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Abstract: Background: Pseudomonas aeruginosa often causes multidrug-resistant infections in
immunocompromised patients and polymyxins are often used as the last-line therapy.
Alarmingly, resistance to polymyxins has been increasingly reported worldwide
recently. To rescue this last-resort class of antibiotics, it is necessary to systematically
understand how P. aeruginosa alters its metabolism in response to polymyxin
treatment, thereby facilitating the development of effective therapies. To this end, a
genome-scale metabolic model (GSMM) was employed to analyse bacterial metabolic
changes at the systems level.
Findings: A high-quality GSMM iPAO1 was constructed for P. aeruginosa PAO1 for
antimicrobial pharmacological research. Model iPAO1 encompasses an additional
periplasmic compartment and contains 3,022 metabolites, 4,265 reactions and 1,458
genes in total. Growth prediction on 190 carbon and 95 nitrogen sources achieved an
accuracy of 89.1%, outperforming all reported P. aeruginosa models. Notably,
prediction of the essential genes for growth achieved a high accuracy of 87.9%.
Metabolic simulation showed that lipid A modifications associated with polymyxin
resistance exert a limited impact on bacterial growth and metabolism, but remarkably
change the physiochemical properties of the outer membrane. Modelling with
transcriptomics constraints revealed a broad range of metabolic responses to
polymyxin treatment, including reduced biomass synthesis, upregulated amino acids
catabolism, induced flux through the tricarboxylic acid cycle, and increased redox
turnover.
Conclusions: Overall, iPAO1 represents the most comprehensive GSMM constructed
to date for Pseudomonas. It provides a powerful systems pharmacology platform for
the elucidation of complex killing mechanisms of antibiotics.
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Response to Reviewers: Dr Laurie Goodman
Editor-in-Chief
GigaScience

Dear Dr Goodman,
RE: Manuscript ID: GIGA-D-17-00272: “Genome-scale metabolic modelling of
responses to polymyxins in Pseudomonas aeruginosa"

Thank you for the opportunity to revise our manuscript. Please find below a point-by-
point response to the reviewers’ comments. All major changes have been highlighted
in yellow in the ‘marked’ version of the revised manuscript.

The raw data have been submitted to Sequence Read Archive (SRA) and
MetaboLights databases and will be made publicly available hopefully by 31 Jan, 2018.
We look forward to your correspondence and thank you very much.

Best regards,

Jian Li
Falk Schreiber

Monash Biomedicine Discovery Institute, Department of Microbiology, Faculty of
Medicine, Nursing and Health Sciences, Monash University, Melbourne 3800, Australia

Department of Computer and Information Science, University of Konstanz, Konstanz
78457, Germany

Reviewer #1:

1. Introduction section. I would specify that the specific approach of applying gene
expression constraints to obtain condition-specific GEMs have been previously used
for other MDR bacteria (e.g. A. baumannii doi:10.1038/s41598-017-03416-2).

Response: The manuscript has been revised accordingly (Pages 3-4, Lines 74-77).

2. Lines 217-218: I would remove the sentence "Therefore, iPAO1 is a well-defined,
metabolism-dedicated model.", in that it is included in the definition of "metabolic
reconstruction". The presence of genes associated to non-metabolic COG categories
is, in my opinion, due to the presence of misannotated (for what concerns the COG
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categories) genes. Honestly, I wouldn't use the distribution of such categories as a
measure of a model goodness, especially considering that some genes can be
associated to multiple categories. All the other comparisons the authors made already
highlighted how this reconstruction is the best one.

Response: The sentence was removed in the revised manuscript as suggested (Page
9, Line 221).

3. Lines 253-258: "this is possibly due to the incorporation of new genes (30.5%
increase compared to Opt208964; 27.2% increase compared to iPae1146) whose
metabolic functions were previously misannotated." This is not clear... do the authors
mean that the addition of new genes brought alternative routes to bypass previously
essential gene deletion? This should be rephrased, and, if possible, the proposed
explanation should be tested.

Response: The sentence was rephrased as suggested. In the revised manuscript an
example was provided to delineate that incorporating isozymes altered previous
essentiality prediction results. Please refer Page 11, Lines 256-264 in the revised
manuscript.

4. Section "Elucidating the mechanisms of metabolic responses to polymyxin
treatment":
In this section the authors use the previously presented model to describe the changes
at a systems level of the metabolism in presence of polymyxin treatment. I have two
issues concerning this section: The way the authors computed the flux distribution in
presence of antibiotics. Given the non-optimal state of such condition, I feel that MOMA
is more appropriate. I suggest the authors to test this and compare the results with the
current ones.

Response: We respectfully disagree with the reviewer. Minimisation Of Metabolic
Adjustment (MOMA) was developed to predict the metabolic flux redistributions in gene
knockout mutants. MOMA hypothesises that metabolism of the mutant tends to
approximate the wild-type (Segre et al., 2002, Proc Natl Acad Sci. 99(23):15112-7),
which is distinct from the antibiotic treatment scenario. For instance, our metabolomics
data have demonstrated that polymyxin treatment caused dramatic metabolic changes
in bacteria (e.g. Maifiah et al., 2017, Sci Rep, 7: 45527). Therefore, metabolic fluxes
with and without antibiotic treatment should not be calculated with MOMA, but FBA
(see e.g. Colijn et al., 2009, PLoS Comput Biol, 5(8): e10004). Please refer Pages 17,
Lines 414-420 in our revised manuscript.

5. Although a description of the systemic changes induced by antibiotics is important, I
think that the authors are missing an important point, that is the condition-specific
essential genes. In my opinion this is very important and interesting, also considering
that a selling point of the manuscript is that "iPAO1 offers an in silico platform for
precision antimicrobial pharmacology therapy".

Response: We appreciate reviewer’s suggestion. The methods and results on the
condition-specific essential genes were included in the revised manuscript (Page 23,
Lines 552-555; Page 11, Lines 264-269).

Reviewer #2:
1. On page 13 line 260 in the section on lipid A modification the authors mention
changes in fluxes.  They state that fluxes were calculated using FBA.  However, in the
Methods section I see that the authors used sampling to explore the solution space.
The authors must use sampling to compare fluxes between conditions.  If the author's
used sampling here to the authors must specify so in the main text.

Response: We employed sampling in our original study and have specified the
sampling methods in the revised manuscript as suggested. Please refer Page 12,
Lines 274, 286-287.

2. Page 14 line 286 - the authors must state how the RNAseq was used to constrain
the model.  They mention it in the Discussion section (E-FLUX method).  However, this
must be stated in the Results section as well.
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Response: E-Flux method was employed to constrain the model with the RNAseq data,
which has been specified in the Methods (Pages 24-25, Lines 586-592) and Results
sections as suggested (Page 13, Line 302).

3. Page 14 line 295 - I have a major question about how the authors simulate for
growth in CAMHB media?  This is an undefined media type and in the Methods section
they describe that they set the uptake rates to 1 mmol*gDW*hr^-1 for major carbon
sources.  The authors must explain why this uptake rate is justified.  Did the authors
perform any sensitivity analysis on these uptake rates?  It's very reasonable to assume
that changes in these rates would dramatically affect the fluxes described by the
authors in this section. Some justification and or sensitivity analysis must be added
here to explain the validity of these uptake rates for growth in this condition.

Response: Previous measurements showed that P. aeruginosa cells uptake amino
acids at a rate ranging from 0.26 to 1.44 mmol·gDW^-1·h^-1 (J Bacteriol, 105(3): 1039-
46; J Bacteriol, 152(2): 636-42). The import of CAMHB ingredients was thus
constrained to 1 mmol·gDW^-1·h^-1 without loss of generality. Sensitivity analysis was
conducted as suggested (Methods section, Page 25, Lines 592-597 and 600-602) and
the results showed that the changes in nutrient uptake bounds did not dramatically
affect the key metabolic fluxes. Our sensitivity analysis results have been provided in
the Results section (Page 13, Lines 304-305), Additional File 1 and Figure S1.

4. Page 15 line 303 - the authors must state what the "control" condition is.  Is this
compared to PAO1 growing in CAMHB without polymyxin treatment?  Or compared to
growth on a different media type, i.e. M9 minimal media + glucose?

Response: The control condition was specified in the revised manuscript as suggested
(Page 13 Line 321).

5. The authors state that their model is "the most comprehensive for a gram-negative
organism to date".  On what basis is this claim made?  We would recommend
tempering this statement or perhaps limiting it to Pseudomonas models.

Response: The statement was limited to Pseudomonas and was modified in the
revised manuscript (Page 2, Line 46; Page 4, Line 98; Page 20, Line 472).

Additional Information:

Question Response

Are you submitting this manuscript to a
special series or article collection?

No

Experimental design and statistics

Full details of the experimental design and
statistical methods used should be given
in the Methods section, as detailed in our
Minimum Standards Reporting Checklist.
Information essential to interpreting the
data presented should be made available
in the figure legends.

Have you included all the information
requested in your manuscript?

Yes
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including antibodies, cell lines, animals
and software tools, with enough
information to allow them to be uniquely
identified, should be included in the
Methods section. Authors are strongly
encouraged to cite Research Resource
Identifiers (RRIDs) for antibodies, model
organisms and tools, where possible.

Have you included the information
requested as detailed in our Minimum
Standards Reporting Checklist?

Availability of data and materials

All datasets and code on which the
conclusions of the paper rely must be
either included in your submission or
deposited in publicly available repositories
(where available and ethically
appropriate), referencing such data using
a unique identifier in the references and in
the “Availability of Data and Materials”
section of your manuscript.

Have you have met the above
requirement as detailed in our Minimum
Standards Reporting Checklist?

Yes
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Part of this work was presented at the 27th European Congress of Clinical Microbiology and 26 

Infectious Diseases, 22-25 April 2017, Vienna, Austria. 27 

Abstract 28 

Background: Pseudomonas aeruginosa often causes multidrug-resistant infections in 29 

immunocompromised patients and polymyxins are often used as the last-line therapy. 30 

Alarmingly, resistance to polymyxins has been increasingly reported worldwide recently. To 31 

rescue this last-resort class of antibiotics, it is necessary to systematically understand how P. 32 

aeruginosa alters its metabolism in response to polymyxin treatment, thereby facilitating the 33 

development of effective therapies. To this end, a genome-scale metabolic model (GSMM) 34 

was employed to analyse bacterial metabolic changes at the systems level. 35 

Findings: A high-quality GSMM iPAO1 was constructed for P. aeruginosa PAO1 for 36 

antimicrobial pharmacological research. Model iPAO1 encompasses an additional periplasmic 37 

compartment and contains 3,022 metabolites, 4,265 reactions and 1,458 genes in total. Growth 38 

prediction on 190 carbon and 95 nitrogen sources achieved an accuracy of 89.1%, 39 

outperforming all reported P. aeruginosa models. Notably, prediction of the essential genes for 40 

growth achieved a high accuracy of 87.9%. Metabolic simulation showed that lipid A 41 

modifications associated with polymyxin resistance exert a limited impact on bacterial growth 42 

and metabolism, but remarkably change the physiochemical properties of the outer membrane. 43 

Modelling with transcriptomics constraints revealed a broad range of metabolic responses to 44 

polymyxin treatment, including reduced biomass synthesis, upregulated amino acids 45 

catabolism, induced flux through the tricarboxylic acid cycle, and increased redox turnover.  46 

Conclusions: Overall, iPAO1 represents the most comprehensive GSMM constructed to date 47 

for Pseudomonas. It provides a powerful systems pharmacology platform for the elucidation 48 

of complex killing mechanisms of antibiotics. 49 
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Keywords: Genome-scale metabolic model; Pseudomonas aeruginosa; polymyxin; lipid A 50 

modification; outer membrane 51 

Background 52 

Pseudomonas aeruginosa is a common multidrug-resistant (MDR) pathogen in immune-53 

compromised patients, cystic fibrosis patients and burns victims [1-6]. It possesses a large 54 

genome (5.5-7.0 Mb), complex regulatory networks, remarkable metabolic versatility and an 55 

extraordinary ability to survive extremely harsh conditions such as prolonged antibiotic 56 

exposure [7, 8]. Polymyxins (i.e. polymyxin B and colistin) have been increasingly used as a 57 

last-line therapy to treat infections caused by MDR P. aeruginosa [9]. Alarmingly, the 58 

prevalence of polymyxin resistance in P. aeruginosa has increased worldwide over the past 59 

few years [3, 10, 11].  60 

The exact mode of action of polymyxins is not clear except the initial electrostatic and 61 

hydrophobic interactions with lipid A, a component of the lipopolysaccharide (LPS) in the 62 

bacterial outer membrane (OM). Subsequently, cell envelope is disorganised, cellular contents 63 

leak, oxidative stress increases, and finally cell death occurs [2, 9, 12, 13]. After polymyxin 64 

treatment, P. aeruginosa modifies its lipid A structure to attenuate the aforementioned 65 

electrostatic interactions [14]. Our recent metabolomics data demonstrated that, apart from 66 

lipid A modifications, numerous biochemical pathways are perturbed by polymyxin treatment, 67 

indicating that the development of polymyxin resistance by P. aeruginosa involves a 68 

complicated interplay of multiple cellular processes [15]. There are significant gaps in the 69 

knowledge-base of the mechanisms of polymyxin activity and bacterial responses in P. 70 

aeruginosa, thereby necessitating comprehensive investigations using systems pharmacology 71 

approaches. 72 

With the rapid development of genome-scale metabolic models (GSMMs) and the associated 73 
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flux balance analysis (FBA) methods, systematic investigations into the metabolic changes in 74 

response to external nutrient alterations, genetic perturbations, and antibiotic treatments 75 

become feasible [16-24]. Several studies employed transcriptomics data as constraints to 76 

compute condition-specific metabolic flux changes in response to antibiotic treatments in MDR 77 

bacteria, including Acinetobacter baumannii [25], Mycobacterium tuberculosis [26] and 78 

Yersinia pestis [27]. For P. aeruginosa, four GSMMs have been constructed, iMO1056 [28], 79 

Opt208964 [29], iMO1086 [30] and the latest iPae1146 [31]. iMO1056, Opt208964 and 80 

iPae1146 employed SEED metabolite and reaction names; iMO1056 and Opt208964 are fully 81 

accessible via Model SEED [29, 31, 32]; iMO1086 employed different identifiers (IR/RR plus 82 

five digits for reactions and C/EC plus four digits for metabolites) [30]. The previous 83 

applications of these models have included simulating the metabolic dynamics in cystic fibrosis 84 

patients [33], elucidating the mechanisms of biofilm formation [34, 35], predicting potential 85 

drug targets [36-38] and identifying the key genes controlling virulence factors [31]. As 86 

important as they have been, these models have several overarching limitations. Those past 87 

models (i) do not include a major cellular component, the periplasmic space; (ii) have poor 88 

representation of glycerophospholipid (GPL) biosynthesis; and (iii) lack lipid A modification 89 

reactions. Considering the pathogenesis of P. aeruginosa, these major limitations significantly 90 

compromise the modelling functions. In particularly, the power of the four reported GSMMs 91 

to predict metabolic responses to antibiotic treatment is very limited, as periplasmic GPL and 92 

LPS biogenesis play critical roles in responses to anti-pseudomonal antibiotics such as 93 

polymyxins [15, 39-42]. 94 

Here we describe iPAO1, a newly developed GSMM for P. aeruginosa PAO1 based upon 95 

Opt208964 [29] and iMO1056 [28] but with intensive manual curation using several major 96 

databases and the literature. Most notably, iPAO1 is the first GSMM for P. aeruginosa where 97 

the periplasmic space compartment is incorporated to comprehensively represent cross-98 
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membrane transport, GPL metabolism and LPS biosynthesis. To the best of our knowledge 99 

iPAO1 represents the most comprehensive metabolic reconstruction for Pseudomonas thus far. 100 

Modelling with iPAO1 revealed that the lipid A modifications might exert limited impact on 101 

cell growth and metabolism but change the physiochemical properties of bacterial OM. 102 

Constrained by gene expression levels, the model was employed to elucidate the metabolic 103 

responses to polymyxin B treatment. Together, iPAO1 provides a powerful systems platform 104 

for antimicrobial pharmacological research to combat the rapidly increasing resistance.  105 

 106 

Data Description 107 

The genome sequence and annotation of P. aeruginosa PAO1 were obtained from GenBank 108 

(Accession NC_002516.2). Models iMO1056 and Opt208964 were retrieved from Model 109 

SEED [32]. The gas chromatography–mass spectrometry (GC-MS) metabolomics data were 110 

collected from the literature [43]. Metabolites, reactions and pathways were obtained from 111 

databases KEGG (Kyoto Encyclopaedia of Genes and Genomes) [44], MetaCyc [45], TCBD 112 

(Transporter Classification Database) [46], TransporterDB [47] and Pseudomonas Genome DB 113 

[48]. Growth phenotypes on 190 carbon sources and 95 nitrogen sources were determined using 114 

BIOLOG Phenotypic Microarrays. Non-essential gene lists were collected from two previously 115 

reported transposon mutant libraries for PAO1 [49, 50]. Lipid A of wild-type P. aeruginosa 116 

PAK and its polymyxin-resistant mutant PAKpmrB6 was extracted using mild acid hydrolysis 117 

method and the structural analysis of lipid A was conducted using mass spectrometry [42]. 118 

RNA was extracted and employed to construct cDNA libraries for RNA-Seq on Illumina 119 

MiSeq platform [51]. The raw reads were quality trimmed and aligned to PAO1 reference 120 

genome using SubRead [52]. Counts were normalised and the differential gene expression was 121 

determined using voom/limma packages with Degust [53]. Whole-cell lipids and intracellular 122 

metabolites were extracted using the single-phase Bligh-Dyer method as previously described 123 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



and analysed by liquid chromatography-mass spectrometry (LC-MS) [14, 42]. Raw 124 

metabolomics data were processed with IDEOM software followed by bioinformatics analysis 125 

[54].  126 

 127 

Analyses 128 

Development of a superior GSMM for P. aeruginosa PAO1 129 

Initially, a draft model (iPAO1_draft1) containing 1,991 reactions, 1,579 metabolites and 1,021 130 

genes was created based upon iMO1056 [28] and Opt208964 [29] (Additional files 2-4). To 131 

obtain a high-quality GSMM, extensive manual curation was conducted. Firstly, iPAO1_draft1 132 

was complemented using databases and the literature. Specifically, the following additional 133 

information was incorporated into the draft model, 285 metabolites and 36 reactions from 134 

KEGG [44], 225 metabolites and 50 reactions from MetaCyc [45], and 7 metabolites and 20 135 

reactions obtained by previous GC-MS-based quantification [43] (Additional files 5 and 6).  136 

Secondly, a periplasmic compartment was built to incorporate 698 periplasmic metabolites, 137 

509 transport reactions across the inner membrane (IM), 441 transport reactions across the 138 

outer membrane (OM), and 403 periplasmic reactions. The resulting intermediate model was 139 

designated as iPAO1_draft2.  140 

Thirdly, the major pathway gaps were filled. GapFind [55] identified 109 dead-end metabolites 141 

(Additional file 7). The growth phenotypes on 190 carbon and 95 nitrogen nutrients were 142 

predicted using iPAO1_draft2, and compared with our experimental BIOLOG Phenotypic 143 

Microarray (PM) results (Additional file 8). As a result, 162 false negative predictions (i.e. the 144 

prediction indicated non-growth whereas the BIOLOG experiment demonstrated valid growth 145 

on a specific nutrient) were determined, indicating the lack of associated transport or catabolic 146 

reactions for these nutrients. To link the dead-end metabolites back to the metabolic network 147 
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and eliminate inconsistencies with the BIOLOG PM results, several modifications were made 148 

including (i) adjustment of the reversibility settings of 180 reactions and changing the 149 

directions of 87 reactions (Additional file 9); (ii) removal of 14 metabolites and 96 reactions 150 

(Additional files 10 and 11), which were either duplicated (e.g. β-D-glucose was duplicated 151 

with D-glucose) or representing general metabolite classes (e.g. protein, mRNA, DNA); and 152 

(iii) addition of 98 boundary reactions, 677 transport reactions, and 252 metabolic reactions 153 

(Additional file 12). Resolving the false negative predictions of the BIOLOG growth 154 

phenotypes substantially improved the model. For example, predictions using iPAO1_draft2 155 

showed that PAO1 was unable to grow with formic acid as a sole carbon source due to the lack 156 

of the corresponding transport reaction. Interrogating the Pseudomonas Genome Database [48] 157 

and Pfam [56] identified PA2777, a hypothetical protein in NCBI and UniProt which may 158 

encode formic/nitrite transporter (Pfam01226, P=7e-34). Subsequent addition of the transport 159 

reaction (rxn08526) enabled in silico growth of PAO1 on formic acid. Another example is that 160 

initially iPAO1_draft2 failed to predict utilisation of 1,2-propanediol for growth owing to the 161 

exiting gap in dehydrogenation of 1,2-propanediol to lactaldehyde. Using BLASTp with the 162 

query sequence of lactaldehyde reductase (fucO, b2799) from Escherichia coli K12 MG1655 163 

identified a candidate homologous gene PA1991 (Identity=35%, Eval=2e-75, BLASTp). 164 

PA1991 encodes an iron-containing alcohol dehydrogenase and has over 300 orthologues in 165 

Gram-negative bacteria which encode lactaldehyde oxidoreductases or 1,2-propanediol 166 

dehydrogenases according to OrthoDB [57]. Inactivation of PA1991 resulted in 8-fold 167 

prolonged lag phase when P. aeruginosa grew on 1,2-propanediol [58]. Therefore, reaction 168 

rxn01615 oxidising 1,2-propanediol to lactaldehyde was added into iPAO1_draft2. A very 169 

large number of such labour intensive manual curations were conducted to improve the model. 170 

This enabled in silico growth on a number of nutrients from BIOLOG PM, including 4-171 

hydroxyphenylacetate, tyramine, quinic acid, itaconic acid, citramalic acid, L-pyroglutamic 172 
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acid, carnidine, glycinebetaine, L-methylsuccinate, and D-amino acids (Additional file 8).  173 

Fourthly, the biogenesis of bacterial envelope was delineated. Cross-linking between amino 174 

acids residues among peptidoglycan chains results in a rigid network structure in P. aeruginosa 175 

[59]. In total, 17 reactions representing peptidoglycan cross-linking and hydrolysis were 176 

incorporated by searching for homologues of glycosyltransferases, transpeptidases, 177 

carboxypeptidases and endopeptidases in PAO1 [60]. Overall, a detailed peptidoglycan 178 

biosynthesis pathway was constructed with 60 reactions. GPL compositions in the bacterial 179 

membranes can change in response to antibiotic treatment [39, 61]. Previous studies [62] and 180 

our own lipidomics results [14] showed a great diversity in GPL species in P. aeruginosa. 181 

Overall, 386 unique metabolites (i.e. 66.2% of the 583 metabolites in the GPL metabolism 182 

pathway) and 367 reactions (66.7% of the 550 reactions in the GPL metabolism pathway) were 183 

incorporated into iPAO1_draft2 (Additional files 1, 13 and 14, Fig 1). LPS consists of lipid 184 

A, core oligosaccharide, and O-antigen polysaccharide [40], and plays key roles in the host-185 

pathogen interaction and the resistance to antibiotics such as polymyxins [13, 63]. A detailed 186 

synthesis and interconversion network was generated with 432 types of LPS and 1,169 187 

reactions (Fig 2, Additional file 1). Notably, our GSMM is the most comprehensive to date in 188 

lipid A biosynthesis and modifications. 189 

The resulting final iPAO1 model consisted of 3,022 metabolites, 4,365 reactions and 1,458 190 

genes (25.8% of the PAO1 genome, Additional files 15-17), representing, respectively, (i) 191 

252%, 340% and 40% increase of the components in iMO1056; and (ii) 125%, 171% and 43% 192 

increase of the components in Opt208964 (Table 1). The significant expansion in iPAO1 193 

includes cross-membrane transport, GPL/LPS biosynthesis, peptidoglycan biosynthesis, and 194 

fatty acid degradation (Additional files 15-17). The reactions from iPAO1 were categorised 195 

into 109 pathways mainly based on classifications in MetaCyc and KEGG. In iPAO1, 196 

27.9%/43.7%/51.6% metabolites, 20.3%/33.5%/59.5% reactions and 65.3%/17.6%/28.5% 197 
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genes are originated from iMO1056, Opt208964, and our manual curation, respectively (Fig 198 

3A). 199 

Components in iPAO1 were aligned with databases including KEGG [44], MetaCyc [45], 200 

PubChem [64], ChemSpider [65], ChEBI [66], Model SEED [32], and BiGG [67] (Additional 201 

files 15 and 16). Consequently, 1,404 (46.5%), 1,590 (52.6%) and 2,142 (70.9%) metabolites 202 

have corresponding identifiers in MetaCyc, KEGG and Model SEED, respectively; 1,556 203 

(35.6%), 1,596 (36.6%) and 1,964 (45.0%) reactions were computationally mapped to the 204 

reactions from MetaCyc, KEGG and Model SEED, accordingly (Fig 3B). A significant portion 205 

of mismatches were caused by the incorporation of specific types of metabolites in the GPL 206 

metabolism and LPS biosynthesis pathway, which in databases are usually lumped as general 207 

compound classes. The properties of metabolites, including mass, charge and formula were 208 

included in iPAO1. The standard Gibbs free energy change of formation (ΔfGº), and reaction 209 

(ΔrGº) were obtained from MetaCyc and Model SEED for 1,877 metabolites (62.1%) and 1,355 210 

reactions (31.0%) (Additional files 15 and 16).  211 

A breakdown of genes involved in iPAO1 (Additional file 17) using the clusters of orthologous 212 

groups (COGs) showed remarkable improvement compared to previous reconstructions (Fig 213 

3C). The largest increase in the coverage compared to iMO1056 is lipid transport and 214 

metabolism (24.1%), followed by inorganic ion transport and metabolism (19.3%); whereas 215 

compared to Opt208964, the largest increase in the coverage is nucleotide transport and 216 

metabolism (57.9%), followed by amino acid transport and metabolism (52.0%). Overall, the 217 

transport and metabolism of nucleotides and amino acids showed the highest percent coverage 218 

of COG functional categories in iPAO1 (72.9% and 65.6%, respectively). Notably, the 219 

reactions in categories not apparently related to metabolism were dramatically reduced in 220 

iPAO1 compared to Opt208964, including translation, ribosomal structure and biogenesis, 221 

posttranslational modification, protein turnover, chaperones and signal transduction 222 
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mechanisms, or undetermined categories including function unknown class.  223 

In iPAO1, GPL metabolism, LPS biosynthesis and transport across OM were ranked the three 224 

largest pathways and also contained the highest proportion of curated reactions (Fig 3D). 225 

Additionally, these three pathways have high reaction-to-gene ratios (13.1-24.2, Fig 3E), 226 

indicating that enzymes in these pathways are capable of acting on a broad range of substrates. 227 

As kinetic parameters are usually not involved in a GSMM, constraint-based analyses (e.g. 228 

FBA) of a GSMM do not directly account for enzyme levels, intracellular metabolic 229 

concentrations or substrate-level regulation. Accordingly, the affinity difference of various 230 

substrates was not considered in our iPAO1 modelling effort.  231 

We employed the biomass formation equation from iMO1056 to construct iPAO1 with 232 

modifications on LPS and ion species (Additional file 18). In addition, to take into account the 233 

extra energy consumption caused by charging tRNAs, the original amino acids in the biomass 234 

formation reaction were replaced by aminoacyl-tRNA, followed by addition of specific 235 

charging reactions to the model. Taken together, iPAO1 represents the most comprehensive 236 

metabolic reconstruction thus far for P. aeruginosa PAO1.  237 

Growth capability on various nutrients 238 

Investigation of nutrient utilisation using BIOLOG PM showed PAO1 could utilise a broad 239 

range of nutrient sources, indicated by the observed growth on 68 of 190 (35.8%) carbon and 240 

76 of 95 (80.0%) nitrogen substrates (Fig 4). Growth simulation with iPAO1 achieved an 241 

overall accuracy of 89.1% (254 of 285), which substantially outperformed previous models 242 

(81.5% for Opt208964 [29], 77.9% for iMO1056 and iMO1086 [30] and 80% for iPae1146 243 

[31]. Twenty-one false-positive and 10 false-negative (Fig 4, Additional file 8) disagreements 244 

were observed, possibly due to the complexity of regulatory mechanisms and missing 245 

annotation of nutrient transport and/or catabolism pathways in PAO1.  246 
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Prediction and validation of gene essentiality  247 

In silico single-gene deletion with iPAO1 showed 143 essential genes (µmut<0.01 µwt), 40 semi-248 

essential genes (0.01 µwt<µmut<0.99 µwt), and 1,275 non-essential genes (0.99 µwt<µmut< µwt) 249 

when growing in Luria-Bertani (LB) media (Additional file 19). Among the essential 250 

metabolic genes, the largest COG proportion (46 of 143, 32.1%) is cell envelope biogenesis, 251 

indicating that there are relatively less alternative reactions in this pathway. For non-essential 252 

genes, amino acid transport and metabolism (352 of 1,315, i.e. 26.7%) represents the largest 253 

group, suggesting the existence of large metabolic redundancy.  254 

The predicted gene essentiality was further verified by two independent genome-scale 255 

transposon mutant libraries [49, 50, 68]. The overall prediction accuracy achieved 87.9%, 256 

which is higher than iMO1056 (85.0%) [28] and iMO1086 (84.2%) [30], but slightly lower 257 

than Opt208964 (92.9%) [29] and iPae1146 (91.46%) [31]. The higher accuracy in Opt208964 258 

is partially due to errors in the annotation of essential genes. For instance, 351 genes in 259 

Opt208964 were grouped as experimentally validated essential; however, 145 out of the 351 260 

genes are non-essential as their corresponding mutants were found in the transposon mutant 261 

library [50]. In iPae1146, removal of 16 isozymes increased the prediction accuracy of essential 262 

genes; for example, 3-ketoacyl-ACP reductase (EC 1.1.1.100) reactions in iPae1146 were 263 

associated with PA2967 only [31], whereas in iPAO1, these reactions were associated with 264 

another eight highly conserved isozymes (PA0182, PA1470, PA1827, PA3387, PA4089, 265 

PA4389, PA4786, PA5524). Furthermore, condition-specific essential genes were predicted in 266 

iPAO1 by imposing transcriptomics constraints. Modification of lipid A with 4-amino-4-267 

deoxy-L-arabinose (L-Ara4N) leads to polymyxin resistance in P. aeruginosa and deficiency 268 

in arn genes reverses the susceptibility [69]. Seven additional essential genes (arnABCDEFT, 269 

PA3552-3558, encoding L-Ara4N biosynthesis) were predicted by iPAO1 under polymyxin 270 

treatment.  271 
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Impact of lipid A modifications on bacterial growth and metabolism 272 

P. aeruginosa modifies lipid A components in the OM in response to polymyxin treatment [70]. 273 

The LPS stoichiometric coefficients in the biomass formula of iPAO1 were configured based 274 

on our lipidomics data (Table 2, [14]), and the metabolic impact of lipid A modifications was 275 

predicted by randomly sampling the metabolic solution space with 10,000 points (cf. Methods). 276 

Overall, 273 fluxes were significantly affected (Z-Score, false discovery rate (FDR) 277 

<0.01; >0.1 mmolgDW-1h-1 under at least one condition, Additional file 20). The specific 278 

growth rate remained unchanged. A 0.026 mmolgDW-1h-1 flux from glucose via glucose 6-279 

phosphate, uridine diphosphate glucose, and consequently L-Ara4N biosynthesis was 280 

identified due to lipid A modifications. The overall fluxes through lipid A deacylation reactions 281 

were increased (from 0.007 mmolgDW-1h-1 to 0.011 mmolgDW-1h-1); the generated (R)-3-282 

hydroxydecanoate was fuelled into β-oxidation to produce octanoyl-CoA, which was 283 

subsequently salvaged for fatty acid biosynthesis.  284 

To further investigate the impact of lipid A modifications on bacterial growth, 1,000 sets of the 285 

compositions of 288 heterogeneous LPS molecules were randomly generated with the total 286 

proportion of LPS unchanged in the biomass formation formula (Additional file 21). The 287 

metabolic fluxes were calculated for each of the 1,000 sets of LPS compositions by randomly 288 

sampling the solution space with 10,000 points. Across the 1,000 sets of metabolic fluxes 289 

(Additional file 23), the specific growth rate varied between 0.8812 and 0.8897 mmolgDW-290 

1h-1. Correlative analysis of the apparent overall physiochemical properties of lipid A 291 

(Additional file 22) with the predicted growth phenotypes showed three interesting findings. 292 

Firstly, addition of L-Ara4N reduced the negative charge of lipid A (=1.00), decreased the 293 

hydrophobicity of the OM (represented by logP, =-0.59), but required assimilation of more 294 

ammonia (represented by ammonia turnover, =0.57). Secondly, hydroxylation on acyl chains 295 
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of lipid A exerted minor effects over either bacterial growth or physiochemical properties. 296 

Thirdly, addition of acyl chains resulted in large lipid A molecules (represented by the atomic 297 

counts, =0.88), enhanced molecular polarity of lipid A (=0.87), increased OM 298 

hydrophobicity (=0.75), and notably, retarded growth (=-0.95), reduced redox and energy 299 

turnover (=-0.98 for both), and increased requirement of ammonia (=0.59) (Fig 5). It is 300 

evident that none of the three aforementioned modifications produced a dramatic impact on 301 

bacterial growth or metabolism (Additional file 23).  302 

Elucidating the mechanisms of metabolic responses to polymyxin treatment 303 

RNA-Seq data were utilised as model constraints (Additional file 24) with an E-Flux method 304 

[71] to calculate the metabolic fluxes in the absence and presence of polymyxin B (cf. Methods). 305 

The exchange fluxes were constrained based on the maximum uptake rates of the media 306 

ingredients (cf. Methods and Additional file 1). Comparison of the flux distributions revealed 307 

that 1,392 reactions were differentially regulated (FDR<0.01, Additional file 25). A range of 308 

metabolic pathways were significantly disturbed, including central metabolism, amino acid 309 

metabolism, purine biosynthesis, fatty acid biosynthesis and metabolism, LPS and GPL 310 

biosynthesis and transport reactions. Polymyxin B treatment reduced the growth rate (18.2%), 311 

increased oxygen uptake (6.9%) and CO2 emission (6.0%); however, the respiration quotient 312 

remained roughly unchanged (Table 3).  313 

As the major carbon sources, the amino acids and oligopeptides from cation-adjusted Mueller-314 

Hinton broth (CAMHB) were utilised to generate intermediate metabolites, redox and energy 315 

equivalents for biomass formation. In response to polymyxin treatment, the gluconeogenesis 316 

pathway was significantly induced from pyruvate to 3-phosphoglycerate, but suppressed from 317 

3-phosphoglycerate towards glucose 6-phosphate. The extra flux from 3-phosphoglycerate was 318 

shunt to serine and glycine biosynthesis (Fig 6) via 3-phospho-D-glycerate:NAD+ 319 
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oxidoreductase (rxn01101), 3-phosphoserine:2-oxoglutarate aminotransferase (rxn02914), O-320 

phospho-L-serine phosphohydrolase (rxn00420), and 5,10-methylenetetrahydrofolate:glycine 321 

hydroxymethyltransferase (rxn00692), through which more NADH equivalent was generated 322 

compared to the control (i.e. growth in CAMHB without polymyxin treatment). The resulting 323 

one-carbon unit in 5,10-methylenetetrahydrofolate was oxidised to formic acid via 10-324 

formyltetrahydrofolate amidohydrolase (rxn00691); the generated glycine was fuelled into 325 

TCA cycle via glycine:oxygen oxidoreductase (rxn00269) and acetyl-CoA:glyoxylate C-326 

acetyltransferase (rxn00330). In addition, the metabolic flux via TCA cycle was upregulated 327 

from citrate to fumarate, with increased NADH production. Within oxidative phosphorylation, 328 

the mean fluxes through NADH dehydrogenase (Complex I, rxn10122), cytochrome bc1 329 

complex (Complex III, rxn13820), and cytochrome c oxidase (Complex IV, rxn13688) 330 

decreased by 6.6%, 7.2% and 7.8%, respectively. The flux via F0F1-ATPase (Complex V, 331 

rxn10042) was downregulated by 11.1%. The overall fluxes via biosynthesis of 332 

macromolecules including LPS, GPL and peptidoglycan decreased due to the significantly 333 

reduced biomass formation. The biosynthesis of spermidine increased by 38.3% in response to 334 

polymyxin treatment which was also indicated by upregulated expression of speD (PA4773; 335 

encoding the S-adenosyl-L-methionine decarboxylase, log2FC=3.62, FDR<0.01) and speE 336 

(PA4774; encoding spermidine synthase, log2FC = 3.54, FDR<0.01).  337 

Calculating the flux-sum of critical cofactors revealed 13.1% increase of redox turnover and 338 

8.2% decline of energy turnover after 1 mgL-1 polymyxin B treatment for 1 h. Breaking down 339 

the cofactors showed the turnover of major redox equivalents NADH, NADPH, ubiquinol-8 340 

and FADH2 substantially increased by 12.6%, 13.9%, 3.9% and 35.9%, respectively; whereas 341 

the turnover of ATP, the major contributor to energy significantly decreased by 8.52% after 1 342 

mgL-1 polymyxin treatment for 1 h (Fig 6, Additional file 26). Overall, metabolic flux analysis 343 

using iPAO1 integrated with our transcriptomics data revealed a significant global impact on 344 
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bacterial metabolism due to polymyxin B treatment.  345 

 346 

Discussion 347 

The emergence of Gram-negative ‘superbugs’ that are resistant to the last-resort polymyxins 348 

highlights the urgent need for novel approaches such as GSMMs to understand the mechanisms 349 

of antibacterial activity and resistance. The main utility of GSMMs is their ability to bridge 350 

critical gaps between genomics and metabolic phenotypes through the prediction of metabolic 351 

responses to antimicrobial treatments at the network level. Here, we report the development, 352 

optimisation, validation and application of a high-quality GSMM designated iPAO1 for a type 353 

strain P. aeruginosa PAO1; and importantly, iPAO1 was employed to understand the 354 

complicated effect of polymyxin treatment on bacterial metabolism. Simulation with iPAO1 355 

showed that lipid A modifications in response to polymyxin treatment only exert minor effects 356 

on bacterial growth and metabolism. Albeit, further calculations that integrate transcriptomics 357 

data as model constraints revealed that polymyxin treatment may reduce growth and affect a 358 

broad range of pathways. 359 

iPAO1 represents the most comprehensive metabolic model for P. aeruginosa to date and 360 

incorporates 1,458 genes, accounting for ~25.8% of the PAO1 genome. Among the four 361 

GSMMs developed for P. aeruginosa PAO1, iMO1086 and iPae1146 were constructed on the 362 

basis of iMO1056 with moderate increase of metabolites, reactions and genes [28, 30, 31]; 363 

Opt208964 is also in a medium size, which limits modelling capacity [29]. In contrast, iPAO1 364 

is significantly expanded in model scale, by doubling or even tripling the numbers of 365 

metabolites and reactions (Fig 3A). iPAO1 achieved an unprecedented prediction accuracy of 366 

89.1% for growth on various nutrients, outperforming all of the previously reported GSMMs 367 

for P. aeruginosa [28-31]. The iPAO1 model was also employed to predict gene essentiality 368 
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with a high accuracy of 87.9%. Given the extensive curation and significant expansion, iPAO1 369 

will serve as the primary reference for future development of metabolic models, particularly 370 

for other P. aeruginosa strains.  371 

Unlike iPAO1, none of the previous P. aeruginosa GSMMs incorporated the periplasm. As 372 

polymyxins initially target LPS in the OM and can cause substantial changes in the cell 373 

envelope, the periplasmic space is a major component in iPAO1. The periplasmic space of E. 374 

coli is estimated to constitute up to 16% of total cell volume [72]. It contains a thin cell wall 375 

composed of peptidoglycan and a variety of ions and proteins, which are involved in transport, 376 

folding, cell envelope biogenesis, electron transport and xenobiotic metabolism [73]. iPAO1 is 377 

the first P. aeruginosa GSMM to incorporate the periplasmic compartment, enabling accurate 378 

representation of metabolic machinery, especially for those reactions that occur exclusively in 379 

this important cellular space and transport of substrates across the IM and OM. Furthermore, 380 

iPAO1 provides detailed representations of GPL and LPS biosynthesis which allows the 381 

precise mapping of GPL and LPS responses from experimental metabolomics and lipidomics 382 

data (Figs 1 and 2).  383 

In response to polymyxin treatment, Gram-negative bacteria modify their lipid A with cationic 384 

moieties (i.e. phosphoethanolamine and L-Ara4N) that act to repel the like-charge of the 385 

polymyxin molecule [40]. Based on our simulations (Additional file 20), we purport that such 386 

lipid A modifications exerted a limited impact on cellular metabolism and growth. Most of the 387 

flux changes were insignificant; the remaining significant flux changes mainly resulted from 388 

futile cycles containing sets of reactions using redox equivalents, whereas the net carbon flow 389 

remained unchanged. Simulation using randomised lipid A compositions further consolidated 390 

our hypothesis that lipid A modifications cause only moderate variations of bacterial growth 391 

and metabolism (Fig 5, Additional file 23). Notwithstanding, our simulation results revealed 392 

that lipid A modifications result in substantial physiochemical changes in the OM of P. 393 
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aeruginosa, including (i) neutralising the surface negative charge by addition of positively 394 

changed L-Ara4N; and (ii) altering the polarity and hydrophobicity by acylation and 395 

deacylation. The general mode of action of polymyxin involves the initial electrostatic 396 

interaction between the cationic side chains of the polymyxin molecule with the anionic lipid 397 

A head groups [63]. These events are subsequently followed by hydrophobic interactions 398 

between the N-terminal fatty acyl chain and position 6/7 hydrophobic side chains of the 399 

polymyxin with the hydrophobic fatty acyls of lipid A [63]. Therefore, in concept both the 400 

addition of L-Ara4N and deacylation of lipid A should contribute to polymyxin resistance. 401 

Indeed, our recent transcriptomic and neutron reflectometry studies discovered that deletion of 402 

the corresponding gene pagL (PA4661) resulted in an increased susceptibility to polymyxins, 403 

in a polymyxin-resistant mutant PAKpmrB6 derived from P. aeruginosa PAK [14, 74], 404 

demonstrating that the lipid A deacylation also plays a key role in the response of P. aeruginosa 405 

to polymyxin treatment.  406 

Our recent transcriptomics and metabolomics studies discovered that polymyxin treatment 407 

leads to remarkable growth reduction and metabolic perturbations in Gram-negative bacteria 408 

[41, 42, 75-77]. The integration of transcriptomics results into GSMMs allow for more accurate 409 

predictions of metabolic responses to either environmental (i.e. antibiotic treatment) or genetic 410 

perturbations (i.e. mutations) [78]. In the present study, we employed the E-Flux method to 411 

integrate transcriptomics data as flux constraints [26]. E-Flux can map continuous gene 412 

expression levels to the metabolic network and uses the transcript abundance to determine the 413 

degree to which a reaction is active or inactive [26]. Therefore, E-Flux provides a more 414 

physiologically relevant description of the continuous nature of the reaction activity and avoids 415 

to use any artificial thresholds to binarise gene expression data [79]. In the present study, 416 

metabolic fluxes with and without antibiotic treatment were not be calculated with 417 

Minimization Of Metabolic Adjustment (MOMA), as MOMA was developed to predict the 418 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



metabolic flux redistributions in gene knockout mutants [80]. MOMA hypothesises that 419 

metabolism of the mutant tends to approximate the wild-type [80], which is distinct from the 420 

antibiotic treatment scenario. For instance, our metabolomics data have demonstrated that the 421 

antibiotic treatment caused dramatic metabolic changes in bacteria [41].  422 

Comparison of the calculated flux distributions revealed that a broad range of metabolic 423 

perturbations occur in response to polymyxin treatment (Fig 6), ranging from central carbon 424 

metabolism to oxidative phosphorylation and amino acid metabolism. Reduced growth, 425 

increased redox turnover and decreased energy turnover due to polymyxin treatment were 426 

evident (Fig 6), indicating that bacterial cells regulated their metabolism to produce more redox 427 

power to cope with the oxidative stress. This is consistent with previous findings that showed 428 

bactericidal antibiotics induced lethal oxidative damages via generating highly deleterious free 429 

radicals with subsequent culmination of cellular death [81]. In addition, our simulations 430 

revealed that polymyxin treatment induced an uptake of L-alanine, which was catabolised to 431 

generate more NADH (Fig 7). This indicates that rich media (e.g. CAMHB) may provide 432 

abundant amino acids and peptides that can be utilised by bacterial cells to generate sufficient 433 

redox equivalents to cope with the oxidative damage caused by polymyxin treatment. 434 

Furthermore, our simulation results also showed an upregulated metabolic flux towards L-435 

spermidine biosynthesis upon polymyxin B treatment (rxn00127 and rxn01406, Additional 436 

file 25). Previous studies showed that polyamines (e.g. spermidine) could protect P. aeruginosa 437 

from antimicrobial peptide killing [82]. It is assumed that the cationic spermidine could interact 438 

with the anionic LPS, mask the negative cell surface, and reduce the electrostatic interactions 439 

between polymyxin B and bacterial OM. Therefore, the enhanced biosynthesis of spermidine 440 

might increase its abundance at the cell surface and contribute to polymyxin resistance.  441 

The constructed iPAO1 provides a detailed presentation of LPS biogenesis (Fig 2), in particular 442 

lipid A modifications. Further integration with specific regulatory modules will enable 443 
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dynamic simulation of metabolic responses to polymyxin treatment. Previous studies revealed 444 

that various two-component regulatory systems (2CSs), including PhoPQ, PmrAB, ParRS, 445 

CprRS and ColRS, play key roles in regulating polymyxin resistance [69, 83-86]. Among them, 446 

the PmrAB and PhoPQ systems are able to sense the depletion of external cations (e.g. Mg2+ 447 

and Ca2+) and upregulate the expression of the arnBCADTEF-ugd operon which is responsible 448 

for the modification of lipid A with L-Ara4N [87]. Moreover, the fatty acylation of lipid A by 449 

PagP is under the control of PhoPQ [88, 89]. ParRS and CprRS are independent 2CSs that 450 

mediate the upregulation of pmrAB, arnBCADTEF-ugd operon, pagL and adaptive resistance 451 

in response to polymyxin treatment [83, 90]. In overview, lipid A modifications due to 452 

polymyxin treatment are strictly controlled by very complex regulatory networks involving 453 

signal sensors, transcriptional regulators, and metabolic enzymes. Therefore, future studies are 454 

warranted to integrate these regulatory modules into the GSMM to enable simulating bacterial 455 

response dynamics to polymyxin treatment and analysing adaptive resistance mechanisms in 456 

P. aeruginosa.  457 

Overall, we have constructed, optimised and validated a high-quality genome-scale metabolic 458 

model iPAO1 for P. aeruginosa PAO1. This comprehensive model incorporates metabolic 459 

pathways, particularly the biogenesis of membrane components, and enables delineating the 460 

complex metabolic responses to antibiotics. iPAO1 provides a valuable systems tool for 461 

quantitative simulation of bacterial metabolic responses to antibiotics, elucidation of the 462 

molecular mechanisms of antimicrobial killing and resistance, and facilitation of designing 463 

rational antimicrobial combination therapy. To the best of our knowledge, this study is the first 464 

to integrate antimicrobial pharmacology, computational biology, metabolic network and 465 

systems pharmacology to analyse large-scale datasets, in order to better understand the 466 

dynamic and complex nature of polymyxin killing and resistance. Combined with antibiotic 467 

pharmacokinetics and pharmacodynamics, iPAO1 offers an in silico platform for precision 468 
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polymyxin chemotherapy.  469 

 470 

Potential implications 471 

The generated collection of transcriptomics metabolomics, lipidomics and lipid A profiling 472 

data provides comprehensive datasets of P. aeruginosa for future integrative analysis of 473 

polymyxin systems pharmacology. As the largest curated GSMM thus far for Pseudomonas, 474 

iPAO1 represents all aspects of the cellular metabolism and may serve as the platform for 475 

integrative analysis of multi-omics data. Simulation with transcriptomics constraints in this 476 

study revealed metabolic flux changes in amino acid catabolism, tricarboxylic acid cycle, and 477 

redox turnover caused by polymyxin treatment. Correlative analysis of metabolomics and 478 

transcriptomics with the constraint-based modelling is necessary for delineating the regulatory 479 

effects on metabolism. The methodology of using GSMMs to analyse multi-level omics data 480 

is applicable to other areas beyond antimicrobial pharmacology. Further integration with 481 

antimicrobial pharmacokinetics and pharmacodynamics will not only provide better 482 

pharmacological understanding, but also empower the model to quantitatively predict the 483 

bacterial responses to antimicrobial therapy in the context of complex interplay of signalling, 484 

transcriptional regulation and metabolism. In summary, our GSMM approach provides a 485 

powerful systems tool to elucidate the complex mode of action of antibiotics and will paradigm 486 

shift antimicrobial pharmacology. 487 

 488 

Methods 489 

Strain, media and BIOLOG experiments 490 

P. aeruginosa PAO1 was cultured in Luria-Bertani (LB) media and subcultured on nutrient 491 

agar. Cells were swapped into sterile capped tube containing 16 mL IF-0 solution (Cell 492 
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Biosciences, West Heidelberg, Australia) till the turbidity achieved 42% transmittance in a 493 

Turbidimeter (Pacificlab, Blackburn, Australia). The cell suspension was then diluted 5 times 494 

with IF-0 solution and dye (Cell Biosciences) to final 85% transmittance. BIOLOG PM 1-3 495 

(Cell Biosciences, Heidelberg, Australia) were used to investigate the carbon and nitrogen 496 

utilisation with two independent biological replicates. Sodium succinate was used as the carbon 497 

source for examining nitrogen utilization. Growth was detected after 24-h incubation at 37°C, 498 

using an Infinite M200 microplate reader (Tecan, Mannedorf, Switzerland) at 595 nm. 499 

Readings that were 1.5-fold of the negative control (i.e. growth media without bacteria) 500 

indicated the utilisation of nutrients.  501 

Development of a GSMM for P. aeruginosa PAO1 502 

To expedite the model development, two curated models for PAO1 with the same identifier 503 

systems from Model SEED [32], iMO1056 [28] and Opt20896434 [29] were merged. 504 

Databases including KEGG [44], MetaCyc [45], Pseudomonas Genome DB [48] and the 505 

literature were employed to complete the model with missing components. The identifiers of 506 

metabolites and reactions were kept consistent with Model SEED [29], and cross-referred to 507 

MetaCyc, KEGG, PubChem [64], ChEBI [66], ChemSpider [65] and BiGG [67]. The PAO1 508 

genome annotation from Pseudomonas Genome DB [48] was employed to construct ‘gene to 509 

protein to reaction’ (GPR) associations [91]. A periplasm compartment was incorporated into 510 

the model. Reactions and metabolites were then assigned to cytoplasm, periplasm and external 511 

environment according to the localisation prediction of metabolic enzymes by PSORTb 3.0 512 

[92]. Transport reactions were generated to enable material exchange across membranes 513 

according to TCBD [46] and TransporterDB [47]. The model was constructed using the 514 

Systems Biology Markup Language (SBML) [93, 94]. VANTED [95] was employed for 515 

visualisation and analysis of the metabolic network. For each metabolite in the model, specific 516 

features including compartment localisation, mass, charge, formula, formation free energy, 517 
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database identifiers and source were added (Additional file 14). Each reaction entered into the 518 

model was checked with elementary and charge balance. Reversibility was determined first 519 

from the primary literature for each particular enzyme or reaction, if available. Further curation 520 

on reaction reversibility and directions was conducted based on change of free energy and 521 

knowledge about the physiological direction of a reaction in a pathway.  522 

The Gapfind function from the COBRA toolbox [96] was employed to identify the isolated and 523 

dead-end metabolites in the model. Candidate reactions from KEGG, MetaCyc and BiGG were 524 

manually inspected for relevance and homology evidence using BLASTp; reactions catalysed 525 

by homologous enzymes (E-value<1×10-5, identity≥35%, coverage≥50%) were added to the 526 

model to eliminate the gaps. Mispredictions of BIOLOG growth phenotypes were employed to 527 

refine the draft model (iPAO1_draft2). Further curation was performed to represent the 528 

complex biosynthesis pathways of macromolecules (e.g. peptidoglycan, GPL and LPS).  529 

The biomass formation equation consisting of necessary building blocks for bacterial growth 530 

was created using the one from iMO1086 [30], with slight modifications on compositions of 531 

ions, peptidoglycans, GPL and LPS (Additional file 17). The growth and non-growth 532 

associated maintenance was from iMO1086 [30].  533 

Growth prediction in BIOLOG media 534 

iPAO1 was employed to predict the growth phenotypes on chemically-defined media with 190 535 

carbon and 95 nitrogen sources (Additional file 18) using the FBA method [24]. The objective 536 

function of biomass formation was maximised with the specific nutrient uptake rate set at 10 537 

mmolgDW-1h-1 under aerobic condition.  538 

max     𝑣biomass 539 

𝑠. 𝑡.     𝐒𝐯 = 0 540 

𝑎𝑖 ≤ 𝑣𝑖 ≤ 𝑏𝑖, 𝑖 = 1,2, ⋯ , 𝑛 541 
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where vbiomass denotes the biomass formation flux, S represents the stoichiometric matrix and 542 

each metabolic flux vi was constrained by lower and upper bound ai and bi, respectively. All 543 

modelling procedures were performed with the COBRA toolbox [96] in MATLAB. The 544 

calculated specific growth rates vbiomass were then compared to the BIOLOG PM data to assess 545 

the prediction accuracy using Fisher’s exact test. 546 

Gene essentiality prediction  547 

In silico single-gene deletion was performed using the CORBRA toolbox and the mutant 548 

models were then used to predict the specific growth rate in LB broth [32] using FBA. Genes 549 

with 99% reduction of the specific growth rate relative to the wild type were defined as essential 550 

for cell growth; otherwise, they were considered as semi-essential (1-99% reduction) and non-551 

essential (<1% reduction). Two existing PAO1 transposon insertion mutant libraries, (i) two-552 

allele mutant library [50, 68] and (ii) mini-Tn5 insertion mutant library [49], were employed 553 

to assess the overall prediction accuracy with Fisher’s exact test. To determine polymyxin-554 

specific essential genes, transcriptomic constrains were imposed (below) before conducting in 555 

silico single-gene deletion simulations. The calculated essential genes identified in polymyxin 556 

treatment alone but not in the control were considered as polymyxin-specific. 557 

Simulation of bacterial growth and metabolic phenotype changes in response to lipid A 558 

modifications 559 

The LPS stoichiometric coefficients in the biomass formula under the control and lipid A 560 

modification conditions were set according to the measured lipid A compositions in the wild-561 

type P. aeruginosa PAK and its polymyxin-resistant mutant PAKpmrB6, respectively (Table 562 

2) [14]. For PAKpmrB6, a missense mutation (L243Q) in pmrB resulted in constitutive 563 

activation of the PmrAB system and induced expression of the regulated genes regardless of 564 

polymyxin, including arn operon and pagL [42, 97]. Aerobic growth was simulated on minimal 565 
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media with glucose uptake at 10 mmolgDW-1h-1. For each simulation, the solution space was 566 

sampled with 10,000 random points using the ll-ACHRB algorithm [98]. Flux samples of the 567 

control and lipid A modification were then compared. Significantly perturbed metabolic fluxes 568 

were identified using a Z-score based approach [71].  569 

To further analyse the metabolic impact of lipid A modifications, the proportions of all types 570 

of LPS in the biomass formula were randomly assigned and the process was repeated 1,000 571 

times. For each repetition, the specific growth rates were calculated and solution space was 572 

sampled using the methods above. For each type of lipid A, specific physiochemical properties 573 

(f) including total atom number, partition coefficient (logP), average charge and molecular 574 

polarity were predicted at pH 7 using the cxcalc tool from ChemAxon (Budapest, Hungary). 575 

The overall apparent properties F of the OM were estimated by calculating the weighted sum.  576 

𝐹 = ∑ 𝑤𝑗𝑓𝑗

𝑛

𝑗=1

 577 

where wj represents the stoichiometric coefficient of the j-th of 288 heterogeneous LPS 578 

molecules in the biomass formula. Pairwise correlation analysis was conducted between lipid 579 

A modifications, physiochemical properties changes, bacterial growth and metabolism 580 

alterations.  581 

Predict metabolic responses to polymyxin treatment by constraining fluxes with 582 

transcriptomics data  583 

The RNA-Seq data from 1-h 1 mg·L-1 polymyxin B treatment experiment using PAO1 were 584 

employed as flux constraints for modelling [51]. For each gene under every condition, the 585 

RPKM (Reads Per Kilobase Million) value was calculated from the aligned reads using the 586 

edgeR package [99], and normalised to constrain flux upper bounds (bi) using the E-Flux 587 

algorithm [26]. Specifically, for each reaction catalysed by a single enzyme, the upper flux 588 
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bound was set to the determined RPKM value under the respective condition. For a reaction 589 

catalysed by an enzyme complex, the upper bound was set to the minimum RPKM value of the 590 

associated genes. For a reaction catalysed by isozymes, the upper bound was set to the sum of 591 

RPKM values of the associated genes. The maximum of upper bounds was then normalised to 592 

10,000 mmolgDW-1h-1. The lower bounds ai were set to 0 for irreversible and -bi 593 

mmolgDW-1h-1 for reversible reactions, respectively. CAMHB was used in the RNA-Seq 594 

experiment and it is known as an undefined medium containing mainly amino acids and 595 

oligopeptides [100]. The maximum uptake rates of amino acids in P. aeruginosa vary between 596 

0.26-1.44 mmolgDW-1h-1 [101-103]. Therefore, the upper bounds (𝑏𝑖
CAMHB) of uptake rates 597 

of amino acids, vitamins and dipeptides in iPAO1 were constrained to 1 mmolgDW-1h-1 598 

without loss of generality. For each condition, the solution space was sampled with 10,000 599 

points using ll-ACHRB as above. Statistical significance of differential flux distributions was 600 

computed using the Z-score method above. The turnover rate for key metabolites was 601 

calculated by summing up all influxes or effluxes [104]. To assess the impact of changing 602 

nutrient uptake bounds, sensitivity analysis was conducted by randomly sampling solution 603 

space as above while varying 𝑏𝑖
CAMHB from 0.26 to 1.44 mmolgDW-1h-1.  604 

 605 

Availability of supporting data and materials 606 

The raw RNA-Seq data have been deposited in the NCBI Sequence Read Archive (SRA) 607 

database under the BioProject accession number PRJNA414673. The metabolomics and 608 

lipidomics data have been deposited in the Metabolight database with the accession number 609 

MTBLS630. Supporting data, also including the scripts used in this project, are available via 610 

the GigaScience repository GigaDB[106]. 611 
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Additional file 1 (additionalFile1.docx): Manual curation of GPL biosynthesis, LPS 614 

biosynthesis and modification pathways, and sensitivity analysis of nutrient uptake bounds. 615 

Additional file 2 (additionalFile2.xlsx): Metabolites in the constructed draft model 616 

iPAO1_draft1. 617 

Additional file 3 (additionalFile3.xlsx): Reactions in the constructed draft model iPAO1_draft1. 618 

Additional file 4 (additionalFile4.xlsx): Genes in the constructed draft model iPAO1_draft1. 619 

Additional file 5 (additionalFile5.xlsx). Supplemented metabolites according to previous GC-620 

MS based metabolomics data. 621 

Additional file 6 (additionalFile6.xlsx): Supplemented reactions according to previous GS-MS 622 

based metabolomics data. 623 

Additional file 7 (additionalFile7.xlsx): Root gap metabolites identified using GapFind from 624 

the COBRA toolbox. 625 

Additional file 8 (additionalFile8.xlsx): Comparison of the predicted growth phenotypes with 626 

the BIOLOG PM results. 627 

Additional file 9 (additionalFile9.xlsx): Reactions with changed reversibility and directionality 628 

during manual curation. 629 

Additional file 10 (additionalFile10.xlsx): Deleted metabolites during manual curation. 630 

Additional file 11 (additionalFile11.xlsx): Deleted reactions during manual curation. 631 

Additional file 12 (additionalFile12.xlsx): Added reactions during manual curation. 632 

Additional file 13 (additionalFile13.xlsx): Added intermediate metabolites in GPL biosynthesis 633 

pathway. 634 
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2CS: two-component regulatory system; CAMHB: cation-adjusted Mueller-Hinton broth; 659 

COG: clusters of orthologous groups; FBA: flux balance analysis; FDR: false discovery rate; 660 

GC-MS: gas chromatography-mass spectrometry; GPL: Glycerolphospholipid; GPR: gene to 661 

protein to reaction; GSMM: genome-scale metabolic models; IM: inner membrane; KEGG: 662 

Kyoto Encyclopaedia of Genes and Genomes; L-Ara4N: 4-Amino-4-deoxy-L-arabinose; LB: 663 

Luria-Bertani; LC-MS: liquid chromatography-mass spectrometry; LPS: lipopolysaccharide; 664 

MDR: Multidrug-resistant; OM: outer membrane; PM: Phenotypic Microarray; RPKM: Reads 665 
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Archive; TCDB: Transporter Classification Database. 667 

 668 

Competing interests 669 

The authors declare no competing interest for this work.  670 

 671 

Funding 672 

This study was partially supported by a Major Interdisciplinary Research Grant from Monash 673 

University and a project grant by the Australian National Health and Medical Research Council 674 

(NHMRC, APP1127948). J.L., T.V., and J.S. are supported by the National Institute of Allergy 675 

and Infectious Diseases of the National Institutes of Health (R01 AI111965). The content is 676 

solely the responsibility of the authors and does not necessarily represent the official views of 677 

the National Institute of Allergy and Infectious Diseases or the National Institutes of Health. 678 

T.V. is an Australian NHMRC Career Development Research Fellow. T.L. is an Australian 679 

Laureate Fellow supported by Australian Research Council. J.L. is an Australian NHMRC 680 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



Senior Research Fellow.  681 

 682 

Authors’ contributions 683 

J.L. and F.S. conceived the project and Y.Z. developed the GSMM and conducted most 684 

analysis. T.C. and M.K. validated the model. J.Z., J.Lu and B.S. curated the model. T.V., T.L. 685 

and J.S. helped supervise the project. M.H. and M.H.M.M. provided the lipidomics and 686 

transcriptomics data, respectively. 687 

 688 

Acknowledgements 689 

The authors acknowledge the assistance of Dr Darren Creek from the Monash Institute of 690 

Pharmaceutical Sciences in LC-MS experiments.   691 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



References 692 

1. Scales BS, Dickson RP, LiPuma JJ and Huffnagle GB. Microbiology, genomics, and 693 

clinical significance of the Pseudomonas fluorescens species complex, an 694 

unappreciated colonizer of humans. Clin Microbiol Rev. 2014;27:927-48. 695 

2. Breidenstein EB, de la Fuente-Nunez C and Hancock RE. Pseudomonas aeruginosa: 696 

all roads lead to resistance. Trends Microbiol. 2011;19:419-26. 697 

3. Liu YY, Wang Y, Walsh TR, Yi LX, Zhang R, Spencer J, et al. Emergence of plasmid-698 

mediated colistin resistance mechanism MCR-1 in animals and human beings in China: 699 

a microbiological and molecular biological study. Lancet Infect Dis. 2016;16:161-8. 700 

4. Winstanley C, O'Brien S and Brockhurst MA. Pseudomonas aeruginosa evolutionary 701 

adaptation and diversification in cystic fibrosis chronic lung infections. Trends 702 

Microbiol. 2016;24:327-37. 703 

5. de Almeida Silva KCF, Calomino MA, Deutsch G, de Castilho SR, de Paula GR, Esper 704 

LMR, et al. Molecular characterization of multidrug-resistant (MDR) Pseudomonas 705 

aeruginosa isolated in a burn center. Burns. 2017;43:137-43. 706 

6. Church D, Elsayed S, Reid O, Winston B and Lindsay R. Burn wound infections. Clin 707 

Microbiol Rev. 2006;19:403-34. 708 

7. Klockgether J, Cramer N, Wiehlmann L, Davenport CF and Tummler B. Pseudomonas 709 

aeruginosa genomic structure and diversity. Front Microbiol. 2011;2:150. 710 

8. Ramos JL and Filloux A. Pseudomonas: Volume 5: A model system in biology. London: 711 

Springer; 2007. 712 

9. Nation RL, Li J, Cars O, Couet W, Dudley MN, Kaye KS, et al. Framework for 713 

optimisation of the clinical use of colistin and polymyxin B: the Prato polymyxin 714 

consensus. Lancet Infect Dis. 2015;15:225-34. 715 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



10. Pedersen MG, Jensen-Fangel S, Olesen HV, Nørskov-Lauritsen N and Wang M. 129 716 

Colistin resistance in Achromobacter sp. and Pseudomonas aeruginosa isolated from 717 

Danish cystic fibrosis patients is not related to plasmid-mediated expression of mcr-1. 718 

J Cyst Fibros. 2017;16:S98. 719 

11. Wi YM, Choi JY, Lee JY, Kang CI, Chung DR, Peck KR, et al. Emergence of colistin 720 

resistance in Pseudomonas aeruginosa ST235 clone in South Korea. Int J Antimicrob 721 

Agents. 2017;49:767-9. 722 

12. Yu Z, Qin W, Lin J, Fang S and Qiu J. Antibacterial mechanisms of polymyxin and 723 

bacterial resistance. Biomed Res Int. 2015;2015:679109-19. 724 

13. Trimble MJ, Mlynarcik P, Kolar M and Hancock RE. Polymyxin: alternative 725 

mechanisms of action and resistance. Cold Spring Harb Perspect Med. 2016;6:a025288. 726 

14. Han M, Zhu Y, Cheah SE, Johnson MD, Yu H, Shen HH, et al. Polymyxin resistance 727 

in Pseudomonas aeruginosa: metabolomic changes underpin lipid A modifications. In: 728 

ASM Microbe 2017 Boston, USA, 2016, p.491. 729 

15. Hussein MH, Maifiah MHM, Han M, Tran TB, Zhu Y, Hancock REW, et al. 730 

Mechanisms of synergistic killing against Pseudomonas aeruginosa by polymyxin B 731 

and amikacin: A metabolomics study. In: European Congress of Clinical Microbiology 732 

and Infectious Diseases Vienna, Austria, 2017, p.EV0387. ESCMID. 733 

16. O'Brien EJ, Monk JM and Palsson BO. Using genome-scale models to predict 734 

biological capabilities. Cell. 2015;161:971-87. 735 

17. Hohenschuh W, Hector R and Murthy GS. A dynamic flux balance model and 736 

bottleneck identification of glucose, xylose, xylulose co-fermentation in 737 

Saccharomyces cerevisiae. Bioresour Technol. 2015;188:153-60. 738 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



18. Hanly TJ and Henson MA. Dynamic metabolic modeling of a microaerobic yeast co-739 

culture: predicting and optimizing ethanol production from glucose/xylose mixtures. 740 

Biotechnol Biofuels. 2013;6:44. 741 

19. Hanly TJ and Henson MA. Dynamic flux balance modeling of microbial co-cultures 742 

for efficient batch fermentation of glucose and xylose mixtures. Biotechnol Bioeng. 743 

2011;108:376-85. 744 

20. Bosi E, Monk JM, Aziz RK, Fondi M, Nizet V and Palsson BO. Comparative genome-745 

scale modelling of Staphylococcus aureus strains identifies strain-specific metabolic 746 

capabilities linked to pathogenicity. Proc Natl Acad Sci U S A. 2016;113:E3801-9. 747 

21. Kim HU, Kim SY, Jeong H, Kim TY, Kim JJ, Choy HE, et al. Integrative genome-scale 748 

metabolic analysis of Vibrio vulnificus for drug targeting and discovery. Mol Syst Biol. 749 

2011;7:460. 750 

22. Krueger AS, Munck C, Dantas G, Church GM, Galagan J, Lehar J, et al. Simulating 751 

serial-target antibacterial drug synergies using flux balance analysis. PLoS One. 752 

2016;11:e0147651. 753 

23. Aziz RK, Monk JM, Lewis RM, In Loh S, Mishra A, Abhay Nagle A, et al. Systems 754 

biology-guided identification of synthetic lethal gene pairs and its potential use to 755 

discover antibiotic combinations. Sci Rep. 2015;5:16025. 756 

24. Bordbar A, Monk JM, King ZA and Palsson BO. Constraint-based models predict 757 

metabolic and associated cellular functions. Nat Rev Genet. 2014;15:107-20. 758 

25. Presta L, Bosi E, Mansouri L, Dijkshoorn L, Fani R and Fondi M. Constraint-based 759 

modeling identifies new putative targets to fight colistin-resistant A. baumannii 760 

infections. Sci Rep. 2017;7:3706. 761 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



26. Colijn C, Brandes A, Zucker J, Lun DS, Weiner B, Farhat MR, et al. Interpreting 762 

expression data with metabolic flux models: predicting Mycobacterium tuberculosis 763 

mycolic acid production. PLoS Comput Biol. 2009;5:e1000489. 764 

27. Navid A and Almaas E. Genome-level transcription data of Yersinia pestis analyzed 765 

with a new metabolic constraint-based approach. BMC Syst Biol. 2012;6:150. 766 

28. Oberhardt MA, Puchalka J, Fryer KE, Martins dos Santos VA and Papin JA. Genome-767 

scale metabolic network analysis of the opportunistic pathogen Pseudomonas 768 

aeruginosa PAO1. J Bacteriol. 2008;190:2790-803. 769 

29. Henry CS, DeJongh M, Best AA, Frybarger PM, Linsay B and Stevens RL. High-770 

throughput generation, optimization and analysis of genome-scale metabolic models. 771 

Nat Biotechnol. 2010;28:977-82. 772 

30. Oberhardt MA, Puchalka J, Martins dos Santos VA and Papin JA. Reconciliation of 773 

genome-scale metabolic reconstructions for comparative systems analysis. PLoS 774 

Comput Biol. 2011;7:e1001116. 775 

31. Bartell JA, Blazier AS, Yen P, Thogersen JC, Jelsbak L, Goldberg JB, et al. 776 

Reconstruction of the metabolic network of Pseudomonas aeruginosa to interrogate 777 

virulence factor synthesis. Nat Commun. 2017;8:14631. 778 

32. Devoid S, Overbeek R, DeJongh M, Vonstein V, Best AA and Henry C. Automated 779 

genome annotation and metabolic model reconstruction in the SEED and Model SEED. 780 

Methods Mol Biol. 2013;985:17-45. 781 

33. Oberhardt MA, Goldberg JB, Hogardt M and Papin JA. Metabolic network analysis of 782 

Pseudomonas aeruginosa during chronic cystic fibrosis lung infection. J Bacteriol. 783 

2010;192:5534-48. 784 

34. Biggs MB and Papin JA. Novel multiscale modeling tool applied to Pseudomonas 785 

aeruginosa biofilm formation. PLoS One. 2013;8:e78011. 786 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



35. Vital-Lopez FG, Reifman J and Wallqvist A. Biofilm formation mechanisms of 787 

Pseudomonas aeruginosa predicted via genome-scale kinetic models of bacterial 788 

metabolism. PLoS Comput Biol. 2015;11:e1004452. 789 

36. Sigurdsson G, Fleming RM, Heinken A and Thiele I. A systems biology approach to 790 

drug targets in Pseudomonas aeruginosa biofilm. PLoS One. 2012;7:e34337. 791 

37. Xu Z, Fang X, Wood TK and Huang ZJ. A systems-level approach for investigating 792 

Pseudomonas aeruginosa biofilm formation. PLoS One. 2013;8:e57050. 793 

38. Perumal D, Samal A, Sakharkar KR and Sakharkar MK. Targeting multiple targets in 794 

Pseudomonas aeruginosa PAO1 using flux balance analysis of a reconstructed 795 

genome-scale metabolic network. J Drug Target. 2011;19:1-13. 796 

39. Dalebroux ZD, Matamouros S, Whittington D, Bishop RE and Miller SI. PhoPQ 797 

regulates acidic glycerophospholipid content of the Salmonella Typhimurium outer 798 

membrane. Proc Natl Acad Sci U S A. 2014;111:1963-8. 799 

40. Raetz CR, Reynolds CM, Trent MS and Bishop RE. Lipid A modification systems in 800 

Gram-negative bacteria. Annu Rev Biochem. 2007;76:295-329. 801 

41. Maifiah MH, Creek DJ, Nation RL, Forrest A, Tsuji BT, Velkov T, et al. Untargeted 802 

metabolomics analysis reveals key pathways responsible for the synergistic killing of 803 

colistin and doripenem combination against Acinetobacter baumannii. Sci Rep. 804 

2017;7:45527. 805 

42. Han ML, Zhu Y, Cheah S-E, Johnson MD, Yu HH, Maifiah MHM, et al. Polymyxin 806 

resistance due to mutations in pmrB caused global metabolomics changes in 807 

Pseudomonas aeruginosa. In: The Australian & New Zealand Metabolomics 808 

Conference Melbourne, Australia, 30 March 2016, p.106. 809 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



43. Frimmersdorf E, Horatzek S, Pelnikevich A, Wiehlmann L and Schomburg D. How 810 

Pseudomonas aeruginosa adapts to various environments: a metabolomic approach. 811 

Environ Microbiol. 2010;12:1734-47. 812 

44. Kanehisa M, Sato Y, Kawashima M, Furumichi M and Tanabe M. KEGG as a reference 813 

resource for gene and protein annotation. Nucleic Acids Res. 2016;44:D457-62. 814 

45. Caspi R, Billington R, Ferrer L, Foerster H, Fulcher CA, Keseler IM, et al. The 815 

MetaCyc database of metabolic pathways and enzymes and the BioCyc collection of 816 

pathway/genome databases. Nucleic Acids Res. 2016;44:D471-80. 817 

46. Saier MH, Jr., Reddy VS, Tsu BV, Ahmed MS, Li C and Moreno-Hagelsieb G. The 818 

Transporter Classification Database (TCDB): recent advances. Nucleic Acids Res. 819 

2016;44:D372-9. 820 

47. Elbourne LD, Tetu SG, Hassan KA and Paulsen IT. TransportDB 2.0: a database for 821 

exploring membrane transporters in sequenced genomes from all domains of life. 822 

Nucleic Acids Res. 2017;45:D320-D4. 823 

48. Winsor GL, Griffiths EJ, Lo R, Dhillon BK, Shay JA and Brinkman FS. Enhanced 824 

annotations and features for comparing thousands of Pseudomonas genomes in the 825 

Pseudomonas genome database. Nucleic Acids Res. 2016;44:D646-53. 826 

49. Lewenza S, Falsafi RK, Winsor G, Gooderham WJ, McPhee JB, Brinkman FS, et al. 827 

Construction of a mini-Tn5-luxCDABE mutant library in Pseudomonas aeruginosa 828 

PAO1: a tool for identifying differentially regulated genes. Genome Res. 2005;15:583-829 

9. 830 

50. Held K, Ramage E, Jacobs M, Gallagher L and Manoil C. Sequence-verified two-allele 831 

transposon mutant library for Pseudomonas aeruginosa PAO1. J Bacteriol. 832 

2012;194:6387-9. 833 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



51. Maifiah MHM. Deciphering the modes of action of polymyxins and the synergistic 834 

combinations against multidrug-resistant Gram-negative bacteria: a systems 835 

pharmacology approach. PhD thesis, Monash University, Australia, 2017. 836 

52. Liao Y, Smyth GK and Shi W. The Subread aligner: fast, accurate and scalable read 837 

mapping by seed-and-vote. Nucleic Acids Res. 2013;41:e108. 838 

53. Powell D: Degust. http://degust.erc.monash.edu/ (2017). Accessed Oct 18 2017. 839 

54. Creek DJ, Jankevics A, Burgess KE, Breitling R and Barrett MP. IDEOM: an Excel 840 

interface for analysis of LC-MS-based metabolomics data. Bioinformatics. 841 

2012;28:1048-9. 842 

55. Satish Kumar V, Dasika MS and Maranas CD. Optimization based automated curation 843 

of metabolic reconstructions. BMC Bioinformatics. 2007;8:212. 844 

56. Finn RD, Coggill P, Eberhardt RY, Eddy SR, Mistry J, Mitchell AL, et al. The Pfam 845 

protein families database: towards a more sustainable future. Nucleic Acids Res. 846 

2016;44:D279-85. 847 

57. Zdobnov EM, Tegenfeldt F, Kuznetsov D, Waterhouse RM, Simao FA, Ioannidis P, et 848 

al. OrthoDB v9.1: cataloging evolutionary and functional annotations for animal, 849 

fungal, plant, archaeal, bacterial and viral orthologs. Nucleic Acids Res. 2017;45:D744-850 

D9. 851 

58. Hempel N, Görisch H and Mern DS. Gene ercA, encoding a putative iron-containing 852 

alcohol dehydrogenase, is involved in regulation of ethanol utilization in Pseudomonas 853 

aeruginosa. J Bacteriol. 2013;195:3925-32. 854 

59. Kohanski MA, Dwyer DJ and Collins JJ. How antibiotics kill bacteria: from targets to 855 

networks. Nat Rev Microbiol. 2010;8:423-35. 856 

60. Typas A, Banzhaf M, Gross CA and Vollmer W. From the regulation of peptidoglycan 857 

synthesis to bacterial growth and morphology. Nat Rev Microbiol. 2011;10:123-36. 858 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

http://degust.erc.monash.edu/


61. Cox E, Michalak A, Pagentine S, Seaton P and Pokorny A. Lysylated phospholipids 859 

stabilize models of bacterial lipid bilayers and protect against antimicrobial peptides. 860 

Biochim Biophys Acta. 2014;1838:2198-204. 861 

62. Kondakova T, D'Heygere F, Feuilloley MJ, Orange N, Heipieper HJ and Duclairoir Poc 862 

C. Glycerophospholipid synthesis and functions in Pseudomonas. Chem Phys Lipids. 863 

2015;190:27-42. 864 

63. Velkov T, Thompson PE, Nation RL and Li J. Structure−activity relationships of 865 

polymyxin antibiotics. J Med Chem. 2010;53:1898-916. 866 

64. Kim S, Thiessen PA, Bolton EE, Chen J, Fu G, Gindulyte A, et al. PubChem Substance 867 

and Compound databases. Nucleic Acids Res. 2016;44:D1202-13. 868 

65. Pence HE and Williams A. ChemSpider: an online chemical information resource. J 869 

Chem Educ. 2010;87:1123-4. 870 

66. Hastings J, de Matos P, Dekker A, Ennis M, Harsha B, Kale N, et al. The ChEBI 871 

reference database and ontology for biologically relevant chemistry: enhancements for 872 

2013. Nucleic Acids Res. 2013;41:D456-63. 873 

67. King ZA, Lu J, Drager A, Miller P, Federowicz S, Lerman JA, et al. BiGG Models: A 874 

platform for integrating, standardizing and sharing genome-scale models. Nucleic 875 

Acids Res. 2016;44:D515-22. 876 

68. Jacobs MA, Alwood A, Thaipisuttikul I, Spencer D, Haugen E, Ernst S, et al. 877 

Comprehensive transposon mutant library of Pseudomonas aeruginosa. Proc Natl Acad 878 

Sci U S A. 2003;100:14339-44. 879 

69. Gutu AD, Sgambati N, Strasbourger P, Brannon MK, Jacobs MA, Haugen E, et al. 880 

Polymyxin resistance of Pseudomonas aeruginosa phoQ mutants is dependent on 881 

additional two-component regulatory systems. Antimicrob Agents Chemother. 882 

2013;57:2204-15. 883 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



70. Olaitan AO, Morand S and Rolain JM. Mechanisms of polymyxin resistance: acquired 884 

and intrinsic resistance in bacteria. Front Microbiol. 2014;5:643. 885 

71. Mo ML, Palsson BO and Herrgard MJ. Connecting extracellular metabolomic 886 

measurements to intracellular flux states in yeast. BMC Syst Biol. 2009;3:37. 887 

72. Graham LL, Beveridge TJ and Nanninga N. Periplasmic space and the concept of the 888 

periplasm. Trends Biochem Sci. 1991;16:328-9. 889 

73. Silhavy TJ, Kahne D and Walker S. The bacterial cell envelope. Cold Spring Harb 890 

Perspect Biol. 2010;2:a000414. 891 

74. Han M, Shen HH, Zhu Y, Roberts KD, Le Brun AP, Moskowitz SM, et al. Deciphering 892 

the mechanisms of polymyxin resistance in Pseudomonas aeruginosa: A systems 893 

pharmacology and neutron reflectometry approach. In: Solutions for Drug-Resistant 894 

Infections (SDRI) 2017 Brisbane, Australia, 3-5, April 2017, p.P23. SDRI 2017. 895 

75. Maifiah MH, Cheah SE, Johnson MD, Han ML, Boyce JD, Thamlikitkul V, et al. 896 

Global metabolic analyses identify key differences in metabolite levels between 897 

polymyxin-susceptible and polymyxin-resistant Acinetobacter baumannii. Sci Rep. 898 

2016;6:22287. 899 

76. Henry R, Crane B, Powell D, Deveson Lucas D, Li Z, Aranda J, et al. The 900 

transcriptomic response of Acinetobacter baumannii to colistin and doripenem alone 901 

and in combination in an in vitro pharmacokinetics/pharmacodynamics model. J 902 

Antimicrob Chemother. 2015;70:1303-13. 903 

77. Abdul Rahim N, Cheah S, Zhu Y, Johnson M, Boyce J, Yu H, et al. Integrative multi-904 

omics network analysis of the synergistic killing of polymyxin B and chloramphenicol 905 

combination against an NDM-producing Klebsiella pneumoniae isolate. In: 2016 906 

European Congress of Clinical Microbiology and Infectious Diseases (ECCMID) 907 

Amsterdam, Netherland, 2016, p.EV0651. ESCMID. 908 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



78. Machado D and Herrgard M. Systematic evaluation of methods for integration of 909 

transcriptomic data into constraint-based models of metabolism. PLoS Comput Biol. 910 

2014;10:e1003580. 911 

79. Blazier AS and Papin JA. Integration of expression data in genome-scale metabolic 912 

network reconstructions. Front Physiol. 2012;3:299. 913 

80. Segre D, Vitkup D and Church GM. Analysis of optimality in natural and perturbed 914 

metabolic networks. Proc Natl Acad Sci U S A. 2002;99:15112-7. 915 

81. Kohanski MA, Dwyer DJ, Hayete B, Lawrence CA and Collins JJ. A common 916 

mechanism of cellular death induced by bactericidal antibiotics. Cell. 2007;130:797-917 

810. 918 

82. Johnson L, Mulcahy H, Kanevets U, Shi Y and Lewenza S. Surface-localized 919 

spermidine protects the Pseudomonas aeruginosa outer membrane from antibiotic 920 

treatment and oxidative stress. J Bacteriol. 2012;194:813-26. 921 

83. Fernandez L, Jenssen H, Bains M, Wiegand I, Gooderham WJ and Hancock RE. The 922 

two-component system CprRS senses cationic peptides and triggers adaptive resistance 923 

in Pseudomonas aeruginosa independently of ParRS. Antimicrob Agents Chemother. 924 

2012;56:6212-22. 925 

84. Barrow K and Kwon DH. Alterations in two-component regulatory systems of phoPQ 926 

and pmrAB are associated with polymyxin B resistance in clinical isolates of 927 

Pseudomonas aeruginosa. Antimicrob Agents Chemother. 2009;53:5150-4. 928 

85. Owusu-Anim D and Kwon DH. Differential role of two-component regulatory systems 929 

(phoPQ and pmrAB) in polymyxin B susceptibility of Pseudomonas aeruginosa. Adv 930 

Microbiol. 2012;2:31-6. 931 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



86. Moskowitz SM, Ernst RK and Miller SI. PmrAB, a two-component regulatory system 932 

of Pseudomonas aeruginosa that modulates resistance to cationic antimicrobial 933 

peptides and addition of aminoarabinose to lipid A. J Bacteriol. 2004;186:575-9. 934 

87. Winfield MD and Groisman EA. Phenotypic differences between Salmonella and 935 

Escherichia coli resulting from the disparate regulation of homologous genes. Proc Natl 936 

Acad Sci U S A. 2004;101:17162-7. 937 

88. McPhee JB, Bains M, Winsor G, Lewenza S, Kwasnicka A, Brazas MD, et al. 938 

Contribution of the PhoP-PhoQ and PmrA-PmrB two-component regulatory systems to 939 

Mg2+-induced gene regulation in Pseudomonas aeruginosa. J Bacteriol. 940 

2006;188:3995-4006. 941 

89. Thaipisuttikul I, Hittle LE, Chandra R, Zangari D, Dixon CL, Garrett TA, et al. A 942 

divergent Pseudomonas aeruginosa palmitoyltransferase essential for cystic fibrosis-943 

specific lipid A. Mol Microbiol. 2014;91:158-74. 944 

90. Fernández L, Gooderham WJ, Bains M, McPhee JB, Wiegand I and Hancock REW. 945 

Adaptive resistance to the “last hope” antibiotics polymyxin B and colistin in 946 

Pseudomonas aeruginosa is mediated by the novel two-component regulatory system 947 

ParR-ParS. Antimicrob Agents Chemother. 2010;54:3372-82. 948 

91. Thiele I and Palsson BO. A protocol for generating a high-quality genome-scale 949 

metabolic reconstruction. Nat Protoc. 2010;5:93-121. 950 

92. Yu NY, Wagner JR, Laird MR, Melli G, Rey S, Lo R, et al. PSORTb 3.0: improved 951 

protein subcellular localization prediction with refined localization subcategories and 952 

predictive capabilities for all prokaryotes. Bioinformatics. 2010;26:1608-15. 953 

93. Hucka M, Finney A, Sauro HM, Bolouri H, Doyle JC, Kitano H, et al. The systems 954 

biology markup language (SBML): a medium for representation and exchange of 955 

biochemical network models. Bioinformatics. 2003;19:524-31. 956 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



94. Hucka M and Finney AM: Systems Biology Markup Language (SBML) Level 2: 957 

Structures and Facilities for Model Definitions. 958 

http://identifiers.org/combine.specifications/sbml.level-2.version-1 (2003). Accessed 959 

Oct 18 2017. 960 

95. Rohn H, Junker A, Hartmann A, Grafahrend-Belau E, Treutler H, Klapperstuck M, et 961 

al. VANTED v2: a framework for systems biology applications. BMC Syst Biol. 962 

2012;6:139. 963 

96. Schellenberger J, Que R, Fleming RM, Thiele I, Orth JD, Feist AM, et al. Quantitative 964 

prediction of cellular metabolism with constraint-based models: the COBRA Toolbox 965 

v2.0. Nat Protoc. 2011;6:1290-307. 966 

97. Moskowitz SM, Brannon MK, Dasgupta N, Pier M, Sgambati N, Miller AK, et al. PmrB 967 

mutations promote polymyxin resistance of Pseudomonas aeruginosa isolated from 968 

colistin-treated cystic fibrosis patients. Antimicrob Agents Chemother. 2012;56:1019-969 

30. 970 

98. Saa PA and Nielsen LK. ll-ACHRB: a scalable algorithm for sampling the feasible 971 

solution space of metabolic networks. Bioinformatics. 2016;32:2330-7. 972 

99. McCarthy DJ, Chen Y and Smyth GK. Differential expression analysis of multifactor 973 

RNA-Seq experiments with respect to biological variation. Nucleic Acids Res. 974 

2012;40:4288-97. 975 

100. Mueller JH and Hinton J. A protein-free medium for primary isolation of the 976 

Gonococcus and Meningococcus. Proc Soc Exp Biol Med. 1941;48:330-3. 977 

101. Hoshino T. Transport systems for branched-chain amino acids in Pseudomonas 978 

aeruginosa. J Bacteriol. 1979;139:705-12. 979 

102. Yoshimura F and Nikaido H. Permeability of Pseudomonas aeruginosa outer 980 

membrane to hydrophilic solutes. J Bacteriol. 1982;152:636-42. 981 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

http://identifiers.org/combine.specifications/sbml.level-2.version-1


103. Kay WW and Gronlund AF. Transport of aromatic amino acids by Pseudomonas 982 

aeruginosa. J Bacteriol. 1971;105:1039-46. 983 

104. Kim PJ, Lee DY, Kim TY, Lee KH, Jeong H, Lee SY, et al. Metabolite essentiality 984 

elucidates robustness of Escherichia coli metabolism. Proc Natl Acad Sci U S A. 985 

2007;104:13638-42. 986 

105. Benjamini Y and Hochberg Y. Controlling the false discovery rate: A practical and 987 

powerful approach to multiple testing. J Roy Stat Soc B Met. 1995;57:289-300. 988 

106 Zhu Y, Czauderna T, Zhao J, Klapperstueck M, Maifiah MH, Han ML et al. Supporting 989 

data for "Genome-scale metabolic modelling of responses to polymyxins in 990 

Pseudomonas aeruginosa." Gigascience Database 2018. 991 

http://dx.doi.org/10.5524/100414 992 

 993 

Figure legends 994 

Figure 1. The curated GPL biosynthesis in iPAO1. [c], intracellular metabolites; [p], 995 

periplasmic metabolites; [e], external metabolites. Blue arrows indicate transport reactions. 996 

Full names of metabolite classes are listed in Additional file 27. 997 

Figure 2. LPS biosynthesis and modification in iPAO1. (A) VANTED diagram showing the 998 

biosynthesis of different LPS molecules. (B) LPS biosynthesis pathway; lipid A and LPS are 999 

indicated in the same colour as in (A). 1000 

Figure 3. Constitutional genes, reactions and metabolites in iPAO1. (A) Sources of iPAO1 1001 

components. (B) Radar map showing the percentages of metabolites and reactions with valid 1002 

database identifiers. (C) The COG functional classification of the involved genes in iMO1056, 1003 

Opt208964 and iPAO1. Percentages given in the middle indicate the coverages of COG groups. 1004 

The proportions of the curated reactions (D), reaction-to-gene ratio (E) and predicted 1005 
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subcellular localisations of the involved proteins (F) are shown for each pathway or COG group. 1006 

In panel D, red bars indicate the curated reactions; whereas blue bars indicate the reactions 1007 

from previous model. In panel D and E, pathways with the highest curation proportion or 1008 

reaction-to-gene ratio are highlighted in red. 1009 

Figure 4. Comparison of the BIOLOG result (left columns) and model prediction (right 1010 

columns). Blue indicates growth; whereas yellow indicates no growth.  1011 

Figure 5. Simulation of the impact of lipid A modifications on bacterial growth, metabolism 1012 

and OM physiochemical properties. The significant correlation (P<0.05) of paired items is 1013 

indicated in red. 1014 

Figure 6. Polymyxin B induced metabolic perturbations. The distributions of metabolic fluxes 1015 

and metabolite turnover rates are shown in subgraphs with red indicating control and blue 1016 

indicating polymyxin B treatment.  1017 

Figure S1. Sensitivity analysis of the mean metabolic fluxes (A) and metabolite turnover rates 1018 

to the variation of nutrient uptake upper bounds. Red indicates the control and blue indicates 1019 

polymyxin B treatment. 1020 
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Tables and their legends 1023 

Table 1. Components in model iMO1056, Opt208964 and iPAO1. 1024 

  iPAO1 iMO1056 Opt208964 

Genes  1,458 1,042 1,021 

Reactions  4,365 992 1,609 

 Cytoplasmic metabolic reactions 1,716 730 1,132 

 Periplasmic metabolic reactions 403 0 0 

 External metabolic reactions 40 0 0 

 Transport reactions 960 150 253 

 Transport across IM 519 0 0 

 Transport across OM 441 0 0 

 Transport from cytoplasm to extracellular 

space 

0 150 253 

 Boundary reactions 352 112 223 

 Reactions without associated genes 628 159 374 

 Sink reactions 0 0 1 

Metabolites  3,022 858 1,344 

 Cytosol 1,519 746 1,121 

 Periplasm 698 0 0 

 Extracellular space 805 112 223 
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Pathways  109 -a 117 

a Pathway information is not available in iMO1056 from the Model SEED database.1025 
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Table 2. Lipid A composition (%) in the outer leaflet of the OM in PAO1 [14]. 1027 

Lipid A species Control Polymyxin B treated 

Hexa-lipid A 42.5±0.46 11.7±1.13 

Penta-lipid A 57.5±0.46 67.7±3.16 

L-Aminoarabinosylated hexa-LA 0 1.24±0.31 

L-Aminoarabinosylated penta-LA 0 19.4±3.44 

Total 100 100 
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Table 3. Specific growth rate, significantly altered major exchange fluxes (>1 mmolgDW-1030 

1h-1), respiration quotient and the fluxes through F0F1-ATPase calculated using the RNA-Seq 1031 

data [51] as flux constraints. 1032 

Exchange flux (mmolgDW-

1h-1) 

Control  Polymyxin B 

treatment 

Z-score  FDRa 

Specific growth rate (h-1) 0.82±0.00 0.67±0.00 10,201.3 0.00 

H2O  46.9±21.8 53.0±19.0 20.37 0.00 

O2  -106.0±23.0 -113.4±19.8 24.30 0.00 

CO2  109.2±22.6 115.8±19.3 22.62 0.00 

NH4
+  36.6±9.29 38.0±8.77 10.94 0.00 

Glycine  2.15±4.76 1.92±4.46 3.05 0.00 

L-Alanine  1.21±5.01 -0.52±2.20 31.77 0.00 

Succinate  2.08±4.19 2.52±4.42 7.27 0.00 

H+  -41.5±14.1 -40.4±11.9 6.44 0.00 

Methanethiol  1.53±0.82 1.34±1.11 12.62 0.00 

H2S  1.66±1.74 1.41±2.18 9.29 0.00 

Respiration Quotient (RQ) 1.03±0.10 1.02±0.10 7.63 0.00 

ATPase (mmolgDW-1h-1) -188.6±52.4 -167.6±48.4 29.62 0.00 

a FDR was calculated using the Benjamini-Hochberg method [105]. 1033 

 1034 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



Inner membrane

Outer membrane

FA[e]

FA[p]

FACoA[c] FA[c] 2AGPG[c]2AG3P[c] 2AGPE[c]AcCoA[c]

FAACP[c]AcACP[c]

FAP[c]

PE[c]PG[c]

PS[c]

CDP-DAG[c]PA[c]

PC[c]

2AGPC[c]

PGP[c]

12DGR[c]

1AG3P[c]

2AGPG[p]2AG3P[p] 2AGPE[p]2AGPC[p]12DGR[p]

1AG3P[p]

PC[p] PG[p] PE[p]

1AGPC[p]

PA[p]

CLPN[p]

1AGPG[p] 1AGPE[p]

FA[p] FA[p] FA[p]

FA[p]

PA[p]

FA[p] FA[p]

PGP[p]

FA[c] FA[c]FA[c]

FA[p]

B-band 

LPS

A-band 

Uncapped

APG[c]
APG[c] APG[c]

FA[c]

Figure 1 Click here to download Figure Figure 1.eps 

http://www.editorialmanager.com/giga/download.aspx?id=31836&guid=e4d9834b-02ba-4a1d-a7e8-5d8dc100e8db&scheme=1
http://www.editorialmanager.com/giga/download.aspx?id=31836&guid=e4d9834b-02ba-4a1d-a7e8-5d8dc100e8db&scheme=1


OH-OH-

MsbA

OH-OH-

9 types of lipid A 

(addition of 

secondary C12 or 

2-OH-C12)

OH- OH-

OH-OH-

MsbA

Outer core 

(glycoform 1)

OH- OH-

Outer core 

(glycoform 2)

OH- OH- OH- OH-

L-Ara4NL-Ara4NArnT ArnT

OH-OH-OH-OH-OH-OH-

(   )
n

(            )
n

Common antigen

 (A-band)

O5-specific antigen

 (B-band)

OH- OH-OH- OH-

( 
  
) n

OH- OH-

( 
  
  
  
  
  
 )

n

OH- OH-OH- OH-

( 
  
  
  
  
  
 )

n

OH- OH-

( 
  
) n

Acylation (PagP)
Deacylation (PagL)

144 LPS 

(common antigen)

144 LPS 

(O5-specific antigen)

144 LPS

(uncapped)

36 lipid A + core

(glycoform 1)

36 lipid A + core

(glycoform 2)

B

A Lipid A

Lipid A + core (glycoform 2)

Lipid A + core (glycoform 1)

LPS (common an!gen)

LPS (O5-specific an!gen)

LPS (uncapped)

Inner 

Membrane

Outer 

Membrane

Figure 2 Click here to download Figure Figure 2.eps 

http://www.editorialmanager.com/giga/download.aspx?id=31870&guid=37d828e3-7aec-431d-afa8-f7fa900da3b5&scheme=1
http://www.editorialmanager.com/giga/download.aspx?id=31870&guid=37d828e3-7aec-431d-afa8-f7fa900da3b5&scheme=1


C

0 100 200 300 400

Cell mo!lity

Intracellular trafficking, secre!on, and vesicular transport

Cell cycle control, cell division, chromosome par!!oning

Replica!on, recombina!on and repair

Transcrip!on

Signal transduc!on mechanisms

Defense mechanisms

Func!on unknown

Secondary metabolites biosynthesis, transport and catabolism

Pos#ransla!onal modifica!on, protein turnover, chaperones

Transla!on, ribosomal structure and biogenesis

General func!on

Nucleo!de transport and metabolism

Cell wall/membrane/envelope biogenesis

Carbohydrate transport and metabolism

Coenzyme transport and metabolism

Lipid transport and metabolism

Inorganic ion transport and metabolism

Energy produc!on and conversion

Amino acid transport and metabolism

COG func!onal classes across three models

Opt208964 iMO1056 iPAO1

65.59%

45.08%

45.45%

54.81%

50.46%

40.23%

35.11%

72.90%

10.44%

16.43%

10.95%

10.19%

2.92%

12.16%

1.32%

0.76%

1.25%

2.56%

0.00%

0.00%

B

0

0.2

0.4

0.6

0.8

1
KEGG

MetaCyc

PubChemSID

PubChemCIDChemSpider

CHEBI

Model SEED

Metabolites

0

0.2

0.4

0.6

0.8

1
KEGG

MetaCyc

BiGG

Model SEED

Reac!ons

A

0 2000 4000 6000

Metabolites

Reac!ons

Genes

iMO1056

Opt208964

iMO1056/Opt208964

Manual cura!on

No. of components

Figure 3A-C Click here to download Figure Figure 3A-C.eps 

http://www.editorialmanager.com/giga/download.aspx?id=31837&guid=1e02a557-6397-4cdd-aff4-be9af80a01d0&scheme=1
http://www.editorialmanager.com/giga/download.aspx?id=31837&guid=1e02a557-6397-4cdd-aff4-be9af80a01d0&scheme=1


99.5%

72.0%

98.5%

0

200

400

600

800

1000

1200

1400

Glu
ta

th
io

ne m
eta

bolis
m

Se
cr

ete
d n

ucl
eo!de p

hosp
hohyd

ro
la

se

Tyr
osin

e m
eta

bolis
m

Phenyl
al

an
in

e m
eta

bolis
m

tR
N

A c
har

gi
ng

Tra
nsp

ort
 v

ia
 v

ect
ora

l C
oA c

ouplin
g

Se
cr

ete
d p

hosp
holip

as
e

Pep!dogl
yc

an
 b

io
sy

nth
esis

Fa
"y 

ac
id

 d
egr

ad
a!

on

Fa
ci

lit
at

ed d
iff

usio
n a

cr
oss

 C
M

ABC tr
an

sp
ort

er

Tra
nsp

ort
 a

cr
oss

 O
M

Gly
ce

ro
phosp

holip
id

 m
eta

bolis
m

Li
popoly

sa
cc

har
id

e b
io

sy
nth

esis

N
o

. 
o

f 
re

a
c!

o
n

s

D

0

5

10

15

20

25

30

0 200 400 600 800 1000 1200 1400

R
e

a
c!

o
n

 t
o

 g
e

n
e

 r
a

!
o

s

E

Lipopolysaccharide biosynthesis

Transport across OM Glycerophospholipid metabolism

No. of reac!ons

F

0 50 100 150 200 250 300 350 400

Amino acid transport and metabolism

Carbohydrate transport and metabolism

Cell cycle control, cell division, chromosome par!!oning

Cell wall/membrane/envelope biogenesis

Coenzyme transport and metabolism

Defense mechanisms

Energy produc!on and conversion

Func!on unknown

General func!on predic!on only

Inorganic ion transport and metabolism

Lipid transport and metabolism

Nucleo!de transport and metabolism

Pos"ransla!onal modifica!on, protein turnover, chaperones

Replica!on, recombina!on and repair

Secondary metabolites biosynthesis, transport and catabolism

Signal transduc!on mechanisms

Transcrip!on

Transla!on, ribosomal structure and biogenesis

Cytoplasmic Cytoplasmic Membrane Extracellular

Outer Membrane Periplasmic Unknown

Figure 3D-F Click here to download Figure Figure 3D-F.eps 

http://www.editorialmanager.com/giga/download.aspx?id=31838&guid=2f7b5a28-224d-4e74-8dc5-0bbf0d13bd20&scheme=1
http://www.editorialmanager.com/giga/download.aspx?id=31838&guid=2f7b5a28-224d-4e74-8dc5-0bbf0d13bd20&scheme=1


PM1 (Carbon) Biolog iPAO1 PM2 (Carbon) Biolog iPAO1 PM3 (Nitrogen) Biolog iPAO1
L-Arabinose × × Chondroi n Sulfate C × × Ammonia √ √

N-Acetyl-D-Glucosamine √ √ a-Cyclodextrin × × Nitrite √ √

D-Saccharic Acid × × b-Cyclodextrin × × Sodium Nitrate √ √

Succinic Acid √ √ g-Cyclodextrin × × Urea √ √

D-Galactose × × Dextrin × × Biuret × ×

L-Aspar c Acid √ √ Gela n × × L-Alanine √ √

L-Proline √ √ Glycogen × × L-Arginine √ √

D-Alanine √ √ Inulin × × L-Asparagine √ √

D-Trehalose × √ Laminarin × × L-Aspar c Acid √ √

D-Mannose × × Mannan × × L-Cysteine √ √

Dulcitol × × Pec n × × L-Glutamic Acid √ √

D-Serine × √ N-Acetyl-D-Galactosamine × × L-Glutamine √ √

D-Sorbitol × × N-Acetyl-Neuraminic Acid × × Glycine √ √

Glycerol √ √ b-D-Allose × × L-His dine √ √

L-Fucose × × D-Amygdalin × × L-Isoleucine √ √

D-Glucuronic Acid × × D-Arabinose × × L-Leucine √ √

D-Gluconic Acid √ √ D-Arabitol × × L-Lysine √ √

D,L-a-Glycerol Phosphate × √ L-Arabitol × × L-Methionine √ √

D-Xylose × × Arbu n × × L-Phenylalanine √ √

L-Lac c Acid √ √ 2-Deoxy-D-Ribose × × L-Proline √ √

Formic Acid √ √ i-Erythritol × × L-Serine √ √

D-Mannitol √ √ D-Fucose × × L-Threonine √ √

L-Glutamic Acid √ √ 3-0-b-D-Galacto-pyranosyl-D-Arabinose × × L-Tryptophan √ √

D-Glucose-6-Phosphate × √ Gen obiose × × L-Tyrosine √ √

D-Galactonic Acid-g-Lactone × × L-Glucose × × L-Valine √ √

D,L-Malic Acid √ √ Lac tol × × D-Alanine √ √

D-Ribose √ √ D-Melezitose × × D-Asparagine √ √

Tween 20 √ × Mal tol × × D-Aspar c Acid × ×

L-Rhamnose × × a-Methyl-D-Galactoside × × D-Glutamic Acid √ √

D-Fructose √ √ b-Methyl-D-Galactoside × × D-Lysine √ √

Ace c Acid √ √ 3-Methyl Glucose × × D-Serine √ √

D-(+)-Glucose √ √ b-Methyl-D-Glucuronic Acid × × D-Valine √ √

Maltose × × a-Methyl-D-Mannoside × × L-Citrulline √ √

D-Melibiose × × b-Methyl-D-Xyloside × × L-Homoserine × √

Thymidine × × Pala nose × × L-Ornithine √ √

L-Asparagine √ √ D-Raffinose × × N-Acetyl-L-Glutamic Acid √ √

D-Aspar c Acid × × Salicin × × N-Phthaloyl-L-Glutamic Acid √ ×

D-Glucosaminic Acid × × Sedoheptulosan × × L-Pyroglutamic Acid √ √

1,2-Propanediol √ √ L-Sorbose × × Hydroxylamine × √

Tween 40 √ × Stachyose × × Methylamine × ×

a-Keto-Gutaric Acid √ √ D-Tagatose × × N-Amylamine × ×

a-Ketobutyric Acid √ √ Turanose × × N-Butylamine × ×

a-Methyl-D-Galactoside × × Xylitol × × Ethylamine × ×

a-D-Lactose × × N-Acetyl-D-glucosaminitol × × Ethanolamine √ ×

Lactulose × × g-Amino Butyric Acid √ √ Ethylenediamine × ×

Sucrose × × d-Amino Valeric Acid √ √ Putrescine √ √

Uridine × √ Butyric Acid √ √ Agma ne √ √

L-Glutamine √ √ Capric Acid × √ Histamine √ √

m-Tartaric Acid × × Caproic Acid √ √ b-Phenylethylamine √ √

D-Glucose-1-Phosphate × √ Citraconic Acid × × Tyramine √ √

D-Fructose-6-Phosphate × × Citramalic Acid √ √ Acetamide √ √

Tween 80 √ × D-Glucosamine × × Formamide × ×

a-Hydroxy Glutaric Acid-g-Lactone × × 2-Hydroxybenzoic acid × × Glucuronamide √ √

D,L-a-Hydroxy-Butyric Acid √ √ 4-Hydroxy Benzoic Acid Sodium √ √ D,L-Lactamide √ √

b-Methyl-D-Glucoside × × b-Hydroxy Butyric Acid √ √ D-Glucosamine × ×

Adonitol × × g-Hydroxy Butyric Acid × √ D-Galactosamine × ×

Maltotriose × × 2-Oxovaleric acid × × D-Mannosamine × ×

2'-Deoxy Adenosine × × Itaconic Acid √ √ N-Acetyl-D-Glucosamine √ √

Adenosine √ √ 5-Keto-D-Gluconic Acid × × N-Acetyl-D-Galactosamine √ √

Glycyl-L-Aspar c Acid × √ D-Lac c Acid Methyl Ester × × N-Acetyl-D-Mannosamine × ×

Citric Acid √ √ Malonic Acid √ √ Adenine √ √

m-Inositol × × Melibionic Acid × × Adenosine √ √

D-Threonine × × Oxolic Acid × × Cy dine √ √

Fumaric Acid √ √ Oxalomalic Acid × × Cytosine √ √

Bromo Succinic Acid √ × Quinic Acid √ √ Guanine √ √

Propionic Acid √ √ D-Ribono-1,4-Lactone × × Guanosine √ √

Mucic Acid × × Sebacic Acid × × Thymine √ √

Glycolic Acid × × Sorbic acid √ √ Thymidine × ×

Glyoxylic Acid × × Succinamic Acid √ √ Uracil √ √

D-Cellobiose × × D-Tartaric Acid × × Uridine √ √

Inosine √ √ L-Tartaric Acid × × Inosine √ √

Glycyl-L-Glutamic Acid × √ Acetamide × √ Xanthine √ √

Tricarballylic Acid × × L-Alaninamide √ √ Xanthosine √ √

L-Serine √ √ N-Acetyl-L-Glutamic Acid √ √ Uric Acid √ √

L-Threonine × √ L-Arginine √ √ Alloxan √ ×

L-Alanine √ √ Glycine √ √ Allantoin √ √

Ala-Gly × √ L-His dine √ √ Parabanic Acid √ ×

Acetoace c Acid √ √ L-Homoserine × √ D,L-a-Amino-N-Butyric Acid × ×

N-Acetyl-D-Mannosamine × × Hydroxy-L-Proline √ √ g-Amino Butyric Acid √ √

Mono Methyl Succinate √ √ L-Isoleucine √ √ e-Amino-N-Caproic Acid × ×

Methyl Pyruvate √ × L-Leucine √ √ D,L-a-Amino- Caprylic Acid × ×

D-Malic Acid × × L-Lysine × √ d-Amino-N-Valeric Acid √ √

L-Malic Acid √ √ L-Methionine × √ a-Amino-N-Valeric Acid √ ×

Glycyl-L-Proline √ √ L-Ornithine √ √ Ala-Asp √ √

p-Hydroxy Phenyl Ace c Acid √ √ L-Phenylalanine × √ Ala-Gln √ √

M-Hydroxy Phenyl Ace c Acid × × L-Pyroglutamic Acid √ √ Ala-Glu √ √

Tyramine √ √ L-Valine × √ Ala-Gly √ √

D-Psicose × × D,L-Carni ne √ √ Ala-His √ √

L-Lyxose × × Sec-Butylamine × × Ala-Leu √ √

Glucuronamide × × D.L-Octopamine √ √ Ala-Thr √ √

Pyruvic Acid √ √ Putrescine √ √ Gly-Asn √ √

L-Galactonic Acid-g-Lactone × × Dihydroxy Acetone × × Gly-Gln √ √

D-Galacturonic Acid × × 2,3-Butanediol √ √ Gly-Glu √ √

b-Phenylethylamine × × Diacetyl × × Gly-Met × √

2-Aminoethanol √ √ 3-Hydroxy 2-Butanone × × Met-Ala √ √
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Dr Laurie Goodman 
Editor-in-Chief 
GigaScience 
 
16 October 2017 
 
Dear Dr Goodman, 
 
We are pleased to submit our manuscript entitled “Genome-scale metabolic modelling of responses 
to polymyxins in Pseudomonas aeruginosa” for your consideration as an original Research Article 
in GigaScience. 
 
Antimicrobial resistance has become one of the greatest threats to global health today. Multidrug-
resistant (MDR) P. aeruginosa has been categorised by the World Health Organization as a 
“Critical” Gram-negative ‘superbug’ against which no new antibiotics will be available in the near 
future. Polymyxins are ‘old’ antibiotics firstly discovered in 1947, but have been abandoned since 
the 1970s. Over the last decade polymyxins have been revived as the last-line therapy against 
Gram-negative ‘superbugs’, including P. aeruginosa, which are resistant to all other antibiotics. 
However, the mechanism of their antibacterial activity remains largely unknown.  
 
Here we report the construction of a superior genome-scale metabolic model (GSMM) iPAO1 for 
P. aeruginosa PAO1 which represents the largest genome-scale metabolic model thus far for any 
Gram-negative bacteria. iPAO1 provides a powerful systems pharmacology tool to elucidate the 
complex mode of action of antibiotics and shift the paradigm of the “one-gene, one-receptor, one-
mechanism” approach. It is able to quantitatively simulate complex bacterial cellular responses in 
response to antibiotic treatments. 

 
To date, there are four curated GSMMs for P. aeruginosa, iMO1056 (developed in 2008), 
Opt20896429 (2010), iMO1086 and iPae1146 (two minor updated versions of iMO1056 developed 
in 2011 and 2017, respectively), and all are for the strain PAO1. Unfortunately, none of these four 
GSMMs incorporates the periplasmic space, and glycerolphosholipid (GPL) and lipopolysaccharide 
(LPS) biosynthesis is very poorly represented. These shortcomings significantly limit their 
usefulness for antimicrobial pharmacology. Growth prediction with iPAO1 on 190 carbon and 95 
nitrogen nutrients outperformed all the previous models with an accuracy of 89.1%. Prediction of 
the essential genes for growth on rich media achieved a high accuracy of 87.9%. Specifically, the 
significant advantages of our iPAO1 include: (1) incorporation of the periplasmic space; (2) addition 
of detailed GPL and LPS biosynthesis pathways supported by our own metabolomics and 
lipidomics data; and (3) significant expansion of the modelling scale with a high prediction accuracy. 
For the first time, metabolic simulation using iPAO1 showed that lipid A modifications exert limited 
impacts on bacterial growth and metabolism, but remarkably change the physiochemical properties 
of bacterial outer membrane. Modelling with transcriptomics constraints revealed a broad range of 
metabolic responses to polymyxin treatment, including reduced biomass formation, upregulated 
amino acids catabolism, induced tricarboxylic acid cycle, and increased redox turnover. Overall, 
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our GSMM approach has a significant potential in accelerating antimicrobial pharmacological 
discovery against Gram-negative ‘superbugs’. 
 
To the best of our knowledge, this study is the first to integrate antimicrobial pharmacology, 
computational biology, metabolic network and systems pharmacology to analyse large-scale 
datasets, in order to better understand the dynamic and complex nature of polymyxin killing and 
resistance. We believe this manuscript perfectly matches the theme of GigaScience and will be of 
broad interest to microbiologists, bioinformaticians and antimicrobial researchers. 
 
We confirm that our submission comprises original and unpublished material which is not currently 
under consideration for publication elsewhere, and has been approved by all authors. Thank you 
for considering our work for publication in GigaScience. We look forward to your correspondence.  
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