun Gong, gongxiaoqun@tju.edu.cn

Jin Chang, jinchang@tju.edu.cn

Table S1. Oligonucleotide sequences of miRNAs (miR-21, miR-141, miR-200b, Let-7d, negative control miRNA (NC), single mismatched miRNA (SM)) and the modified DNA probes (HD-21, HD-141, ssDNA-21, ssDNA-141, FAM-ssDNA, Cy5-ssDNA) for miRNA detection.

Name	Sequence (5'-3')		
HD-21	CCTCAACATCAGTCTGATAAGCTAGTTGAGGTTTTTTTTT		
HD-141	ATTGTGACAGACCATTTCTACCACAATTTTTTTTTTTTT		
ssDNA-21	AAAACCTCAACC-NH ₂		
ssDNA-141	AAAAATTGTTTT-NH $_2$		
FAM-ssDNA	FAM-AAAACCTCAACC-NH ₂		
Cy5-ssDNA	AAAACCTCAACC-Cy5		
miR-21	UAGCUUAUCAGACUGAUGUUGA		
miR-141	UAACACUGUCUGGUAAAGAUGG		
NC	UUGUACUACACAAAAGUACUG		
miR-200b	UAAUACUGCCUGGUAAUGAUGA		
Let-7d	AGAGGUAGUAGGUUGCAUAGUU		
SM	UAGCUUAUCGGACUGAUGUUGA		

Figure S1. The UV-vis absorption spectra of PS (black line), ssDNA (red line) and the purified PS-ssDNA probes (blue line).

Figure S2. Optimization test of the reaction temperature for the double key unlocking detection assay.

Table S2. The hairp	in DNA probes	of HD-21(a) and	HD-21(b)
---------------------	---------------	-----------------	----------

Name	Sequence (5'-3')			
HD-21 (a)	CCTCAACATCAGTCTGAT	AAGCTAGTTGAGGTTTTTTTTTTTT-NH ₂		
HD-21 (b)	ATTGTGACAGACCATTTCTACCACAATTTTTTTTTTTTT			
	HD-21(a)	HD-21(b)		

Figure S3. The specificity test of different hairpin DNA probes for miR-21detection.

Figure S4. TEM images of PS microparticles before modification (A, a_1) and PS-ssDNA-FS conjugates after modification (B, b_1) . In comparison with PS microparticles of smooth surface, we observe rough surface of PS-ssDNA-FS conjugates after reactions. The small beads (indicated by red arrows) on the surface of PS microparticles (10 µm) are FS particles (50 nm).

Figure S5. Feasibility study of our assay. Different concentrations of miR-21 and Let-7d were used for the flow cytometry assay. With the increase of miRNA content, the fluorescence intensity detected for miR-21 was gradually increased, but the fluorescence intensity for Let-7d remained basically unchanged.

Figure S6. Detections for miR-141. Flow cytometry detections and fluorescent images of probe 2 for miR-141 detection before (no fluorescence) and after (with fluorescence) reactions.

Figure S7. Histograms of fluorescence response of the multiplexed analysis of miR-21(FL1-H) and miR-141 (FL2-H) assay. Figure S7C and S7F were respectively merged by the results of A/B and D/E.

Figure S8. Real simple detection by qRT-PCR. (A) The real-time qRT-PCR curves of different concentrations of target detection. **(B)** The linear relationship of the miRNA concentrations and the threshold cycle.

Figure S9. Calibration curve of ΔF value vs. concentration of miRNA-21 using the proposed method serviced for the miRNA-21 detection in human serum samples. A linear relationship between ΔF and different concentrations of miR-21 (10, 25, 50, 60, 80 pM) is observed, and the linear equation is $\Delta F = 125.4925 + 23.27508c$ (R² = 0.98532).

Table S3. Analytical recoveries of the proposed assay in detecting miR-21 spiked human serum samples.

miRNA-21					
Sample	Founded (10 ⁻¹² M)	Recovery (%)	RSD (%)		
1	48.35667	96.71	6.25%		
2	44.64333	89.29	10.67%		
3	48.90	97.8	7.68%		
4	54.32667	108.65	4.04%		
5	47.52667	95.05	11.75%		

Method	Materials	LOD	Multiplex Detection	Reference
Fluorescence	Microbeads and DSN	3.39 fM	Yes	Our work
Fluorescence	Molecular Beacons and DSN	0.4 pM	No	[1]
Colorimetry	Cationic Polythiophene Derivative	10 nM	No	[2]
Chemiluminescent	Magnetic Beads and DSN	10 fM	No	[3]
MRS	magnetic Beads and DSN	5 fM	No	[4]
Electrochemistry	Graphene	60 fM	No	[5]
Electrochemistry	DNA CPs and DSN	1 fM	No	[6]

Table S4. The detection limit for miRNA of this proposed method and other detection strategies

References

1. Lin X, Zhang C, Huang Y, Zhu Z, Chen X, Yang CJ. Backbone-modified molecular beacons for highly sensitive and selective detection of microRNAs based on duplex specific nuclease signal amplification. Chem Commun (Camb). 2013; 49: 7243-7245.

2. Zhang Y, Li Z, Cheng Y, Lv X. Colorimetric detection of microRNA and RNase H activity in homogeneous solution with cationic polythiophene derivative. Chem Commun (Camb). 2009: 3172-3174.

3. Deng H, Ren Y, Shen W, Gao Z. An ultrasensitive homogeneous chemiluminescent assay for microRNAs. Chem Commun (Camb). 2013; 49: 9401-9403.

4. Lu W, Chen Y, Liu Z, Tang W, Feng Q, Sun J, et al. Quantitative detection of microRNA in one step via next generation magnetic relaxation switch sensing. ACS Nano. 2016; 10: 6685-6692.

5. Yin H, Zhou Y, Zhang H, Meng X, Ai S. Electrochemical determination of microRNA-21 based on graphene, LNA integrated molecular beacon, AuNPs and biotin multifunctional bio bar codes and enzymatic assay system. Biosens Bioelectron. 2012; 33: 247-253.

6. Ren Y, Deng H, Shen W, Gao Z. A highly sensitive and selective electrochemical biosensor for direct detection of microRNAs in serum. Anal Chem. 2013; 85: 4784-4789.