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SUMMARY

Loss of p53 function is invariably associated with
cancer. Its role in tumor growth was recently linked
to its effects on cancer stem cells (CSCs), although
the underlying molecular mechanisms remain un-
known. Here, we show that c-myc is a transcriptional
target of p53 in mammary stem cells (MaSCs) and is
activated in breast tumors as a consequence of p53
loss. Constitutive Myc expression in normal mam-
mary cells leads to increased frequency of MaSC
symmetric divisions, extended MaSC replicative-
potential, and MaSC-reprogramming of progenitors,
whereasMyc activation in breast cancer is necessary
and sufficient to maintain the expanding pool of
CSCs. Concomitant p53 loss and Myc activation
trigger the expression of 189 mitotic genes, which
identify patients at high risk of mortality and relapse,
independently of other risk factors. Altogether,
deregulation of the p53:Myc axis inmammary tumors
increases CSC content and plasticity and is a
critical determinant of tumor growth and clinical
aggressiveness.
INTRODUCTION

Loss of p53 function is considered a constant feature of cancer.

p53 mutations and/or deletions are found in �50% of cases

(Soussi and Wiman, 2007) and correlate with disease aggres-

siveness and worse prognosis (Miller et al., 2005). In the remain-

ing tumors, p53 is wild-type (WT), but its function is frequently

impaired because of alterations in the genes implicated in its

regulation, such as the mouse double minute 2 (Mdm2) gene

amplification or p14/ARF deletion, which enhance p53 degrada-

tion (Kruse and Gu, 2009).
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Lossofp53 function is implicated inall phasesof tumorigenesis:

initiation, progression, metastasis, and tumor maintenance

(Ventura et al., 2007; Xue et al., 2007; Martins et al., 2006).

Traditionally, the role of p53 in cancer has been associated with

itsability toactivateDNArepair, apoptosis, senescence,orcell cy-

cle arrest (VousdenandPrives, 2009).However, eachof the above

has been disputed as the biological mechanism underlying its tu-

mor-suppressive function (Brady et al., 2011; Li et al., 2012b).

Regulationofmetabolismandautophagyhavealsobeenascribed

top53, but their involvement is highly dependent onmicroenviron-

mental cues (Bieging et al., 2014; Vousden and Prives, 2009).

Recently, p53 has emerged as a negative regulator of adult

stem cell (SC) self-renewal in the hematopoietic, neural, and

mammary gland systems. Indeed, its loss leads to abnormal

expansion of the SC compartment and increased repopulating

ability in transplantation assays (Asai et al., 2011; Chen et al.,

2008; Cicalese et al., 2009; Meletis et al., 2006). The underlying

biological mechanisms are only partially characterized; p53

maintains the pool of quiescent hematopoietic SCs (Liu et al.,

2009) and determines the balance between asymmetric and

symmetric divisions of mammary SCs (MaSCs), with p53 loss fa-

voring symmetric divisions (Cicalese et al., 2009).

Indirect evidence suggests that the effect of p53 on SCs is crit-

ical to its tumor-suppressive functions: (1) silencing of p53 in

mouse brain and liver leads to the formation of undifferentiated

tumors expressing SC markers (Friedmann-Morvinski et al.,

2012; Tschaharganeh et al., 2014), (2) loss of p53 in breast cancer

correlates with a SC-related transcriptional signature (Mizuno

et al., 2010), and (3) restoration of p53 by theMdm2-inhibitor Nut-

lin-3 (Nut3) (Vassilev et al., 2004) in ErbB2-overexpressing breast

cancer decreases the number of cancer stem cells (CSCs) and

significantly reduces tumor size, without any antiproliferative or

apoptotic effect on bulk tumor cells (Cicalese et al., 2009).

Several bona fide p53 targets have been identified, possibly

mediating the effects of p53 on SCs. For example, Mir34a is

trans-activated by p53 and restricts the expansion of breast

CSCs in mammosphere assays (Park et al., 2014). p53 also re-

presses CD44 in breast cancer and Nestin in hepatocellular
.
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Figure 1. Myc is Overexpressed in Murine

and Human Breast Tumors Because of

Attenuation or Loss of p53 Signaling

(A and B)Western blot of Myc protein expression in

(A) WT mammary gland and 5 independent ErbB2

tumors (T1–T5), and (B) two representative ErbB2

tumor mammosphere cultures (T19 and T20), un-

treated or treated with Nut3 (2.5 mM), as compared

with one WT mammosphere culture. Mammo-

spheres were analyzed at passage 3 (M3). Right:

Relative Myc-protein expression for the untreated

and Nut3-treated T19 and T20.

(C) Representative FACS-histograms of EdU

(5-ethynyl-20-deoxyuridine) incorporation in WT

and ErbB2-tumor (T) cells at different times during

mammosphere formation, as indicated. The per-

centage of EdU+ cells (cells in S phase) is shown

for each time point.

(D and E) Western blot of Myc expression:

(D) during WT and ErbB2 tumor mammosphere

formation (24–120 h); and (E) in MCF10DCIS.com

and primary cells from four PDX tumors (BC3,

BC10, BC22, and BC26), untreated (UT) or treated

with 2.5 or 10 mM Nut3 for 16 h in vitro. Right:

Relative Myc-protein expression.

See also Figure S1.
carcinoma, two CSC markers whose overexpression favors tu-

mor growth (Godar et al., 2008; Tschaharganeh et al., 2014).

p53 has also been reported as a transcriptional repressor of

the c-myc proto-oncogene (Ho et al., 2005; Sachdeva et al.,

2009; Li et al., 2012a), which regulates adult SCs particularly in

the skin, hematopoietic, and neural compartments (Kerosuo

et al., 2008; Laurenti et al., 2009; Watt et al., 2008) and induces

a SC-like transcriptional pattern in immortalized mammary cells

(Poli et al., 2018). However, whether any of these p53-regulated

genes are critical effectors of p53 in SC homeostasis and tumor

suppression remains unknown.

Here, we investigated the role of Myc as a p53 target in mam-

mary CSCs, using transgenic mice overexpressing a mutated

form of the breast cancer–associated ErbB2 oncogene (MMTV-

ErbB2 mice) (Muller et al., 1988). In ErbB2 mammary tumors,

higher numbers of CSCs follow abnormal self-renewing divisions

characterized by increased frequency of symmetric divisions and

extended replicative potential. Notably, these properties ofCSCs

are fully dependent on attenuated p53 signaling and contribute to

tumor growth maintenance (Cicalese et al., 2009). We show that

Myc is a direct target of p53, and its constitutive activation, as a

consequence of p53 loss, is sufficient to maintain the trans-

formed CSC phenotype in murine and human breast tumors.

RESULTS

Loss of p53 Leads to Constitutive Myc Expression in
ErbB2 Tumors
Western blot analyses showed marked Myc overexpression in

unfractionated ErbB2mammary tumors (Figure 1A). Myc overex-
pression was also observed in ErbB2-tumor mammosphere cul-

tures, a cell population enriched in mammary SCs (MaSCs) and

mammary progenitors (MaProgs) (Figures 1B and S1A). During

the 5-day mammosphere growth (from single cells to formed

mammospheres), Myc levels and the percentage of cycling cells

decreased progressively in WT mammospheres, whereas they

remained stable in the ErbB2-tumor mammospheres (Figures

1C and 1D).

To assess whether Myc overexpression in ErbB2 tumor cells is

a consequence of reduced p53 activity, we analyzed the effect of

p53 restoration. Treatment with Nut3 restored p53 activity (Fig-

ure S1B) and reduced Myc expression in ErbB2-tumor (Figures

1B and S1A) and human p53-WT breast cancer samples (Fig-

ure 1E), including MCF10DCIS.com (Miller et al., 2000) and

four distinct patient-derived xenografts (PDXs), whereas it had

had no effect on p53�/� mammospheres (Figure S1C).

We then investigated the correlation between p53 activity and

Myc expression in breast cancer samples from The Cancer

Genome Atlas (TCGA). Analyses of Myc RNA levels in samples

with WT (n = 673) or mutated (n = 294) p53 showed significantly

elevated Myc in patients carrying the p53 mutations (Figures

S1D and S1E), including those with either ‘‘missense’’ or

‘‘nonsense’’ mutations. Nonsense mutations usually generate

truncated proteins and cause p53 loss of function, whereas

missensemutationsmay account for either loss- or gain-of-func-

tion effects on p53. Consistently, loss of p53 function (as re-

vealed by analyses of expression of the p53-target p21) and

Myc overexpression were accentuated in the presence of

nonsense mutations (Figures S1D–S1G), suggesting that tu-

mor-associated p53 mutations are unable to downregulate
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Figure 2. Constitutive Myc Expression Increases MaSC Replicative Potential

(A and B) Serial replating of Rosa26-MycER cells untreated (UT) or treated with low doses of 4-OHT (20 and 200 nM): graphs of cumulative (A) sphere and (B) cell

number (n = 6). R2, coefficient of determination.

(C) Cumulative sphere graph of Rosa26-MycER cells UT, as in (A) or treated with high doses of 4-OHT (500 nM and 1 mM). Data from one representative

experiment are shown (n = 2).

(D) Whole mount carmine staining of reconstituted glands after injection of 500 LTR-Ctrl and 100 LTR-MycER cells. Scale bar, 2 mm.

(A–C) Error bars represent SD. See also Figures S2 and S3.
Myc. Together, these results demonstrate constitutive and

increased Myc expression in murine and human breast cancer

because of loss or attenuation of p53 signaling.

Constitutive Myc Expression in the Normal Mammary
Gland Leads to Expansion of MaSC Numbers
To analyze the effects of de-regulated Myc expression on the

replicative potential of MaSCs, we performed mammosphere

serial-replating assays with cells from a murine model harboring

MycER (fusion of human Myc with a modified estrogen receptor)

within the Rosa26 locus (Murphy et al., 2008). Notably, levels of

MycER protein and the extent of its nuclear translocation in

mammospheres (hereafter, R-MycER mammospheres) were

entirely dependent on the concentration of 4-hydroxytamoxifen

(4-OHT) (Figures S2A and S2B).

In the absence of 4-OHT, numbers of Rosa26-MycER control

(R-Ctrl) mammospheres progressively decreased at each pas-

sage, reaching culture exhaustion after five to seven passages

(Figure 2A), confirming that MaSC self-renewal is intrinsically

limited (Cicalese et al., 2009). At low doses of 4-OHT (20 or

200 nM), we observed increased cumulative numbers of spheres

(growth rate [GR], 121% and 161%, respectively; Figure 2A)

and cells (GR, 132% and 162%, respectively; Figure 2B)

and extended life span (mammosphere cultures could be

passaged indefinitely; not shown). High doses of 4-OHT (500

or 1,000 nM), instead, induced accumulation of phosphorylated
626 Cell Reports 26, 624–638, January 15, 2019
p53 and cleaved caspase 3 (Figure S2A), massive cell death (Fig-

ure S2C), and rapid exhaustion of the R-MycER mammosphere

culture (Figure 2C). 4-OHT had no effect on the growth of WT

mammospheres (Figure S2D). Together, these data demonstrate

that the effects of Myc on the replicative potential of MaSCs de-

pended strictly on its expression level: high levels induced p53

activation and apoptosis; low levels expanded the numbers of

MaSCs and induced their immortalization.

We then investigated the effects of constitutive low MycER

expression on mammary gland development in vivo. To avoid

4-OHT treatment, which severely perturbs mammary gland

development (Figures S3A and S3B), we transduced mammo-

spheres with a lentivirus constitutively expressing MycER

(LTR-MycER) or the corresponding empty vector (LTR-Ctrl).

LTR-MycER mammospheres express low levels of nuclear

Myc, do not activate p53, and possess extended self-renewal

(Pasi et al., 2011). Notably, the extent of Myc-target activation

and the growth properties of these cells are nearly identical to

R-MycER upon low concentrations of 4-OHT (Figures S3C and

S3D).

Injection of 500 or 100 cells of either LTR-MycER or LTR-Ctrl

mammospheres in the cleared fat pad of syngenic, 3-week-

old, virgin recipients (6–7 mice per sample) gave rise to positive

outgrowths with undistinguishable morphologies (Figure 2D).

The calculated MaSC frequency was <1:1,839 (CI = 95%) in

the LTR-Ctrl mammospheres, as reported (Cicalese et al.,
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Figure 3. Constitutive Myc Expression Increases the Rate of MaSC Symmetric Divisions

(A) Representative confocal images of asymmetric and symmetric divisions in, respectively, control (Ctrl) and 4-OHT-treated (MycER) Rosa26-MycER cells. Cells

were stained with DAPI, aMyc, and aCD49f antibodies. Scale bar, 10 mm.

(B) Percentage of asymmetric and symmetric divisions in Ctrl and 4-OHT-treated (MycER) Rosa26-MycER cells based on the distribution of the CD49f marker.

*chi-square p < 0.0001.

(C) Experimental scheme of the PKH26 label-retaining assay.

(D) Percentage of asymmetric and symmetric divisions in LTR-Ctrl and LTR-MycER PKHhigh cells (left) and R-Ctrl and R-MycER bulk mammospheres (right),

based on Numb distribution. *chi square p < 0.0001.

(E) Immunofluorescence staining for DAPI, Myc, and Numb expression in 4-OHT-treated (200 nM) WT Ctrl (Ctrl) and Rosa26-MycER (MycER) doublets.

Representative images depict an asymmetric (top) and a symmetric (bottom) division. Scale bar, 10 mm.
2009), and significantly higher (p = 0.02) in the LTR-MycERmam-

mospheres (�1:368; CI = 95%), suggesting that low-constitutive

Myc expression increases the numbers of MaSCs. Notably, we

did not observe tumor formation in a cohort of 15 LTR-MycER-

transplanted mice during a 1-year observation.

Constitutive Myc Expression Leads to Increased
Symmetric Divisions of Normal MaSCs
To investigate the biological mechanisms underlying the effects

of Myc onMaSC numbers, we analyzed the relative proportion of

asymmetric versus symmetric self-renewing divisions in control

(Ctrl) and MycER MaSCs (using either R-MycER mammo-

spheres induced with 200 nM 4-OHT or WT mammospheres

transduced with LTR-MycER).

Disaggregated primary mammospheres were plated as single

cells in 20% methylcellulose for 24 h to allow formation of dou-
blets and were analyzed for CD49f expression, a well-estab-

lished MaSC marker (Shackleton et al., 2006; Stingl et al.,

2006). Because cells expressing the highest level of CD49f are

enriched for mammary repopulation capacity (Stingl et al.,

2006), we analyzed only the doublets with the brightest fluores-

cence signal (CD49fhi). Divisions giving rise to two cells both ex-

pressing CD49f were scored as symmetric, whereas retention of

the marker by only one of the daughter cells indicated an asym-

metric division. The prevailing modality of division of CD49fhi

MaSCs was asymmetric (54%) in Ctrl samples and symmetric

(52%) in R-MycER cells (Figures 3A and 3B).

As a parallel approach, we evaluated the distribution of the cell

fate determinant Numb. MaSCs were purified near homogeneity

as PKHhigh cells, using the well-established PKH26 label-retain-

ing assay (Figure 3C) (Cicalese et al., 2009; Pece et al., 2010),

infected with LTR-Ctrl and LTR-MycER, and then treated with
Cell Reports 26, 624–638, January 15, 2019 627



blebbistatin to block cytokinesis and to allow evaluation of Numb

localization before cell division. As observed with CD49f, Numb

distribution in the LTR-Ctrl binucleated MaSCs was asymmetric

in�69%of the cases, whereas, in LTR-MycERMaSCs,�67%of

the mitoses were symmetric (Figure 3D). These results were

confirmed in R-Ctrl and R-MycER bulk dividing cells, where

�36% and �66% of divisions scored, respectively, as symmet-

ric (Figures 3D and 3E). We noticed that Numb and CD49f co-

localized in�70%of all asymmetric divisions scored, suggesting

that Numb segregates with MaSCs during asymmetric self-re-

newing mitosis, consistently with the role of Numb in the regula-

tion of asymmetric divisions in MaSCs (Tosoni et al., 2015).

Together, these findings demonstrate that low levels of consti-

tutive MycER expression increase the proportion of symmetric

divisions in MaSCs and suggest that Myc controls MaSC

numbers by regulating the modality of self-renewing divisions.

Low Levels of Constitutive Myc Expression Reprogram
MaProg Cells into MaSCs
We next investigated whether low levels of constitutive Myc

expression induce reprogramming of MaProgs into MaSCs, as

a further mechanism of functional MaSC expansion by Myc. As

MaProgs, we used PKH� cells purified from primary PKH-

labeled mammospheres (Figure 4A). The PKH� subset consists

of a heterogeneous population of actively cycling cells, which

give rise to either epithelial or myoepithelial colonies in differen-

tiation assays (Pece et al., 2010) but which are unable to form

mammospheres upon serial replating or a mammary gland

upon transplantation (Cicalese et al., 2009). Notably, PKH� cells

downregulate MaSC-specific genes, including Krt5 and Krt14

(Table S1: RNA-seq of PKHhigh and PKH� cells).

We first evaluated whether low Myc expression confers

mammosphere formation capacity on PKH� cells, by culturing

PKH� cells obtained from Rosa26-MycER mammospheres

in nonadherent conditions. As expected, in the absence of

4-OHT treatment, PKH�-R-Ctrl cells did not form mammo-

spheres (Figure S4A) and were rapidly exhausted after few serial

passages (GR, �74%; Figure 4B). Conversely, treatment with

low-dose 4-OHT (20 or 200 nM) induced formation of mammo-

spheres (Figure S4A), which expanded progressively after serial

replating and acquired a near-immortal phenotype (Figures 4B

and 4C). Notably, the growth rate of PKH�-R-MycER mammo-

spheres treated with 200 nM 4-OHT (167%; Figure 4B) was

similar in equally treated bulk R-MycER (161%; Figure 2A) and

untreated PKH�-LTR-MycERmammospheres (Pasi et al., 2011).

We then examined whether low Myc expression confers a

MaSC phenotype on PKH� cells by transplanting WT PKH�

cells infected with LTR-Ctrl or LTR-MycER (Figure 4A) into

the cleared fat pad of prepubertal mice, under limiting dilution

conditions. As expected, PKH�-LTR-Ctrl did not reconstitute

the cleared fat pad at any of the injected cell concentrations,

thus ruling out the possibility of MaSC contamination in our

progenitor preparations. In contrast, whole mount staining of

the transplanted glands showed reconstitution of the fat pad

by PKH�-LTR-MycER cells, with a calculated SC frequency

of �1:100,000 (Figure 4D), suggesting that low levels of Myc

can reprogram MaProgs into bona fide MaSCs, albeit at rela-

tively low frequency.
628 Cell Reports 26, 624–638, January 15, 2019
In vivo self-renewal potential of the reprogrammed

PKH�-LTR-MycER progenitors was evaluated by serial trans-

plantation, using PKH� cells from GFP-transgenic mice (Hadjan-

tonakis et al., 1998). GFP+ PKH� cells were transduced with

LTR-MycER, transplanted into the cleared fat pad of WT mice

and then retransplanted as GFP+ cells. As shown in Figure 4E,

we obtained GFP+ outgrowths upon serial transplantation,

proving the existence of long-living MaSCs and suggesting

extended self-renewal of Myc-reprogrammed PKH� cells in vivo.

In vivo differentiation potential was evaluated by morpholog-

ical, lineage marker, and functional analyses of transplanted

glands. Hematoxylin-eosin staining and digital image analysis

of tissue sections showed that the percentage of area occupied

by epithelial structures was �2% in each acquired field of both

PKH�-LTR-MycER and WT control outgrowths (WT Ctrl; Fig-

ure S4B). Staining for Ki67 confirmed that proliferation rates

were comparable between the two groups (Figure S4B), as

well as the expression of markers associated with myoepithelial

(cytokeratin 14 [K14]) or luminal (cytokeratin 8 [K8]) differentiation

(Figure S4C). Remarkably, anti-beta-casein staining of whole

mounts showed milk presence in all mammary glands of recipi-

ents mated 10 weeks after the injection of PKH�-LTR-MycER

cells and analyzed on day 18.5 of the pregnancy (Figure S4C).

Finally, we observed no tumor formation in six additional mice/

group kept under observation for 1 year (not shown), although

some degree of hyperplasia and/or dysplasia was noted in all

mammary glands obtained from both PKH�-LTR-MycER and

WT Ctrl cells, likely because of active regeneration after trans-

plantation (Figure S4B).

Together, these data demonstrate that low levels of Myc

expression bestow MaProgs with mammosphere-initiating po-

tential and the ability to form a fully functional mammary gland

upon transplantation, suggesting that Myc is able to reprogram

a heterogeneous population of committed progenitors into

bona fide MaSCs, without inducing transformation.

To investigate reprogramming of lineage-restricted progenitor

cells, we tested the effect of MycER expression on the differen-

tiation and self-renewal potential of luminal (LUM; Lin-CD24hi

CD49f+) and double-negative stromal (DN; Lin-CD24–CD49f–)

cells (Figure S4D), which are devoid of any repopulating activity

(Shackleton et al., 2006; Stingl et al., 2006), using an in vitro or-

ganoid formation assay (Panciera et al., 2016). For the positive

control, we used basal cells (Lin-CD24+CD49fhi), which are en-

riched in mammary-repopulating units. As expected, basal cells

formed compact and acinar organoids (Figure 4F) that could be

serially passaged, albeit decreasing in number (Figure 4G). Up to

passage 2, organoids were prevalently compact (Figures 4F and

4G). Strikingly, we could confirm the presence of functional

myoepithelial cells by the contractile movements of compact

organoids (Video S1). LUM Ctrl cells instead formed mainly

acinar organoids or irregular (‘‘budding’’) structures (Figures 4F

and 4G). However, in line with previous reports that used immor-

talized humanmammary cells (Poli et al., 2018),Myc overexpres-

sion bestowed LUMcells with enhanced self-renewal (Figure 4G)

and differentiation capacity, indicated by the formation of

predominantly compact (Figures 4F and 4G) and contracting

organoids (Video S2). Finally, MycER expression had no effect

on the morphology of DN stromal cells (Figure S4E). Thus,
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constitutiveMyc expression reprograms primarymurine lineage-

restricted luminal progenitors.

Finally, we analyzed the transcriptional effects of low Myc

expression on PKH� cells, by RNA sequencing (RNA-seq). To

that end, genes up- or downregulated in Myc-overexpressing

PKH� cells (obtained by comparing PKH�-LTR-MycER mam-

mospheres versus PKH� cells: PKH�MycER-DEGs; Table S1)

were crossed with data sets of WT PKHhigh versus PKH� cells

(Table S1), and with published MaSC data sets (Kendrick et al.,

2008; Lim et al., 2010; Soady et al., 2015). We identified a core

of 1,100 differentially expressed genes (DEGs; 369 UP and 731

DOWN), which were coherently regulated inMyc-reprogrammed

mammospheres and PKHhigh MaSCs (Tables S1 and S2),

including upregulated MaSC-specific (e.g., Ppp1r14a, Stk39,

Nt5e, Fam101b, Ctnnal1, and Ldb2) and downregulated LUM-

specific (e.g., Tbx3 and Wnt5a) genes (Table S2). Notably, the

expression profile of Myc-reprogrammed mammospheres was

almost identical to WT bulk mammospheres infected with LTR-

MycER (Table S1: Myc-DEGs; Figures 4H and S4F). These

data support the conclusion that PKH� cells acquire a multipo-

tent MaSC-like transcriptional profile upon constitutive Myc-

expression.

ConstitutiveMycExpression Is Necessary andSufficient
to Maintain CSC Numbers in ErbB2 Mammary Tumors
Downregulation of Myc expression by RNA interference (Rubin-

son et al., 2003) resulted in rapid and complete growth arrest in

both WT (Figures S5A and S5B) and ErbB2-tumor mammo-

spheres (not shown). As an alternative approach to investigate

whether Myc expression is critical to maintaining the pool of

ErbB2-tumor CSCs, we used a doxycycline-inducible, domi-

nant-negative mutant of Myc (Omomyc) (Soucek et al., 2013).

Doxycycline treatment of Omomyc-transduced mammospheres

(0.5 mM; Figure S5C) induced a significant drop in ErbB2-tumor

sphere count, whereas it had no effect on WT (Figure 5A) or con-

trol empty-vector ErbB2-tumor (Figure S5D) spheres. Thus, im-

pairing constitutive Myc expression in ErbB2-tumors leads to

depletion of the CSC pool.

To establish whether constitutive Myc expression is sufficient

for CSC maintenance in ErbB2-tumors, we experimentally un-

coupled p53 and Myc and studied the effects of constitutive
Figure 4. MaProgs Are Reprogrammed into Normal MaSCs by Constit

(A) Experimental scheme for the isolation of PKH� cells from WT or Rosa26-Myc

progenitor cultures.

(B and C) Cumulative sphere (B) and cell (C) number graphs of Rosa26-MycERPKH

200 nM) during serial replating (n = 3). Error bars represent SD.

(D) Limiting dilution transplantation of LTR-Ctrl or LTR-MycER PKH� cells in t

p = 0.000116.

(E) Recipients were transplanted with PKH�-LTR-MycER cells obtained from GF

sorted and re-transplanted into WT FVB mice. The presence of positive outgrowth

expression (right). Scale bars: 2 mm (left) and 100 mm (right).

(F) Representative images of organoids formed by purified Basal (Lin�CD24+CD4
respectively (LUM Ctrl and LUM MycER cells). Scale bar, 400 mm.

(G) Absolute number of compact, acinar, and budding organoids counted for three

basal (top) and control (Ctrl) or MycER luminal cells (LUM; bottom). Data from on

(H) Hierarchical clustering of 93 MaSC andMaProg genes; mean expression level

mammospheres, relative to the corresponding values of PKH� cells (n = 3) are show

rows correspond to experimental samples.

See also Figure S4, Tables S1 and S2, and Videos S1 and S2.
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Myc expression on CSCs in the presence of functional p53. To

this end, we expressed LTR-MycER in ErbB2-tumor mammo-

spheres and treated cells with Nut3. Notably, in the lentiviral

vector, MycER is under the control of the heterologous EF1a

promoter, thus allowing assessment of the effect of constitutive

Myc expression on CSCs independently of Nut3 and any tran-

scriptional effect of functional p53 (Figure S5E).

The growth rate of LTR-Ctrl ErbB2-tumor mammospheres

was reduced by treatment with 2.5 mM Nut3 (sphere-GR from

194% to 115%; p = 0.019; cell-GR from 171% to 58%;

p = 0.004; Figures 5B and 5C), as reported by Cicalese et al.

(2009), whereas it was not modified by expression of LTR-

MycER (sphere-GR from 194% to 210%; p = 1; cell-GR from

171% to 226%; p = 0.1; Figures 5B and 5C). Nut3 treatment

had no effect on the growth properties of LTR-MycER ErbB2-tu-

mor (cumulative sphere and cell numbers), which showed the

typical exponential growth of control ErbB2-tumor mammo-

spheres (sphere-GR: 194% for both; cell-GR: 168% versus

171%; Figures 5B and 5C). Thus, in the context of enforced

Myc expression, restoration of p53 function in ErbB2-tumor

mammospheres does not prevent CSC expansion, suggesting

that constitutive Myc expression is sufficient to maintain CSC

growth properties.

To validate these findings in vivo, we transplanted LTR-Ctrl or

LTR-MycER ErbB2-tumor cells and treated the recipients with

either Nut3 or vehicle only. As expected, Nut3 significantly

reduced tumor volume in control mice, with no effect in the

LTR-MycER-transplanted cohort (Figure 5D). These observa-

tions were confirmed in MCF10DCIS.com cells (ductal carci-

noma in situ [DCIS]), a human cell line with tumor-initiating cell

frequency of �1:50 cells (Figure S5F). LTR-Ctrl and LTR-MycER

DCIS mammospheres were treated in vitro with Nut3 (5 mM) and

injected into non-obese diabetic-severe combined immunodefi-

ciency (NOD/SCID) mice. Although Nut3 treatment significantly

depleted the CSC content of LTR-Ctrl DCIS cells, diminishing

their ability to seed a tumor upon transplantation, it had no effect

on LTR-MycER DCIS, which formed tumors with the same fre-

quency and latency of untreated control (Figure 5E).

Together, these results indicate that constitutive Myc expres-

sion is sufficient to maintain CSC properties in murine and hu-

man mammary cancer, independent of p53 function.
utive Myc Expression

ER mice and the generation of control (Ctrl) and MycER expressing (MycER)

� cells cultured in the absence (UT) or presence of low doses of 4-OHT (20 and

he cleared fat pad of 3-week-old, female mice. Overall test for differences

P-transgenic mice; GFP+ cells from a pooled group of 8 glands were FACS-

s was scored by whole mount carmine staining (WM, left) and analysis of GFP

9fhi) and LUM cells (Lin�CD24hiCD49f+) infected with LTR-Ctrl or LTR-MycER,

consecutive passages (P1, P2, and P3) in 5%matrigel cultures originating from

e representative experiment are shown (n = 3).

s of PKHhigh cells (n = 2), PKH�-LTR-MycER (n = 3) and bulk LTR-MycER (n = 3)

n as a continuous variable fromblue to red. Columns correspond to genes and

http://MCF10DCIS.com
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Figure 5. Myc Is the Downstream Effector of p53 Loss in Breast CSCs

(A) Relative sphere number of WT (n = 2) and ErbB2-tumor (ErbB2; n = 3) cells transduced with the TET-inducible Omomyc vector. Spheres were counted at the

end of the second passage in the absence (UT) or presence of 0.5 mM Doxycycline (+Dox). *paired t test p < 0.001.

(B and C) Cumulative sphere (B) and cell (C) number graphs of LTR-Ctrl and LTR-MycER ErbB2-tumor mammospheres (n = 4), in the absence or presence of

2.5 mM Nut3. *paired t test p < 0.05.

(D) Top: schematic representation of the experimental outline. Mice transplanted with LTR-Ctrl (n = 13) or LTR-MycER (n = 12) ErbB2-tumor cells were intra-

peritoneally [i.p.] injected with vehicle (DMSO, n = 7 for LTR-Ctrl and n = 6 for LTR-MycER) or with Nut3 (n = 6 for both LTR-Ctrl and LTR-MycER). Bottom: box plot

of tumor volumes for each experimental group at the end of treatment. *t test p < 0.05.

(E) Tumor-free survival curve for mice injected with LTR-Ctrl and LTR-MycER DCIS cells untreated or Nut3-treated as mammospheres in vitro. Numbers of mice

per group as indicated. *Mantel-Cox test between LTR-Ctrl treated versus untreated, p < 0.01.

(A–C) Error bars represent SD. See also Figure S5.
P53andMycDeregulate aSet ofMitoticGenes inErbB2-
Tumors
We first investigated whether p53 and Myc are epistatically

linked as well in normal mammary cells. In normal mammo-

spheres, levels of endogenous Myc transcripts increased pro-

gressively in the presence of heterozygous or homozygous dele-

tions of p53 (Figure S6A) and gradually decreased upon acute

p53 overexpression (Figure S6B) or following genotoxic treat-
ment (Figure S6C). Chromatin immunoprecipitation sequencing

(ChIP-seq) experiments in NMuMG mammary epithelial cells

(Termén et al., 2013) showed p53 enrichment at the 30-UTR of

the c-myc gene, under unperturbed growth conditions. Stabiliza-

tion of p53 following Adriamycin treatment resulted in two addi-

tional binding sites, including the transcription start site (TSS;

Figure 6A), and marked downregulation of Myc levels (Fig-

ure S6D), suggesting that Myc is directly repressed by p53.
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Figure 6. p53 and Myc Co-regulate Mitotic Genes in CSCs

(A) Genome browser visualization of p53 binding on the c-myc gene.

(B) GSEA pre-ranked analysis showing enrichment of the Myc signature in the p53�/�. Left: upregulated genes; Right: downregulated genes. NES, normalized

enrichment scored.

(C) Venn diagram of p53-Myc DEGs in non-transformed mammospheres: intercross between p53-DEGs and Myc-DEGs. Numbers represent genes coherently

up- and downregulated and relative percentages.

(D) GSEA pre-ranked analysis, as in (B) showing enrichment of the Myc signature in the ErbB2-DEGs (top) and the Nut3-DEGs (bottom).

(E) Left, Venn diagram of p53 and/or Myc DEGs in ErbB2 tumors: intercross between the union of p53- and Myc-DEGs (red circle) and ErbB2-DEGs (blue circle).

Right: pie chart, characterization of the p53 and/or Myc DEGs in only p53-dependent (blue), only Myc-dependent (red), and common p53-Myc DEGs (green).

(F) Pathway analysis of the ErbB2 p53-Myc common DEGs using MSigDB (http://software.broadinstitute.org/gsea/msigdb/index.jsp). The top 15 up- and

downregulated pathways are shown ranked by q-value.

See also Figure S6 and Tables S1 and S3.
To identify p53:Myc common targets in normal mammo-

spheres, we generated RNA-seq data sets of p53-responsive

(p53�/� versus WT mammospheres: p53-DEGs) and Myc-
632 Cell Reports 26, 624–638, January 15, 2019
responsive (LTR-MycER-expressing versus WT mammo-

spheres: Myc-DEGs) genes (Table S1). Gene set enrichment

analysis (GSEA) (Subramanian et al., 2005) of Myc-DEGs in

http://software.broadinstitute.org/gsea/msigdb/index.jsp


p53-DEGs showed a strong correlation between upregulated

and downregulated genes, respectively (Figure 6B). The inter-

cross between p53-DEGs and Myc-DEGs showed that a large

fraction of the �14,000 genes expressed in normal mammo-

spheres are regulated by both p53 and Myc (WT p53-Myc com-

mon DEGs: n = 3,292; Figure 6C). Notably, the WT p53-Myc

common DEGs represent �50% of their respective regulatory

potential (Figure 6C). Together, these data show that Myc is a

direct target of p53 in normal MaSCs and progenitors, and that

the p53:Myc epistatic axis regulates a large fraction of the ex-

pressed genes in normal MaSCs and progenitors.

We then searched for genes deregulated in ErbB2 tumor cells

through the p53:Myc axis (p53 loss and Myc activation). A list of

all tumor-associated gene deregulations was generated by

RNA-seq analyses of ErbB2 tumor versus WT mammospheres

(ErbB2-DEGs; Table S1).

First, we investigated the presence and p53 dependency of

the identified Myc transcriptional program in ErbB2-tumors.

GSEA of Myc-DEGs in ErbB2-DEGs showed a strong correla-

tion, including both up- and downregulation (Figure 6D, top).

Strikingly, the enrichment-curve profile of Myc-DEGs was in-

versed in the set of genes modulated by Nut3 (ErbB2-tumor +

Nut3 versus ErbB2 tumor mammospheres; Nut3-DEGs; Table

S1; Figure 6D, bottom). In conclusion, the Myc transcriptional

program is activated in ErbB2 tumor cells, mirroringMyc overex-

pression in normal mammary cells and is highly dependent on

reduced p53 activity.

Second, we intercrossed the ErbB2-DEGs with the union of

p53- and Myc-DEGs and found that �80% of them (n = 2,843)

are p53 and/or Myc responsive genes (Figure 6E, left). Of those,

�53% are regulated by both p53 and Myc (‘‘Common’’), �30%

are regulated by p53 (‘‘p53-dependent’’) in a Myc-independent

manner, and �17% are regulated by Myc (‘‘Myc-dependent’’)

independently of p53 (Figure 6E, right). Notably, ChIP-seq ana-

lyses of NMuMG epithelial cells revealed that �40% of the

ErbB2-p53-Myc common DEGs were directly bound by Myc;

among which, 64% were also bound by p53 (Table S3). In

conclusion, �40% of DEGs identified in ErbB2-tumor cells

respond to both p53 loss and Myc activation, either as a result

of the p53:Myc epistasis or through direct co-binding.

Third, we investigated intracellular pathways regulated by

the p53:Myc axis in ErbB2 tumor cells. To that end, the 1,494

ErbB2-p53-Myc common DEGs (801 upregulated and 693

downregulated) were submitted to the molecular signature data-

base (MSigDB) available on the GSEA website (https://www.

broadinstitute.org/gsea). Strikingly, the most significantly en-

riched pathways were in the 801 p53-Myc upregulated

DEGs (q < 0.05), and were all cell-cycle related, with particular

emphasis on pathways controlling mitosis (Figure 6F). Manual

curation of the corresponding gene lists revealed a total of 189

‘‘mitotic’’ genes, including genes involved in anaphase-promot-

ing complex or cyclosome (APC/C)-mediated mitotic spindle

checkpoint, G2/M checkpoint, mitosis entry or progression, spin-

dle assembly at metaphase, association to kinetochore com-

plexes, M-phase-promoting factor, assembly and motility of the

spindle microtubules (Table S3). Intersection of the 189 mitotic

genes with Nut3-DEGs showed that 181 of them are repressed

by Nut3 treatment in the ErbB2-tumor mammospheres, thus
showing a correlation between the 189 mitotic DEGs and the

ErbB2-tumor CSC phenotype (e.g., expansion and immortality).

Together, our data demonstrate the existence of 189 p53 and

Myc common targets implicated in the regulation of mitosis

(mitotic signature [MitSig]) and upregulated in the ErbB2-tumor

mammospheres, suggesting that these genes are crucial

p53:Myc targets for the regulation of CSC numbers.

Expression of the MitSig Predicts Patient Clinical
Outcome Independently of Other Known Risk Factors
Finally, we investigated the relevance of p53:Myc MitSig in the

clinical setting. We interrogated TCGA and classified 1,032

cases of primary breast cancer into two clusters, according to

MitSig gene expression: 384 cases were assigned as ‘‘UP’’

and 648 as ‘‘DOWN’’ (Figure S7A). MitSig upregulation (UP)

correlated with increased cell cycle, proliferation, and apoptosis

(Figure S7B), as defined by the pathway activation score based

on reverse-phase protein array (Akbani et al., 2014).

To investigate the prognostic value of MitSig, we performed

survival analyses in four independent breast-cancer data sets

with a follow-up of >100 months (Desmedt et al., 2007; Ivshina

et al., 2006; Pawitan et al., 2005; Wang et al., 2005). Expression

data from those four studies contained information on 161MitSig

genes. Hierarchical clustering of all 892 cases segregated pa-

tients into signature UP (n = 366) and DOWN (n = 526) cohorts

(Figure 7A). Disease-free survival (DFS) of the UP group was

significantly shorter in the overall population (Figure 7B), as

well as within each individual study (Figure S7C). We then evalu-

ated the effect of MitSig on survival, as compared to well-estab-

lished prognostic factors. Cox multiple-regression analysis

(including age, tumor grade and size, lymph node status, estro-

gen receptor [ER] status, and p53 status as possible covariates;

Table S4) showed that MitSig is an independent predictor of DFS

(Figure 7C). Of note, the ER status, which has strong prognostic

power (Cianfrocca and Goldstein, 2004), was independent from

the signature (Figure S7D).

Finally, we compared directly the performance of MitSig

against the PAM50 classifier. PAM50 is a multigene expres-

sion-based system that assigns patients to five ‘‘intrinsic sub-

types’’ (luminal A, luminal B, basal, HER2+, and normal-like)

with high prognostic significance (Parker et al., 2009). Prolifera-

tion-associated genes have a major role in the PAM50 signature,

in particular for the distinction between luminal A and B groups,

which can be approximated by immunohistochemistry for Ki67

(Cheang et al., 2009). We reclassified patients into PAM50

subtypes (Figure 7A) by established computational algorithms

(Gendoo et al., 2016).MitSig upregulation was significantly asso-

ciated with the PAM50 classification (chi-square p = 3.93e�93).

In particular, it strongly correlated with the basal (92% overlap)

and HER2+ (75%) groups and was anti-correlated with the

luminal A (4%) and normal-like (3%). The luminal B group,

instead, was almost equally dichotomized in two populations

(Figure 7D) with significantly different DFS (78 versus 54 months,

respectively; Figure 7E), suggesting that MitSig has distinct

features with respect to the PAM50 proliferative signature.

Notably, not all MitSig geneswere predicted to favor proliferation

upon overexpression because many encode proteins that nega-

tively regulate cell-cycle progression (e.g., Chek2, Atm, Ercc6l,
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Figure 7. MitSig Expression Correlates with Breast Cancer Aggressiveness and Poor Prognosis (GEO: GSE1456, GSE2034, GSE4922,
GSE7390)

(A) Hierarchical clustering of 892 breast cancer patients according to the log2-normalized probe intensity of 161 of the 189 genes of the MitSig (values are

expressed as Z score). Color code of ER status, PAM50 classification, and probe-intensity scale defined in the legend on the right.

(B and E) Disease-free survival (DFS) curve of all patients (B) and luminal B patients (E) grouped in DOWN andUP cohorts based on the expression of 161 genes of

the MitSig. Log-rank test, p = 3.34e�08 and Hazard ratio (HR) = 1.93, 95% CI, 1.54–2.42 (B). Log-rank test p = 9.88e�4 and HR = 1.78, 95% CI, 1.26–2.52 (E).

(C) Forest plot for Cox multiple regression analysis of MitSig (in red) versus individual covariates (in blue). LN_status, lymph node status.

(D) Histogram showing the distribution of breast cancer patients with MitSig classification UP and DOWN within each molecular subtype (basal; HER2+; LumB,

luminal B; LumA, luminal A; and normal, normal-like).

See also Figure S7 and Tables S3 and S4.
Rad1, Rbl1, Brca1, and Brca2), whereas others control the

proper execution of mitosis (e.g., Alms1 and Asp, which regulate

planar polarization and symmetric divisions, respectively).

Altogether, these analyses show that MitSig expression is, by

itself, predictive of clinical outcome, independently of other

known risk factors, suggesting that it represents the link between

p53 loss of function and CSC-specific biological functions.

DISCUSSION

We reported here that Myc is activated in mammary tumors as a

consequence of attenuated p53 signaling and that activatedMyc
634 Cell Reports 26, 624–638, January 15, 2019
is necessary and sufficient to sustain the pool of expanding

mammary CSCs. In the ErbB2-driven model of mammary gland

carcinogenesis, p53 is WT but hypo-functional because of

enhanced Mdm2 activity (Zhou et al., 2001). We found that, in

ErbB2 tumor mammospheres, Myc levels, and transcriptional

activity are up- and deregulated and that p53 restoration results

in the downregulation of Myc protein and transcriptional activity.

These observations hold true as well for normal mammospheres,

in whichMyc transcription is repressed by p53 and inversely cor-

relates with p53 gene dosage and activation. Altogether, these

data demonstrate the existence of a regulatory p53:Myc axis in

normal and cancer MaSCs and progenitors. Notably, this axis



regulates a large fraction of the expressed genes in normal and

tumor mammary cells.

Perturbation of the p53:Myc axis leads to critical biological

changes in normal MaSC homeostasis. Indeed, we showed

that constitutive Myc expression in mammary epithelial cells in-

creases the rate of MaSC symmetric divisions, extends MaSC

self-renewal, and induces MaProg reprogramming into MaSCs.

The first two phenotypes have also been described as conse-

quences of p53 loss of function (Cicalese et al., 2009). Unpub-

lished observations from our group demonstrated that p53

silencing facilitates reprogramming of MaProgs in vitro and

in vivo (unpublished data). The effects of p53:Myc on progenitor

reprogramming are coherent with the known role of p53 andMyc

in somatic cell reprogramming, where they exert inhibitory and

promoting functions, respectively. In the case of induced plurip-

otent SCs (iPSCs), p53 loss and Myc expression favor reprog-

ramming, yet they remain dispensable in the presence of the

other iPSC-inducing factors (Oct4, Sox2, and Klf4) (Takahashi

and Yamanaka, 2006). In the mammary system, instead, they

are sufficient to endow MaProgs with MaSC characteristics.

In the tumor setting, the three phenotypes described here are

the biological outputs of a program instructed in mammary tu-

mors by loss of p53 andmediated byMyc activation, which leads

to the continuous expansion of the CSC pool and the mainte-

nance of tumor growth. In this respect, it is hard to dissect the

relative contribution of each mechanism to CSC maintenance.

However, if one considers the large amount of bulk tumor cells

at various differentiation stages, reprogramming, at any rate, is

likely to have dramatic effects in vivo because of the potentially

unlimited supply of new CSCs.

Analyses of the p53:Myc downstream targets unraveled

mechanistic insights into the above-mentioned phenotypes.

We showed that the activity of the p53:Myc epistasis converges

toward the regulation of 189 mitotic genes (MitSig), which are

downregulated by p53 in normal mammospheres and upregu-

lated by Myc in the ErbB2 tumors. Most important, the expres-

sion of a large part of these genes (181 out of 189) is strictly con-

nected to the maintenance of the CSC phenotype because they

are downregulated in the Nut3-treated tumors. Nut3-treated

CSCs, indeed, regain functional p53, lose Myc expression,

and, as a result, lose their unlimited self-renewal capacity.

Regardless of the underlying mechanisms, MitSig represents

the molecular fingerprint of CSC-specific functions and, not sur-

prisingly, its expression in breast cancer patients segregates with

adverse prognosis. Several p53-dependent and Myc-dependent

gene expression signatures have been linked to breast tumor

aggressiveness, either directly or indirectly (Ben-Porath et al.,

2008; Brasó-Maristany et al., 2016; Kim et al., 2010; Miller

et al., 2005; Mizuno et al., 2010). However, none of them points

to CSC-specific cellular mechanisms, and their overlap with our

MitSig is limited. MitSig differs because of the combination of

(1) its derivation from a MaSC-enriched population obtained

from primary tissues, and (2) its definition within a precise genetic

context (p53 alterations) commonly encountered in the clinic.

The potential of MitSig as a stratification biomarker might be

clinically relevant in breast cancer. In particular, the finding that

it segregates two almost equally sized populations with clearly

different outcomes within the luminal B subtype deserves further
evaluation. This PAM50 subtype comprises patients with hetero-

geneous clinical-biological characteristics and outcomes, for

which prognostic and/or predictive markers are highly sought

after (Ades et al., 2014). Notably, several gene-expression signa-

tures have been tested against the intrinsic molecular classifica-

tion, and all defined these cases as uniformly high risk (Sotiriou

and Pusztai, 2009). In a direct comparison, 93% and 83% of

luminal B patients were defined as high risk using the Oncotype

DX and Mammaprint stratification platforms, respectively (Fan

et al., 2006). Thus, integratingMitSig into gene expression based

prognostic and/or predictive scores, such as PAM50, may help

identify patients at high risk of relapse who may benefit from

treatment intensification.

The identified p53:Myc:mitosis axis could also provide impor-

tant opportunities in terms of targeted therapies. Interestingly,

8 of 189MitSig genes, when carrying a gain-of-functionmutation,

predict sensitivity to specificdrugs inbreastcancer (Brca1,Brca2,

Aurkb, AurkA, Check2, Cdk6, Ccnd1, and Atm). This opens the

possibility of selectively hitting the effectors of the p53:Myc axis

in tumors, instead of taking the challenge of drugging p53 or

Myc directly. As a therapeutic option, this approach could have

anenormouseffectonpatientswhohavenoalternative to chemo-

therapy, especially those in the triple-negative breast cancer sub-

group that is characterized by high MitSig expression.

p53 and Myc have been implicated in the pathogenesis of

different tumors, and their role in sustaining CSCs might repre-

sent a critical and general mechanism of tumorigenesis. Somatic

mutations or deletion of the p53 gene are found in almost every

type of cancer and, even in the presence of WT alleles, functional

inactivation is a highly common event. Genetic alterations ofMyc,

instead, are much less frequent. Myc expression, however, is

elevated or deregulated in a much higher fraction of tumors

(Vita and Henriksson, 2006), possibly because of perturbations

in the p53:Myc axis. Notably, p53 and Myc were recently

identified as the central hubs in key protein networks specifically

deregulated in the CD34+ compartment of chronicmyeloid leuke-

mia patients (Abraham et al., 2016). Thus, p53 loss and Myc acti-

vation might be integral to the oncogenic process itself, through

themaintenance of the CSC pool in most tumors. The continuous

generation of cells with CSCproperties might represent an invari-

able trait ofmany tumors, likely themost aggressive ones, and the

manipulation of the p53:Myc axis seems to constitute a potential

means to modulate tumor development. In this context, MitSig,

as the key downstreammolecular player, could serve as a power-

ful diagnostic tool for efficient patient stratification and a source of

potentially druggable hits for targeted therapies.
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H., andWartiovaara, K. (2008). Myc increases self-renewal in neural progenitor

cells through Miz-1. J. Cell Sci. 121, 3941–3950.

Kim, J., Woo, A.J., Chu, J., Snow, J.W., Fujiwara, Y., Kim, C.G., Cantor, A.B.,

and Orkin, S.H. (2010). A Myc network accounts for similarities between em-

bryonic stem and cancer cell transcription programs. Cell 143, 313–324.
Kim, D., Pertea, G., Trapnell, C., Pimentel, H., Kelley, R., and Salzberg, S.L.

(2013). TopHat2: accurate alignment of transcriptomes in the presence of in-

sertions, deletions and gene fusions. Genome Biol. 14, R36.

Kruse, J.P., and Gu, W. (2009). Modes of p53 regulation. Cell 137, 609–622.

Laurenti, E., Wilson, A., and Trumpp, A. (2009). Myc’s other life: stem cells and

beyond. Curr. Opin. Cell Biol. 21, 844–854.

Li, H., and Durbin, R. (2010). Fast and accurate long-read alignment with Bur-

rows-Wheeler transform. Bioinformatics 26, 589–595.

Li, H., Handsaker, B., Wysoker, A., Fennell, T., Ruan, J., Homer, N., Marth, G.,

Abecasis, G., and Durbin, R.; 1000 Genome Project Data Processing Sub-

group (2009). The Sequence Alignment/Map format and SAMtools. Bioinfor-

matics 25, 2078–2079.

Li, M., He, Y., Dubois, W., Wu, X., Shi, J., and Huang, J. (2012a). Distinct reg-

ulatory mechanisms and functions for p53-activated and p53-repressed DNA

damage response genes in embryonic stem cells. Mol. Cell 46, 30–42.

Li, T., Kon, N., Jiang, L., Tan, M., Ludwig, T., Zhao, Y., Baer, R., and Gu, W.

(2012b). Tumor suppression in the absence of p53-mediated cell-cycle arrest,

apoptosis, and senescence. Cell 149, 1269–1283.

Lim, E., Wu, D., Pal, B., Bouras, T., Asselin-Labat, M.L., Vaillant, F., Yagita, H.,

Lindeman, G.J., Smyth, G.K., and Visvader, J.E. (2010). Transcriptome ana-

lyses of mouse and human mammary cell subpopulations reveal multiple

conserved genes and pathways. Breast Cancer Res. 12, R21.

Liu, Y., Elf, S.E., Miyata, Y., Sashida, G., Liu, Y., Huang, G., Di Giandomenico,

S., Lee, J.M., Deblasio, A., Menendez, S., et al. (2009). p53 regulates hemato-

poietic stem cell quiescence. Cell Stem Cell 4, 37–48.

Martins, C.P., Brown-Swigart, L., and Evan, G.I. (2006). Modeling the thera-

peutic efficacy of p53 restoration in tumors. Cell 127, 1323–1334.

Meletis, K., Wirta, V., Hede, S.M., Nistér, M., Lundeberg, J., and Frisén, J.

(2006). p53 suppresses the self-renewal of adult neural stem cells. Develop-

ment 133, 363–369.

Metsalu, T., and Vilo, J. (2015). ClustVis: a web tool for visualizing clustering of

multivariate data using Principal Component Analysis and heatmap. Nucleic

Acids Res. 43, W566–W570.

Miller, F.R., Santner, S.J., Tait, L., and Dawson, P.J. (2000). MCF10DCIS.com

xenograft model of human comedo ductal carcinoma in situ. J. Natl. Cancer

Inst. 92, 1185–1186.

Miller, L.D., Smeds, J., George, J., Vega, V.B., Vergara, L., Ploner, A., Pawitan,

Y., Hall, P., Klaar, S., Liu, E.T., and Bergh, J. (2005). An expression signature for

p53 status in human breast cancer predicts mutation status, transcriptional ef-

fects, and patient survival. Proc. Natl. Acad. Sci. USA 102, 13550–13555.

Mizuno, H., Spike, B.T., Wahl, G.M., and Levine, A.J. (2010). Inactivation of p53

in breast cancers correlates with stem cell transcriptional signatures. Proc.

Natl. Acad. Sci. USA 107, 22745–22750.

Muller, W.J., Sinn, E., Pattengale, P.K., Wallace, R., and Leder, P. (1988). Sin-

gle-step induction of mammary adenocarcinoma in transgenic mice bearing

the activated c-neu oncogene. Cell 54, 105–115.

Murphy, D.J., Junttila, M.R., Pouyet, L., Karnezis, A., Shchors, K., Bui, D.A.,

Brown-Swigart, L., Johnson, L., and Evan, G.I. (2008). Distinct thresholds

govern Myc’s biological output in vivo. Cancer Cell 14, 447–457.

Panciera, T., Azzolin, L., Fujimura, A., Di Biagio, D., Frasson, C., Bresolin, S.,

Soligo, S., Basso, G., Bicciato, S., Rosato, A., et al. (2016). Induction of

Expandable Tissue-Specific Stem/Progenitor Cells through Transient Expres-

sion of YAP/TAZ. Cell Stem Cell 19, 725–737.

Park, E.Y., Chang, E., Lee, E.J., Lee, H.W., Kang, H.G., Chun, K.H., Woo, Y.M.,

Kong, H.K., Ko, J.Y., Suzuki, H., et al. (2014). Targeting of miR34a-NOTCH1

axis reduced breast cancer stemness and chemoresistance. Cancer Res.

74, 7573–7582.

Parker, J.S., Mullins, M., Cheang, M.C., Leung, S., Voduc, D., Vickery, T., Da-

vies, S., Fauron, C., He, X., Hu, Z., et al. (2009). Supervised risk predictor of

breast cancer based on intrinsic subtypes. J. Clin. Oncol. 27, 1160–1167.
Cell Reports 26, 624–638, January 15, 2019 637

http://refhub.elsevier.com/S2211-1247(18)32016-3/sref21
http://refhub.elsevier.com/S2211-1247(18)32016-3/sref21
http://refhub.elsevier.com/S2211-1247(18)32016-3/sref21
http://refhub.elsevier.com/S2211-1247(18)32016-3/sref21
http://refhub.elsevier.com/S2211-1247(18)32016-3/sref22
http://refhub.elsevier.com/S2211-1247(18)32016-3/sref22
http://refhub.elsevier.com/S2211-1247(18)32016-3/sref22
http://refhub.elsevier.com/S2211-1247(18)32016-3/sref22
http://refhub.elsevier.com/S2211-1247(18)32016-3/sref23
http://refhub.elsevier.com/S2211-1247(18)32016-3/sref23
http://refhub.elsevier.com/S2211-1247(18)32016-3/sref23
http://refhub.elsevier.com/S2211-1247(18)32016-3/sref24
http://refhub.elsevier.com/S2211-1247(18)32016-3/sref24
http://refhub.elsevier.com/S2211-1247(18)32016-3/sref24
http://refhub.elsevier.com/S2211-1247(18)32016-3/sref24
http://refhub.elsevier.com/S2211-1247(18)32016-3/sref24
http://refhub.elsevier.com/S2211-1247(18)32016-3/sref25
http://refhub.elsevier.com/S2211-1247(18)32016-3/sref25
http://refhub.elsevier.com/S2211-1247(18)32016-3/sref25
http://refhub.elsevier.com/S2211-1247(18)32016-3/sref26
http://refhub.elsevier.com/S2211-1247(18)32016-3/sref26
http://refhub.elsevier.com/S2211-1247(18)32016-3/sref26
http://refhub.elsevier.com/S2211-1247(18)32016-3/sref26
http://refhub.elsevier.com/S2211-1247(18)32016-3/sref27
http://refhub.elsevier.com/S2211-1247(18)32016-3/sref27
http://refhub.elsevier.com/S2211-1247(18)32016-3/sref27
http://refhub.elsevier.com/S2211-1247(18)32016-3/sref27
http://refhub.elsevier.com/S2211-1247(18)32016-3/sref28
http://refhub.elsevier.com/S2211-1247(18)32016-3/sref28
http://refhub.elsevier.com/S2211-1247(18)32016-3/sref28
http://refhub.elsevier.com/S2211-1247(18)32016-3/sref28
http://refhub.elsevier.com/S2211-1247(18)32016-3/sref29
http://refhub.elsevier.com/S2211-1247(18)32016-3/sref29
http://refhub.elsevier.com/S2211-1247(18)32016-3/sref29
http://refhub.elsevier.com/S2211-1247(18)32016-3/sref29
http://refhub.elsevier.com/S2211-1247(18)32016-3/sref30
http://refhub.elsevier.com/S2211-1247(18)32016-3/sref30
http://refhub.elsevier.com/S2211-1247(18)32016-3/sref30
http://refhub.elsevier.com/S2211-1247(18)32016-3/sref31
http://refhub.elsevier.com/S2211-1247(18)32016-3/sref31
http://refhub.elsevier.com/S2211-1247(18)32016-3/sref31
http://refhub.elsevier.com/S2211-1247(18)32016-3/sref32
http://refhub.elsevier.com/S2211-1247(18)32016-3/sref32
http://refhub.elsevier.com/S2211-1247(18)32016-3/sref32
http://refhub.elsevier.com/S2211-1247(18)32016-3/sref33
http://refhub.elsevier.com/S2211-1247(18)32016-3/sref33
http://refhub.elsevier.com/S2211-1247(18)32016-3/sref33
http://refhub.elsevier.com/S2211-1247(18)32016-3/sref34
http://refhub.elsevier.com/S2211-1247(18)32016-3/sref34
http://refhub.elsevier.com/S2211-1247(18)32016-3/sref34
http://refhub.elsevier.com/S2211-1247(18)32016-3/sref34
http://refhub.elsevier.com/S2211-1247(18)32016-3/sref35
http://refhub.elsevier.com/S2211-1247(18)32016-3/sref35
http://refhub.elsevier.com/S2211-1247(18)32016-3/sref35
http://refhub.elsevier.com/S2211-1247(18)32016-3/sref35
http://refhub.elsevier.com/S2211-1247(18)32016-3/sref36
http://refhub.elsevier.com/S2211-1247(18)32016-3/sref36
http://refhub.elsevier.com/S2211-1247(18)32016-3/sref36
http://refhub.elsevier.com/S2211-1247(18)32016-3/sref37
http://refhub.elsevier.com/S2211-1247(18)32016-3/sref37
http://refhub.elsevier.com/S2211-1247(18)32016-3/sref37
http://refhub.elsevier.com/S2211-1247(18)32016-3/sref38
http://refhub.elsevier.com/S2211-1247(18)32016-3/sref38
http://refhub.elsevier.com/S2211-1247(18)32016-3/sref38
http://refhub.elsevier.com/S2211-1247(18)32016-3/sref39
http://refhub.elsevier.com/S2211-1247(18)32016-3/sref40
http://refhub.elsevier.com/S2211-1247(18)32016-3/sref40
http://refhub.elsevier.com/S2211-1247(18)32016-3/sref41
http://refhub.elsevier.com/S2211-1247(18)32016-3/sref41
http://refhub.elsevier.com/S2211-1247(18)32016-3/sref42
http://refhub.elsevier.com/S2211-1247(18)32016-3/sref42
http://refhub.elsevier.com/S2211-1247(18)32016-3/sref42
http://refhub.elsevier.com/S2211-1247(18)32016-3/sref42
http://refhub.elsevier.com/S2211-1247(18)32016-3/sref43
http://refhub.elsevier.com/S2211-1247(18)32016-3/sref43
http://refhub.elsevier.com/S2211-1247(18)32016-3/sref43
http://refhub.elsevier.com/S2211-1247(18)32016-3/sref44
http://refhub.elsevier.com/S2211-1247(18)32016-3/sref44
http://refhub.elsevier.com/S2211-1247(18)32016-3/sref44
http://refhub.elsevier.com/S2211-1247(18)32016-3/sref45
http://refhub.elsevier.com/S2211-1247(18)32016-3/sref45
http://refhub.elsevier.com/S2211-1247(18)32016-3/sref45
http://refhub.elsevier.com/S2211-1247(18)32016-3/sref45
http://refhub.elsevier.com/S2211-1247(18)32016-3/sref46
http://refhub.elsevier.com/S2211-1247(18)32016-3/sref46
http://refhub.elsevier.com/S2211-1247(18)32016-3/sref46
http://refhub.elsevier.com/S2211-1247(18)32016-3/sref47
http://refhub.elsevier.com/S2211-1247(18)32016-3/sref47
http://refhub.elsevier.com/S2211-1247(18)32016-3/sref48
http://refhub.elsevier.com/S2211-1247(18)32016-3/sref48
http://refhub.elsevier.com/S2211-1247(18)32016-3/sref48
http://refhub.elsevier.com/S2211-1247(18)32016-3/sref49
http://refhub.elsevier.com/S2211-1247(18)32016-3/sref49
http://refhub.elsevier.com/S2211-1247(18)32016-3/sref49
http://refhub.elsevier.com/S2211-1247(18)32016-3/sref50
http://refhub.elsevier.com/S2211-1247(18)32016-3/sref50
http://refhub.elsevier.com/S2211-1247(18)32016-3/sref50
http://refhub.elsevier.com/S2211-1247(18)32016-3/sref51
http://refhub.elsevier.com/S2211-1247(18)32016-3/sref51
http://refhub.elsevier.com/S2211-1247(18)32016-3/sref51
http://refhub.elsevier.com/S2211-1247(18)32016-3/sref51
http://refhub.elsevier.com/S2211-1247(18)32016-3/sref52
http://refhub.elsevier.com/S2211-1247(18)32016-3/sref52
http://refhub.elsevier.com/S2211-1247(18)32016-3/sref52
http://refhub.elsevier.com/S2211-1247(18)32016-3/sref53
http://refhub.elsevier.com/S2211-1247(18)32016-3/sref53
http://refhub.elsevier.com/S2211-1247(18)32016-3/sref53
http://refhub.elsevier.com/S2211-1247(18)32016-3/sref54
http://refhub.elsevier.com/S2211-1247(18)32016-3/sref54
http://refhub.elsevier.com/S2211-1247(18)32016-3/sref54
http://refhub.elsevier.com/S2211-1247(18)32016-3/sref55
http://refhub.elsevier.com/S2211-1247(18)32016-3/sref55
http://refhub.elsevier.com/S2211-1247(18)32016-3/sref55
http://refhub.elsevier.com/S2211-1247(18)32016-3/sref55
http://refhub.elsevier.com/S2211-1247(18)32016-3/sref56
http://refhub.elsevier.com/S2211-1247(18)32016-3/sref56
http://refhub.elsevier.com/S2211-1247(18)32016-3/sref56
http://refhub.elsevier.com/S2211-1247(18)32016-3/sref56
http://refhub.elsevier.com/S2211-1247(18)32016-3/sref57
http://refhub.elsevier.com/S2211-1247(18)32016-3/sref57
http://refhub.elsevier.com/S2211-1247(18)32016-3/sref57
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PE-Cy7 rat monoclonal anti-mouse CD45 (clone 30-F11) Thermo Fisher Cat#25-0451-82; RRID:AB_469625

Pe-Cy7 rat monoclonal anti-mouse TER-119 (clone TER-119) Thermo Fisher Cat#25-5921-82; RRID:AB_469661

PE-Cy7 rat monoclonal anti-mouse CD31 (PECAM) (clone 390) Thermo Fisher Cat#25-0311-82; RRID:AB_469615

APC rat monoclonal anti-mouse CD326 (EpCAM) (clone G8.8) Thermo Fisher Cat#17-5791-82; RRID:AB_1659714

PE rat monoclonal anti-mouse CD24 (clone M1/69) Thermo Fisher Cat#12-0242-82; RRID:AB_465602

APC rat monoclonal anti-human/mouse CD49f (clone GoH3) Thermo Fisher Cat#17-0495-82; RRID:AB_2016694

eFluor�450 rat monoclonal anti-human/mouse CD49f (clone GoH3) Thermo Fisher Cat#48-0495-82; RRID:AB_11042564

PE armenian hamster monoclonal anti-mouse CD61 (clone 2C9.G3) Thermo Fisher Cat#12-0611-82; RRID:AB_465718

Rabbit monoclonal anti-human/mouse c-Myc (clone Y69) Abcam Cat# ab32072; RRID:AB_731658

Rat monoclonal anti-human/mouse CD49f (clone GoH3) BD Biosciences Cat# 555734; RRID:AB_2296273

Mouse monoclonal anti-Numb (clone AB21) Colaluca et al., 2008 N/A

Rabbit monoclonal anti-Ki67 (clone SP6) Thermo Fisher Cat#RM-9106-S; RRID:AB_149707

Mouse polyclonal anti-Cytokeratin 14 Covance Cat#PRB-155P; RRID:AB_292096

Mouse monoclonal anti-Cytokeratin 18 (clone Ks18.04) Progen Cat#61028; RRID:AB_1541026

Rabbit polyclonal anti-bcasein Santa Cruz Cat#sc30042; RRID:AB_2084343

Rabbit polyclonal anti-GFP Abcam Cat#ab6556; RRID:AB_305564

Mouse monoclonal anti-Vinculin (clone hVIN-1) Sigma-Aldrich Cat# V9131; RRID:AB_477629

Rabbit polyclonal anti-human/ mouse c-Myc Cell Signaling Cat#9402; RRID:AB_2151827

Rabbit polyclonal anti-human/mouse phosphoS15 p53 Cell Signaling Cat#9284; RRID:AB_331464

Mouse monoclonal anti-human/mouse p21 (clone F-5) Santa Cruz Cat#sc-6246; RRID:AB_628073

Rabbit polyclonal anti-human/mouse cleaved Casp3 Cell Signaling Cat#9661; RRID:AB_2341188

Rabbit polyclonal anti-mouse p53 Novocastra Cat#NCL-L-p53-CM5p; RRID:AB_563933

Rabbit polyclonal anti-human/mouse c-Myc (N-262) Santa Cruz Cat#sc-764; RRID:AB_631276

Biological Samples

Patient derived xenograft (PDX) samples Luisa Lanfrancone, Target

Identification and Validation

(TIV) unit, IEO

N/A

Chemicals, Peptides, and Recombinant Proteins

4-hydroxytamoxifen (4-OHT) Sigma Cat#H7904; CAS#68047-06-3

Nutlin-3 (Nut3) Sigma Cat#N6287; CAS#548472-68-0

Adriamycin (Doxorubicin hydrochloride) Sigma Cat#D1515; CAS#25316-40-9

Poly-HEMA Sigma Cat#P3932; CAS#25249-16-5

Critical Commercial Assays

Click-iT� EdU Alexa Fluor� 647 Flow Cytometry Assay Kit Thermo Fisher Cat#C10424 Lot#1293070

PKH26 red fluorescent cell linker kit for general membrane

labeling (PKH26)

Sigma Cat#PKH26GL

Deposited Data

TCGA breast cancer RNA-seq and clinical data TCGA Research Network https://cancergenome.nih.gov/

Raw and analyzed ChIP-seq and RNA-seq data: Regulation of

p53- and Myc-targets in normal and tumoral murine

mammary epithelial cells

This paper GEO: GSE87004

Affymetrix Array U133A data: Gene expression of breast

cancer tissue in a large population-based cohort of

Swedish patients

Pawitan et al., 2005 GEO: GSE1456

(Continued on next page)
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REAGENT or RESOURCE SOURCE IDENTIFIER

Affymetrix Array U133A data: Gene-expression profiles to

predict distant metastasis of lymph-node-negative

primary breast cancer

Wang et al., 2005 GEO: GSE2034

Affymetrix Array U133A data: Genetic Reclassification

of Histologic Grade Delineates New Clinical Subtypes

of Breast Cancer

Ivshina et al., 2006 GEO: GSE4922

Affymetrix Array U133A data: Dataset of microarray

experiments from primary breast tumors used to

validate the 76-gene signature (VERIDEX)

Desmedt et al., 2007 GEO: GSE7390

Experimental Models: Cell Lines

MCF10DCIS.com Miller et al., 2000 RRID:CVCL_5552

NMuMG ATCC; Termén et al., 2013 RRID:CVCL_0075

Experimental Models: Organisms/Strains

Mouse: GFP/FVB: FVB.Cg-Tg(ACTB-EGFP)B5Nagy/J Jackson lab Stock#003516

Mouse: MMTV-ErbB2: FVB-Tg(MMTV-Erbb2)NK1Mul/J Jackson lab Stock#005038

Mouse: p53�/�: B6.129S2-Trp53tm1Tyj/J Jackson lab Stock#002101

Mouse: Rosa26-MycER (R26-MER) Murphy et al., 2008 N/A

Mouse: NOD/SCID: NOD.CB17-Prkdcscid/NCrHsd Envigo N/A

Oligonucleotides

Primer: GusB Forward GTGGGCATTGTGCTACCTC This paper N/A

Primer: GusB Reverse ATTTTTGTCCCGGCGAAC This paper N/A

Primer: c-Myc Forward TTTGTCTATTTGGGGACAGTGTT This paper N/A

Primer: c-Myc Reverse CATCGTCGTGGCTGTCTG This paper N/A

Primer: Ncl Forward CATGGTGAAGCTCGCAAAG This paper N/A

Primer: Ncl Reverse TCACTATCCTCTTCCACCTCCTT This paper N/A

Primer: Cad Forward GATCATCATGGGGGAGAAAG This paper N/A

Primer: Cad Reverse CCAAGCGTGAGAAGGAGAAC This paper N/A

Primer: Odc1 Forward GCTAAGTCGACCTTGTGAGGA This paper N/A

Primer: Odc1 Reverse AGCTGCTCATGGTTCTCGAT This paper N/A

Recombinant DNA

pWPI Didier Trono Addgene #12254

pWPI-MycER Pasi et al., 2011 N/A

pLL3.7 Rubinson et al., 2003 Addgene #11795

pLL3.7-mMyc (AP4619/20) - puro Bruno Amati N/A

insert: mMyc hairpin TGAATTTCTATCACCAGCAATTCAAGAGAT

TGCTGGTGATAGAAATTCTTTTTTC

pLL3.7-mMyc (AP4621/22) – puro insert: mMyc hairpin TGGAGAT

GATGACCGAGTTATTCAAGAGATAACTCGGTCATCAT

CTCCTTTTTTC

Bruno Amati N/A

pTRIPZ Open Biosystems Cat#RHS4750

pTRIPZ-RFP-Omomyc Annibali et al., 2014 N/A

pBABE-p53ER Vater et al., 1996 N/A

Software and Algorithms

ELDA Hu and Smyth 2009 http://bioinf.wehi.edu.au/software/elda/

FlowJo 9.3-2 (or later versions) FowJo, LLC https://www.flowjo.com/

ImageJ Schneider et al., 2012 https://imagej.net/Welcome

bwa (version 0.6.2-r126) Li and Durbin 2010 http://bio-bwa.sourceforge.net

samtools rmdup tools (version 0.1.18) Li et al., 2009 https://github.com/samtools/samtools

MACS (version 1.4) Zhang et al., 2008 https://github.com/taoliu/MACS/

GIN tool Cesaroni et al., 2008 N/A

(Continued on next page)
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Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

Tophat2 Kim et al., 2013 https://ccb.jhu.edu/software/

tophat/index.shtml

HTSeq (v0.5.3p9) Anders et al., 2015 https://github.com/simon-anders/

htseq

DESeq2 Anders and Huber 2010 https://bioconductor.org/packages/

release/bioc/html/DESeq2.html

GSEA v2.2.0 Subramanian et al., 2005 https://www.broadinstitute.org/gsea/

ClustVis Metsalu and Vilo 2015 https://biit.cs.ut.ee/clustvis/

cBioportal Cerami et al., 2012;

Gao et al., 2013

http://www.cbioportal.org/

Mouse Gene Database (MGI) Blake et al., 2017 http://www.informatics.jax.org/

homology.shtml

Broad GDAC Firehose [https://doi.org/10.7908/C11G0KM9] Broad Institute https://gdac.broadinstitute.org/

Aroma R package Bengtsson et al., 2008 https://cran.rstudio.com/web/

packages/aroma.affymetrix/index.html

Other

Tamoxifen diet for rodents Envigo TD.130859
CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Pier Giu-

seppe Pelicci (piergiuseppe.pelicci@ieo.it).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Cell lines and PDX samples
MCF10DCIS.com (Miller et al., 2000) and patient derived xenografts were kindly provided by Dr. Luisa Lanfrancone, and cultured as

previously described (D’Alesio et al., 2016). Nut3 (Sigma, N6287) was used in vitro at a final concentration of 2.5 or 10 mM as

mentioned. Prior to transplantation in NOD/SCID mice (see Transplantation Experiments), MCF10DCIS.com were cultured as mam-

mospheres (see Method Details) and treated with 5 mM Nut3. NMuMG cells were obtained from ATCC and cultured in adhesion at

37�C, 5%CO2, in DMEMmedia (Lonza) supplementedwith 10% fetal bovine serum (FBS;Microgem), 2mML-Glutamine (EuroClone)

and 10 mg/mL insulin (Roche). p53 activation wasmediated by the addition of Adriamycin (Doxorubicin hydrochloride, Sigma, D1515)

at a final concentration of 5 mM.

Mouse models
MMTV-ErbB2 (Muller et al., 1988) and GFP transgenic mice (Hadjantonakis et al., 1998) were in the FVB background; p53�/�, p53+/�

and Rosa26-MycER (Murphy et al., 2008) in C57/BL6J. In vivo studies were performed after approval from our fully authorized animal

facility and our institutional welfare committee (OPBA) and notification of the experiments to the Ministry of Health (as required by the

Italian Law; IACUCs Numbers: 19/2013; 757/2015; 537/2017), in accordance with EU directive 2010/63.

4-OHT administration in vivo
Female WT C57/BL6J mice were tested for tolerability of long-term administration of 4-OHT and its effects on the mammary gland

tissue. 3- and 8-week-old mice were fed with 4-OHT-containing or standard diet for 14 days, then sacrificed and their mammary

glands digested and analyzed by FACS for the expression of epithelial SC markers. 4-OHT-containing food was purchased from

Harlan (TD. 130859) and, according to manufacturer’s instructions, �40 mg 4-OHT/kg of body weight were provided per day,

assuming 20-25 g body weight and 3-4 g intake.

Transplantation Experiments

Transplantation of WT mammary cells was performed in cleared fat pads of 3-week-old female FVB mice anaesthetized with 2.5%

Avertin in PBS (100% avertin: 10 g of tribromoethanol in 10mL of tertamyl alcohol, both Sigma). Transplanted mammary glands were

collected 12 weeks later, fixed in 4% formaldehyde and colored with carmine alum for whole mount staining (Deome et al., 1959). Fat

pads were scored as positive when the ductal branching originated from a central region of the cleared fad pad and its directionality

was variable in different parts of the fat pad.
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For in vivo tumor growth assays, 200,000 ErbB2-tumor or 10,000 MCF10DCIS.com cells were injected orthotopically in one

inguinal mammary gland per mouse in 8-week-old female FVB or NOD/SCID virgin recipients, respectively, without prior clearing

of the fat pad. Secondary ErbB2-tumors developed with a latency of 40-50 days and full penetrance.

Nut3 treatment in vivo
Female FVB mice transplanted with LTR-Ctrl or LTR-MycER ErbB2-tumor cells were treated with Nut3 (Sigma, 20 mg/kg

body weight) or DMSO (both diluted 1:1 with PBS) by i.p. injections once every 2 days for 2 weeks, upon tumor appearance (tumor

volume < 650 mm3). Mice were sacrificed at the end of the treatment, and tumor volumes calculated [V = (length 3 Widtĥ 2)/2] to

evaluate Nut3 effect on tumor growth.

Primary mouse mammary epithelial cell culture
Mammary glands were collected, cells isolated, and mammosphere cultures established as described previously (Cicalese et al.,

2009). For organoid self-renewal assays, isolated MaProgs were cultured for 7 days in adhesion on collagen-coated plates (Corning)

and, then, seeded at a density of 10,000 cells/well in 6-well ultralow attachment plates (Corning) in 5%matrigel (Corning) mammary

colony medium (Panciera et al., 2016). Colonies were counted at the end of each passage (14 days), recovered in ice-cold HBSS,

incubated with 400 mL Accutase (Sigma) for 5 minutes at 37�C and mechanically dissociated to obtain single-cell suspensions for

serial replating.

Primary ErbB2-tumor cells were occasionally kept in short-term cultures in adhesion using DMEM/F12 (1:1, Lonza/GIBCO)

supplemented with 10% FBS (HyClone, GE Healthcare Life Science), 10 mM HEPES (Sigma), 5 mg/mL insulin (Roche), 0.5 mg/mL

hydrocortisone (Sigma), 10 ng/mL epidermal growth factor (EGF, Tebu-Bio), and 10 ng/mL cholera toxin (Sigma). In vitro treatments

with Nut3 (Sigma, N6287), Adriamycin (Sigma, D1515) and 4-OHT (Sigma, H7904) were performed as indicated in the corresponding

Results sections and Figures.

METHOD DETAILS

Mammosphere growth curves
For the modeling of mammosphere growth curves, primary mammospheres were dissociated mechanically and re-plated (at

20,000 cells/mL) to obtain secondary mammospheres in 6-well low-adhesion plates coated with poly-HEMA (Sigma, P3932). After

7 days, the newly formed mammospheres were counted, collected, and manually dissociated by pipetting. At each passage, the

number of retrieved mammospheres reflects the number of mammosphere-initiating cells present in the original culture, and the

number of cells counted after dissociation allows the evaluation of the number of cells per sphere formed. Cumulative sphere and

cell curves were calculated based on the ratio between plated spheres and obtained spheres and cells, respectively. The number

of plated spheres was derived from the total number of cells divided by the size of the mammospheres (number of cells/number

of spheres) over the passages, assuming no changes in the average mammosphere size in a culture (Cicalese et al., 2009).

Cell Cycle Analysis
Clik-iT Plus EdU kit for flow cytometry assay was purchased from Life Technologies (Thermo Fisher, C10424). WT FVB and ErbB2-

tumor mammospheres were labeled each day of culture (from day 1 to day 5) for 1.5 h and stained according to the manufacturer’s

protocol. Cells were then fixed in ethanol 100% for 1 h on ice and stained with propidum iodide (PI) solution (final 2.5 mg/mL). Cells

were then incubated with RNaseA (final concentration 0.25mg/mL) at 4�C for aminimum of 3 h; the fluorescence signal was acquired

on a FACS Canto II (BD Bioscience) and files analyzed with the FlowJo 9.3-2 analysis software.

PKH26 based label retaining assay
Primary heterozygous Rosa26-MycER, WT and GFP transgenic FVB mammary cells were resuspended at the concentration of

10 million cells/mL and stained for 5 minutes at room temperature by adding an equal volume of a PKH26 mix (1:2500 PKH26 in

PBS) (Sigma, PKH26GL), light protected. The cells were then washed twice with culture medium and plated to obtain primary mam-

mospheres. PKH-labeled mammospheres were collected after 7 days, and mechanically dissociated to obtain single cell suspen-

sions. After a filtering step with a 40 mm cell strainer, cells were subjected to FACS sorting (Influx cell sorter equipped with a

488 nm laser and with a band pass 575/26 nm optical filter for PKH26 fluorescence detection, BD). PKHhigh cells were sorted as

the brightest 1.5% population. The gate for the PKH� population was selected according to the basal fluorescence of unstained cells

and usually included the 25% of live cells. The obtained PKH� cells were cultured asmammospheres (plated for growth curves in the

presence or absence of 4-OHT or infected with lentiviral vectors) and used in transplantation assays.

FACS of epithelial cell sub-populations
Single cells isolated from the mammary tissue were mixed with digested organoids. Organoids were derived from the collection of

aggregates that did not pass through each of the cell strainers used. This material was further digested with trypsin/EDTA (Lonza),

dispase (5 U/mL, Stem Cell Technologies) and DNase (1 mg/mL, Stem Cell Technologies). Inactivation of the enzymes was
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performed with ice-cold PBS supplemented with 2% FBS. The cell suspension of single cells and digested organoids was blocked in

BSA 10% and then stained for mammary stem and progenitor cell markers as listed below:

d Lineage cocktail (Lin-): anti-CD45 (eBioscience, clone 30-F11); anti-Ter119 (eBioscience, clone Ter119); anti-CD31

(eBioscience, clone 390); all PE-Cy7 conjugated (1:300)

d Anti-CD24 (eBioscience, clone M1/69) PE conjugated (1:200)

d Anti-CD49f (eBioscience, clone GoH3) APC conjugated (1:100)

d Anti-CD49f (eBioscience, clone GoH3) eFluor�450 conjugated (1:100)

d Anti-CD61 (eBioscience, clone 2C9.C3) PE conjugated (1:40)

d Anti-EpCAM (eBioscience, clone G8.8) APC conjugated (1:200).

In selected experiments, Lin- cells were isolated by column-based negative selection that was performed through the EasySep

Mouse Epithelial Cell Enrichment Kit (Stem Cell Technologies).

Samples were acquired on a FACS Canto II (BD Biosciences) and analyzed with FlowJo 9.3-2 (or later versions). Cell sorting was

performed on MoFlo Astrios (Beckman Coulter) or FACSAria Fusion (BD Biosciences).

Viral Infections
293-T and Phoenix-ECO packaging cells were cultured in DMEM supplemented with 10% FBS, 2 mM glutamine, 100 U/mL peni-

cillin and 100 mg/mL streptomycin. For lentiviral production, 293-T cells were transfected following the calcium-phosphate proced-

ure with a mixture of: 2.5 mg of pRSV (Rev), 5 mg of pMDL/pRRE (Gag and Pol), 3 mg of pENV (VSV-G), and 10 mg of the lentiviral

vector per plate. The same procedure was applied for retroviral production in Phoenix-ECO cells, which were transfected with:

5 mg of PKAT2, 10 mg of retroviral vector. 62.5 mL of 2M CaCl2 were added to the DNA mix and brought to a total volume of

500 mL with water. The mix was added drop-wise to 500 mL of bubbling 2X HBS (HEPES buffered saline: 250 mM HEPES

pH 7.0, 250 mM NaCl and 150 mM Na2HPO4). After 15 minutes of incubation, the precipitate was distributed on exponentially

growing (�70% confluent) cells. The medium was replaced 12-16 h later with mammosphere medium or mammary gland (MG)

medium (Panciera et al., 2016) deprived of EGF and FGF. Viral supernatant was collected 24 and 48 h later and filtered through

a 0.45 mm syringe-filter.

Cells from dissociated primary mammospheres were resuspended in the corresponding viral supernatants supplemented

with growth factors and Polybrene (4 mg/mL; Sigma, H9268) to a final concentration of 50,000 cell/mL and subjected to 2 cycles

of infection in suspension (overnight and 6 h). Then, the cells were plated in fresh mammosphere medium to obtain secondary

mammospheres. Isolated MaProgs, instead, were infected in adhesion on collagen-coated 6-well plates (LUM: 100,000 cells/

well; DN: 50,000 cells/well), using MG viral supernatants supplemented with growth factors and Polybrene (5 mg/mL). At the end

of a single round of overnight incubation, viral supernatants were replaced by fresh MG media and the infected cells cultured for

7 days prior to serial replating in 5% matrigel mammary colony medium for organoid formation and self-renewal assays.

In selected experiments, the viral supernatant was concentrated by ultra-centrifugation at 20,000 rpm for 2 h at 4�C, and the viral

pellet obtained was resuspended in PBS at 1000X concentration. The viral stock was frozen (�80�C) and subsequently used to infect

target cells in order to achieve high multiplicity of infection (MOI). The concentrated virus was employed for the infection of ErbB2

primary tumor cells in adhesion, prior to the injection in syngenic recipient mice. This alternative protocol allows shorter culture

periods than the mammosphere assay.

The infection efficiency with LTR-Ctrl and LTR-MycER lentiviruses was generally high (�80%) and MycER expressing cells

exhibited a selective advantage upon passaging in vitro. For the in vivo experiment with ErbB2 cells shown in Figure 5D, the infection

efficiency was lower (�60% for LTR-Ctrl and �30% for LTR-MycER). Infected cells, however, were sorted (as GFPpos) prior to

transplantation. Finally, for the experiments with Omomyc and corresponding control vector (Figures 5A and S5C-D) (Annibali

et al., 2014) or pBABE-p53ER (Figure S6B) (Vater et al., 1996), puromycin selection was applied for one passage prior to the induction

with doxycycline (0.5 mM; Sigma, D9891) or 4-OHT (200 nM; Sigma, H7904), accordingly.

Modality of SC mitotic division
Doublets in 20% methylcellulose were fixed in 2% formaldehyde and transferred onto poly-D-lysine coated glass slides (Corning).

To visualize dividing cells prior to cytokinesis we treated PKHhigh cells from LTR-Ctrl and LTR-MycER with 25 mM blebbistatin for

36 h (Straight et al., 2003). Immunofluorescence was performed as described below. Confocal microscopy was performed on a Leica

TCS SP2 microscope equipped with a 63X oil-immersion objective lens (HCX Plan-Apochromat 63X NA 1.4 Lbd Bl; Leica).

Immunofluorescence
Fixed single cells from dissociated mammospheres were permeabilized for 10 minutes with 0.1% Triton X-100 in PBS at room tem-

perature, blocked with donkey serum and stained with specific primary and secondary antibodies. Samples were analyzed under an

UpRight BX61 (Olympus) fluorescence microscope with a 60X/1.35 oil objective (Olympus) and images were acquired through

MetaMorph� Microscopy Automation & Image Analysis Software (Molecular Devices).
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Primary antibodies used were: a rabbit monoclonal c-Myc antibody (1:250 in blocking solution, clone Y69, ab32072 Abcam); a rat

monoclonal anti-CD49f (1:250 in blocking solution, clone GoH3, #555734, BD); a monoclonal mouse anti-Numb antibody (clone

AB21) (Colaluca et al., 2008). Fluorochrome-conjugated secondary antibodies were obtained from Jackson ImmunoResearch

Laboratories.

Immunohistochemistry
For the preparation of paraffin-embedded sections: hydrated whole-mounted tissues were sequentially treated for 1 h at room

temperature with 70%, 80%, 95% ethanol, 3 times with 100% ethanol, twice with xylene and twice for 2 h at 58�C with paraffin.

The specimens were then embedded in paraffin and sectioned with a microtome at 5 mm thickness. Slides were stained with

hematoxylin-eosin for histological analysis or stained by immunohistochemistry. Paraffin sections were deparaffinized with his-

tolemon (Carlo Erba) for 10 minutes (twice) and hydrated through graded alcohol series (100%, 95%, 70% ethanol and water)

for 5 minutes each. Antigen unmasking was performed in boiling citrate buffer (10 mM sodium citrate, 0.05% Tween20, pH 6.0)

for 30 to 50 minutes, followed by incubation with 3% hydrogen peroxide in distilled water for 10 minutes at room temperature.

Slides were subsequently pre-incubated with an antibody buffer (2% BSA, 5% FBS, 0.02% Tween20 in TBS) for 20 minutes at

room temperature and then stained with primary antibody overnight at 4�C. After 2 washes with TBS, the slides were incubated

with a secondary antibody (DAKO EnVision system HRP, rabbit or mouse) for 30 minutes at room temperature and washed

twice again in TBS. The sections were subsequently incubated in a peroxidase substrate solution (DAB DAKO) for 2 to

10 minutes, rinsed in water, counterstained with hematoxylin for 30 s, dehydrated through graded alcohol series (water and

70%, 95%, 100% ethanol) for 5 minutes each, and ultimately mounted with Eukitt (Kindler GmbH). Primary antibodies used:

rabbit anti-Ki67 (Thermo Scientific; RM-9106-S; 1:200), rabbit anti-Cytokeratin 14 (Covance; PRB-155P; 1:500), mouse anti-

Cytokeratin 18 (Progen; 61028; 1:20), rabbit anti-b-casein (Santa Cruz Biotech.; sc30042; 1:500) and rabbit anti-GFP (Abcam;

ab6556-25; 1:500).

Quantitative PCR
RNA from mammospheres was extracted with Maxwell� 16 LEV simplyRNA cells kit (Promega) and reverse transcribed using

random primers and ImProm-II reverse transcriptase (Promega), following manufacturer’s instructions. RT-PCR analyses were

done on the Applied Biosystems 7500 Fast Real-Time PCR System with the fast-SYBR Green PCR kit (Applied Biosystems). The

amount of each mRNA was normalized to the amount of GusB mRNA. Primers used for each gene are listed in the Key Resources

Table.

Western Blot Analysis
Protein extracts from fresh mammary tissues or dissociatedmammospheres (100,000 to 500,000 cells) were prepared in RIPA buffer

(Tris-HCl 50 mM; NaCl 150 mM; 1% NP-40; EDTA 1 mM; 0.5% Sodium Deoxycholate; 0.1% SDS) supplemented with protease in-

hibitors (Roche). Proteins were quantified with the use of the DC Protein Assay (Biorad) in a 96-well format and the absorbance was

measured at 750 nm with the GloMax� 96 Microplate Luminometer (Promega). SDS-PAGE was performed using the NuPage�
Novex� Gel System apparatus (Invitrogen) at a constant current of 120 V for approximately 2 h. Samples were loaded on precast

Nupage Novex 4%–12% Bis-Tris gels (Invitrogen) and the 1X NuPAGE� MOPS SDS was used as running buffer (Invitrogen).

Following SDS-PAGE electrophoresis, proteins were transferred to nitrocellulosemembranes (Protran; Schleicher & Schuell) by elec-

troblotting for 1.5 h at 100 V and were then stained with Ponceau S to verify the efficiency of the transfer. Membranes were blocked

for 1 h in blocking solution: 10% low fatmilk in TBS-T (Tris Buffered Saline, 0.1%Tween 20) for all the antibodies used, except for anti-

phospho-S15 p53 which was blocked with 5% BSA (Bovine serum albumin). All primary antibodies were used at a dilution of 1:500,

except for the loading control (anti-Vinculin, 1:10,000). The membranes were washed 3 times in TBS-T (10 minutes each) and incu-

bated with a secondary antibody linked to horseradish peroxidase for 1 h at room temperature. After 3 washes in TBS-T, the proteins

were visualized using enhanced Clarity Western ECL Blotting Substrate (Biorad) and the ChemiDoc MP System (Biorad). Band den-

sities were quantified by ImageJ software.

ChIP and ChIP-seq
ChIP and ChIP-seq experiments were performed as previously described (Tonelli et al., 2015) using anti-p53 (Rabbit Polyclonal,

Novocastra NCL-L-p53-CM5p) and anti-c-Myc (Rabbit Polyclonal N-262, Santa Cruz Biotechnology sc-764) antibodies.

Multiplexed ChIP-seq libraries were sequenced on Illumina HiSeq2000. Fastq files of 50 bps single-end ChIP sequences were

aligned to the murine reference genome (mm10) using bwa (version 0.6.2-r126) (Li and Durbin, 2010) with default setting. Bam files

were processed by removing reads that: 1) did not align to the reference genome, 2) aligned to mitochondrial genome and Y chro-

mosome, 3) did not pass quality controls, or 4) were duplicates (assumed to represent PCR artifactual events). The last stepwas done

using samtools rmdup tools (version 0.1.18) (Li et al., 2009). Peak calling MACS (version 1.4) (Zhang et al., 2008) with default param-

eters (p% 1e-5) was used to identify enriched regions of ChIP-seq binding using the input bam files as background. The peaks called

for the 2 replicates for each experimental condition were thenmerged in a single dataset. Each set of bound regions is then annotated

by the association with the most proximal gene, considered as the most probable target, with the GIN tool (Cesaroni et al., 2008)

using the UCSC RefSeq table (http://hgdownload.cse.ucsc.edu/goldenPath/mm10/database/refGene.txt.gz).
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RNA-seq and transcriptional profiling
Libraries of template RNAmolecules were prepared from0.5 to 2 mg high quality input RNA using the Illumina� TruSeq�RNASample

Preparation Kit v2, following manufacturer’s instructions.

All libraries were sequenced at 50bp pair-end reads on an Illumina HiSeq200. Sequences were aligned with Tophat2 (Kim et al.,

2013) against the Mus musculus genome (UCSC, release mm10) and the RefSeq transcriptome references. Raw read counts were

summarized using HTSeq (v0.5.3p9) (Anders et al., 2015) and then analyzed for differential expression (DE) with the R package

DESeq2 (Anders and Huber, 2010) at gene level. For each contrast examined, we considered significantly regulated those genes

that have a baseMean value > 10 and that show a differential expression (reported as log2 of fold change) associated to an adjusted

p-value (q-value) % 0.05.

Gene Set Enrichment Analysis (GSEA) was performed on GSEA v2.2.0 platform (https://www.broadinstitute.org/gsea/). To deter-

minewhether theMycER gene list (Myc-DEGs; n = 7,052) showed statistically significant concordant and/or discordant differences to

the gene sets of p53-DEGs (n = 6,745) and the tumorigenic ErbB2-DEGs (n = 3,596) or Nut3-DEGs (n = 1,922) we used the pre-ranked

tool. P-values were calculated by performing 1,000 random permutations of gene labels to create the ES (enriched score) null dis-

tribution. The normalized enrichment score (NES) was calculated considering separately up- and downregulated gene lists.

Pathway analyses were performed by challenging our gene set of 1,494 ErbB2 p53-Myc DEGS with the Molecular signature data-

base (MSigDB v5.0) curated gene set C2 on the same GSEA platform, again considering separately up- and downregulated gene

lists.

Hierarchical clustering and heatmaps were generated with different R packages using ClustVis (Metsalu and Vilo, 2015). Genes

were clustered by Euclidean distance and average linkage, using relative expression values of the PKHhigh, PKH�-LTR-MycER

and bulk LTR-MycER samples to the PKH� cells, which served as reference.

QUANTIFICATION AND STATISTICAL ANALYSIS

Summarized data are presented as mean ± standard deviation (SD). Statistical comparisons were carried out using two-tailed un-

paired Student’s t tests, unless otherwise specified. The number of biological (n) or technical replicates, the type of statistical ana-

lyses performed and statistical significance are reported in the corresponding Figures and Figure legends.

Limiting dilution transplantation
Limiting dilution analysis was performed using the Extreme Limiting Dilution Analysis (ELDA) web tool (http://bioinf.wehi.edu.au/

software/elda/) (Hu and Smyth, 2009). ELDA computes a 95% confidence interval for the active cell frequency in each population

group and it implements a likelihood ratio test for the acceptance of the single-hit hypothesis (p-value). Slope: log-active cell fraction

(equal to 1 when the single-hit hypothesis is confirmed). Fit: the single hit hypothesis is rejected when p % 0.05.

Mammosphere and organoid self-renewal assays
Spheres and organoids were counted at the end of each passage using ImageJ (Schneider et al., 2012) and object threshold 100 mm.

Cumulative sphere and cell curves were calculated as described in Method Details. Cumulative curves were plotted in a semi-log-

arithmic scale and approximated an exponential curve. Growth rates (GRs) were evaluated as the slope of the trend-line of the

exponential curves. Data exponential regression resulted in the value of the coefficients of determination (R2). Statistical comparisons

between growth curves shown in Figure 5B and 5C were performed by two-tailed paired t tests on the GR values calculated for each

of the 4 independent experiments.

Signature validation on publicly available datasets
TCGA data pre-process

Breast cancer RNA-seq data were downloaded from cBioPortal database (Cerami et al., 2012; Gao et al., 2013) (http://www.

cbioportal.org/), which includes data from the 2015 TCGA freeze on 1092 patients. Expression values are reported as normalized

RSEM Z-score. Original gene annotation for the MitSig was ported from our mouse data to human homologous genes for 179 out

of 189 genes using the Mouse Gene Database (MGI) available at http://www.informatics.jax.org/homology.shtml (Blake et al.,

2017). Clinical data, including molecular subtype and estrogen receptor status, were downloaded from the Broad GDAC Firehose

(https://gdac.broadinstitute.org/) and matched by barcode to the RNA-seq data [https://doi.org/10.7908/C11G0KM9].

GEO Affymetrix Array data pre-process

To perform the survival analysis, we took advantage of four different studies based on gene expression Affymetrix Array U133A data

from 2005-2007 (GEO: GSE1456, GSE2034, GSE4922, GSE7390) for a total of 932 patients (reduced to 892 with matched clinical

information). Molecular data were downloaded in the original CEL format, normalized with RMA and quantile normalization (Irizarry

et al., 2003) and reported as log2 probe intensity. The annotation was performed using custom cdf file from brain array version 21

(https://mbni.org/www/) (Dai et al., 2005) to obtain a single match between the probe and the gene name (�12,000 genes). Given

the large number of samples, the aroma R package was used for the normalization step (Bengtsson et al., 2008). Out of the original

189 MitSig genes translated in 179 human genes, 161 were found in this array type.
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Clinical information pre-process

The four studies reported various types of information regarding their participants (892 in total). With the exception of disease-free

survival, none of the clinical data was available for all the four studies (see Table S4). Disease-free survival is reported as Status_

Relapse: 0, censored, 1 any event including relapse, metastasis or death and Time_Relapse: number or fraction of months from

entering the study until an event or censorship occurs. Estrogen receptor status was available for 3 out 4 of the studies and it

was evinced from the molecular subtype for GEO: GSE1456 (Luminal tumors: receptor positive, Other: negative). Since each of

the four clinical datasets reported information on different clinical variables, we could not perform a multivariate analysis. Thus,

we carried out a Cox multiple regression analysis, including ER status, tumor grade, lymph node status, p53 status, age, and tumor

size as possible covariates. The final number of samples retained was reduced to 885 by removing subjects with time-to-event equal

to 0 and all the subjects with censorship or event overmean + 2SDwere censored at that time (considered outliers after�178months

to respect proportional hazards assumptions).

Statistical Analysis of TCGA and GEO data

Both TCGA and GEO matrices were divided into 2 groups (UP and DOWN) using hierarchical clustering with Euclidean distance and

Ward’s linkage criterion. Non-parametric Dunnet’s Test was used to assess difference in the distribution of genetic characteristics

and subtype between UP andDOWNMitSig groups in TCGA data. Survival data from theGEO datasets were analyzed with two stan-

dard techniques. In case of 2 categories (e.g., UP versus DOWN) Kaplan-Meier curves were drawn and Logrank test was used. For

multivariate models, Cox Proportional Hazard Models were used and Shoenfeld residual tests were performed to check for propor-

tional hazards assumptions.

DATA AND SOFTWARE AVAILABILITY

The accession number for the ChIP-seq and RNA-seq datasets reported in this paper is GEO: GSE87004.
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Figure S1. Related to Figure 1. The regulation of Myc expression in ErbB2-tumor cells and human breast 
cancer samples is p53-dependent. A) RT qPCR of Myc mRNA in WT (n=7) and ErbB2-tumor mammospheres, 
untreated (n=6) or treated (n=3) with 2.5 μM Nut3, normalized to WT cells. Mean and SD are shown. *p < 0.05. 
B) Western blot of phospho-p53 (p-S15 p53) and p21 expression 4 and 8 h after DNA damage induction (0.5 μM 
Adriamycin) in ErbB2-tumors, untreated or treated with Nut3 (2.5 and 10 μM). C) Western blot of Myc expres-
sion in p53-/- cells untreated or treated with Nut3 (2.5 μM) at three selected time points (72, 96 and 120 hours) 
during mammosphere growth. D-G) Analyses of Myc (D-E) and p21 (F-G) RNA levels in TCGA breast cancer 
samples with WT (n=673) and mutated (n=274) TP53. Box plots (D and F) show relative expression levels of all 
samples carrying any non-synonymous TP53 mutation (left), only missense mutations (middle) and only 
nonsense mutations (right), compared to samples with WT TP53. Bean plots (E and G) depict relative expression 
levels of WT versus mutated TP53 (as in D and F) within each tumor subtype (HER2+; LumA: luminal A; LumB: 
luminal B; LumUK: luminal unknown; TNBC: triple-negative breast cancer).
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Figure S2. Related to Figure 2. Effects of different doses of 4-OHT on Rosa26-MycER and WT mammo-
spheres. A) Western blot of MycER, phospo-p53 (p-S15 p53) and cleaved-Caspase 3 (c-Casp3) in Rosa26-Myc-
ER mammospheres treated with increasing doses of 4-OHT, as indicated. B) Immunofluorescence analysis of 
Myc expression and Dapi staining in Rosa26-MycER mammary cells upon administration of increasing doses of 
4-OHT, as indicated. Scale bar, 20 μm. C) Representative images of Rosa26-MycER mammospheres treated 
with 20 nM and 1 μM 4-OHT. Scale bar, 500 μm. D) Cumulative sphere and cell number plots of WT mammo-
spheres, untreated (UT) or treated with 20 or 200 nM 4-OHT. Mean and SD of two technical replicates are 
shown. 
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Figure S3. Related to Figure 2. LTR-MycER cells can replace R-MycER cells for in vivo studies. 
A) Percentage of Luminal Mature (CD49f-CD61-), Luminal Progenitor (CD49f-CD61+) and Basal 
(CD49f+CD61+) cells within the Lin-EpCAM+ compartment in the mammary glands of 8-week-old WT 
mice, fed with standard (n=1) or 4-OHT (n=2) diet. Mean and SD are shown. B) Percentage of Lin-Ep-
CAM+ cells in the mammary glands of 3-week-old WT mice, fed with standard (n=2) or 4-OHT (n=2) 
diet. Mean and SD are shown. *p < 0.05. C) RT qPCR of selected transcriptional targets of Myc 
(c-Myc, Ncl, Cad and Odc1 genes) in LTR-MycER cells (n=1) and R-MycER cells (n=5) treated with 
20 or 200 nM 4-OHT; values are expressed as mean fold change relative to the empty vector (for 
LTR-MycER) or the untreated (for R-MycER) controls, respectively. Error bars represent SD. D) 
Representative cumulative sphere number graph of WT mammospheres transduced with LTR-Ctrl (3 
technical replicates) or LTR-MycER (4 technical replicates), without 4-OHT administration. Mean and 
SD are shown.
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Figure S4. Related to Figure 4. MaProgs are not transformed by constitutive Myc expression. A) Representative images of 
mammosphere cultures from Rosa26-MycER PKH- progenitors in the absence of 4-OHT (R-Ctrl; left) and upon 1 week of 4-OHT 
administration (20 nM; R-MycER; right). Scale bar, 1 mm. B) Histopathological evaluation of outgrowths (n=6 per group) obtained 
from the transplantation of 50,000 WT control (Ctrl) or PKH--LTR-MycER cells. The percentage of the area occupied by mammary 
epithelium in each examined field (% Epithelial area) and the Ki67 index were calculated by digital image analysis (4 fields per 
sample). Mean and standard deviation of values in WT Ctrl and PKH--LTR-MycER outgrowths are shown. Histological grading: 
(++) = multifocal to diffuse moderate ductal and/or alveolar epithelial hypertrophy and hyperplasia, without relevant cell atypia; 
(+++) = focal to multifocal areas of mammary epithelial dysplasia with variable cell atypia. Two WT Ctrl samples were excluded 
from Ki67 calculation and histological grading, given the absence of mammary epithelial structures in the examined sections. C) 
Morphology (hematoxylin-eosin, HE, staining), expression of differentiation markers (basal K14 and luminal K18) and, upon 
pregnancy (n=5), milk production (β-casein) in the mammary outgrowths derived from PKH--LTR-MycER cells and their WT Ctrl 
counterpart. Scale bar, 100 μm. D) Representative FACS plot of Lin- primary mammary cells stained with anti-CD24 (PE-conjugat-
ed) and anti-CD49f (APC-conjugated) antibodies. E) Representative images of organoids originating from double-negative (DN; 
Lin-CD24-CD49f-) stromal cells, infected with LTR-Ctrl (Ctrl) or LTR-MycER (MycER). Scale bar, 2,000 μm. F) Hierarchical 
clustering of 1,100 genes coherently regulated in PKHhigh and PKH--LTR-MycER cells (Table S2), according to the mean expression 
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A

0

0.5

1

1.5

Empty 
ve

cto
r

Myc
 sh

RNA #1

Myc
 sh

RNA #2

R
el

at
iv

e 
ex

pr
es

si
on

Myc mRNA B

C

ErbB2
Omomyc

+DOX
1mm 1mm

D

0

0.5

1

1.5

R
el

at
iv

e 
Sp

he
re

 N
r. 

(to
 U

T)
UT
+DOX

Empty vector
control cells

ErbB2

Figure S5

C
um

ul
at

iv
e 

Sp
he

re
 N

um
be

r
Ctrl
Myc shRNA #1
Myc shRNA #2

101

102

1

10-1

10-2

1 2 3 4 5 6

Ctrl:
GR= -28%

shRNA #1
GR= -75%

shRNA #2
GR= -131%

E

Vinculin

Myc

MycER

Nut3 

Ctrl 

+ - 

MycER 

+ - 

F Cell Dose MCF10DCIS.com

10,000
1,000
100

2/2
5/5
4/6

Frequency of 
repopulating units

(95% confidence limit)
1 / 46.6 

(1/114 -1/19.1)

10 4/6

Figure S5. Related to Figure 5. Myc expression is necessary and sufficient for CSC maintenance 
and expansion. A) RT qPCR of Myc mRNA in empty vector and shRNA-Myc transduced (Myc 
shRNA #1 and #2) mammospheres. Results are shown as fold change relative to the empty vector 
expression (mean and SD of two technical replicates). B) Cumulative sphere graph of control (Ctrl) and 
shRNA-Myc transduced WT mammospheres (Myc shRNA #1 or #2). Mean and SD of two technical 
replicates are shown. C) Doxycycline treatment of Omomyc-transduced mammospheres: representative 
images of ErbB2-tumor spheres after Doxycycline administration on brightfield (left) or the RFP 
fluorescent channel (right). Scale bar, 1 mm. D) Relative sphere number of ErbB2-tumor (ErbB2; n=2) 
mammospheres transduced with the TET-inducible empty vector. Spheres were counted at the end of 
the second passage in the absence (UT) or constant presence of 0.5 μM Doxycycline (+DOX) in the 
media. Mean and SD are shown. E) Western blot analysis of exogenous MycER and endogenous Myc 
protein levels in ErbB2-tumor cells infected with LTR-Ctrl (Ctrl) or LTR-MycER (MycER), untreated 
or treated with Nut3 (10 μM) for 16 h. F) Limiting dilution transplantation of DCIS cells in the fat pads 
of NOD/SCID female recipient mice. Tumor initiating cell frequency was calculated by ELDA. 
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Figure S6. Related to Figure 6. Myc protein and mRNA levels in WT mammary cells are a 
function of p53 gene dosage and expression. A) Myc levels depend on p53 gene dosage. RT qPCR of 
Myc mRNA in WT (n=7), p53+/- (n=5) and p53-/- (n=2), normalized to WT. Mean and SD are shown. *p 
< 0.05. B) Myc levels depend on p53 expression. RT qPCR of Myc mRNA in p53-/- mammospheres 
transduced with the inducible p53ER vector and treated with 4-OHT (200 nM) for the indicated times, 
normalized to time=0. Mean and SD of two technical replicates are shown. C) DNA damage induces 
p53-dependent Myc mRNA downregulation in mammospheres. RT qPCR of Myc mRNA in WT (n=3) 
and p53-/- (n=2) mammospheres. Results are shown as fold change relative to the untreated samples. 
Mean and SD are shown. *p < 0.05. D) Western blot analysis of p53 and Myc expression in NMuMG 
cells treated with 0.5 μM Adriamycin (at 0, 4 and 8 h).
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Figure S7. Related to Figure 7. Patient stratification and survival analyses according to the MitSig expression. A) Hierar-
chical clustering of 1032 TCGA primary breast cancer patients according to the expression levels of the MitSig genes (values are 
expressed as Z-score). Color code of ER status and Z-score scale defined in the legend on the right. B) Box plots depict average 
RPPA score of Cell-cycle, Proliferation and Apoptosis pathways (Akbani et al., 2014) in “DOWN” and “UP” cohorts. Red circles 
mark significant differences between the two groups (non-parametric Dunnet’s test, p < 0.05). C) Disease-free survival (DFS) 
curve of each study (GSE2034, GSE4922, GSE7390, GSE1456) individually. Logrank test p-values as indicated. D) DFS curve of 
ER positive (upper panel) and ER negative (lower panel) breast cancer patients grouped in “DOWN” and “UP” cohorts. Wald test 
p-value on MitSig effect inside an ER status adjusted Cox model 1.58e-08.



 GSE1456 GSE2034 GSE4922 GSE7390 Total 
Participants 159 286 249 198 892 
Status_Relapse X X X X 892 
Time_Relapse X X X X 892 
Subtype X    159 
ER_status X X X X 892 
Grade X  X X 606 
Lymph_Node_status   X X 447 
P53_status   X  249 
Age   X X 447 
Tumor_size   X X 447 

Table S4

Related to Figure 7. Number of participants and corresponidng clinal information reported in datasets 
GSE1456, GSE2034, GSE4922 and GSE7390
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