Supplementary Information

MoS₂-Quantum Dots Triggered Reactive Oxygen Species Generation and Depletion: Responsible for Enhanced Chemiluminescence

Xiangnan Dou,^{ab} Qiang Zhang,^a Syed Niaz Ali Shah,^a Mashooq Khan,^a Katsumi Uchiyama^b and Jin-Ming Lin*^a

^aBeijing Key Laboratory of Microanalytical Methods and Instrumentation, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing, 100084, China

^b Department of Applied Chemistry, Graduate School of Urban Environmental Sciences, Tokyo Metropolitan University, Minamiohsawa, Hachioji, Tokyo 192-0397, Japan

Experimental Section

1. Reagents. All chemicals used in our work were of analytical grade. Hydrogen peroxide (H₂O₂), Sodiu m hydroxide (NaOH), Hydrochloric acid (HCl), Ferrous sulfate(FeSO₄: 7H₂O), Rhodamine B(RhB), Methy lene blue (MB)were brought from Beijing Chemical Reagent Co. (Beijing, China). 2,2,6,6-tetramethyl-4-pi peridine (TEMP), 5,5-Dimethyl-1-pyrroline N-oxide (DMPO) and Tetramethylbenzidine (TMB) were purchas ed from J&K Scientific. Ltd (Beijing, China). Hydrogen peroxide, NaOH and Fe²⁺ solution was prepared freshly before using.

2. Synthesis of MoS₂ QDs. MoS₂ QDs were prepared by top-down method as previously reported. First, 1g of bulk MoS₂ powder was added in 100 mL of N,N-Dimethylformamide (DMF) and kept sonication for 12 h. The solution was put into flask and heated solvothermally at 140°C for 6 h with vigorous stirring. Afterwards, the resulting mixture was cooled down to ambient temperature naturally and centrifuged for 10 min at 10000 rpm. The MoS₂ QDs was included in light yellow DMF supernatant. To obtain MoS₂ QDs aqueous solution, DMF was removed via rotary evaporation method. Finally, the MoS₂ QDs was dissolved by ultrapure water to a constant volume.

3. Characterization of MoS₂ QDs. The UV-vis spectra were measured by UV-3900 spectrophotometer (Hitachi, Japan). Emission spectra were collected with F-7000 fluorescence spectrophotometer (Hitachi, Japan). The nanoparticle size was recorded by a JEM 2010 electron microscope (JEOL, Japan). Electron paramagnetic resonance (EPR) spectra were measured on a Model JES-FA200 spectrometer (JEOL, Tokyo, Japan). The fluorescence lifetime was recorded by FLSP920 (Edinburgh Instruments, Livingston, UK).

4. Chemiluminescence analysis. Batch CL experiments were carried out with a BPCL luminescence analyzer (Institute of Biophysics, Chinese Academy of Sciences, Beijing, China). The CL spectrum was obtained on the BPCL luminescence analyzer with high-energy cutoff filters from 400 to 640 nm between the flow CL cell and the PMT.

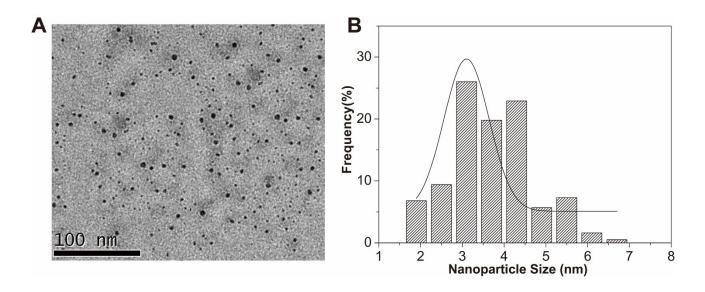


Fig. S1 (A)HRTEM image, and (B) size distribution of MoS₂-QDs.

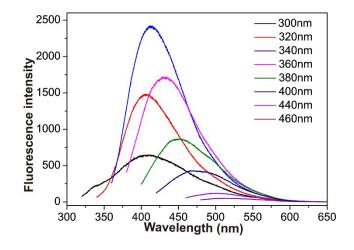


Fig. S2 The fluorescence spectra of MoS₂ QDs (Excitation slit: 2.5 nm, Emission slit: 5 nm; voltage: 700v)

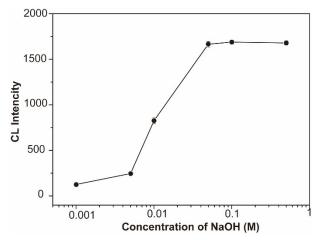


Fig. S3 The correlation of CL intensity with the concentration of sodium hydroxide (NaOH). The solution conditions were 50 μ L of 0.1 M H₂O₂, 50 μ L of 0.45mg/ml MoS₂ QDs, and 50 μ L of sodium hydroxide with concentration of 10⁻³, 5×10⁻³, 0.01, 0.05, 0.1, 0.5M respectively. High voltage: 1300 V; interval time was set for 0.1 s.

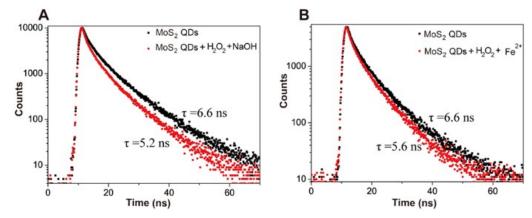


Fig. S4 (A)The fluorescence lifetime decay profile of MoS_2 QDs before (black) and after reaction with H_2O_2 -NaOH; (B) The fluorescence lifetime decay curve of MoS_2 QDs before (black) and after reaction with H_2O_2 -Fe²⁺. The solution conditions were 100µl of 0.1 M H_2O_2 , 100µl of 0.45mg/ml MoS_2 QDs, 100µl of 0.1 M NaOH and 100µL of 0.1 M Fe²⁺. The excitation wavelength: 325 nm, emission wavelength: 420 nm.

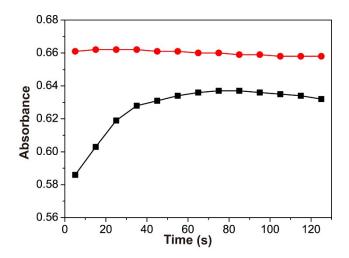
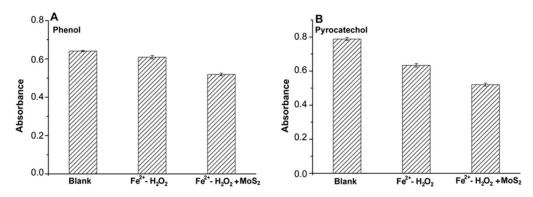



Fig. S5 The absorbance of TMB in H_2O_2 -Fe²⁺ system(black) and MoS_2 QDs- H_2O_2 -Fe²⁺ system. The solution conditions were 100µL of 0.01 M H_2O_2 , 100L of 0.45mg/ml MoS₂ QDs, 100ul of 1mM TMB and 100µL of 1mM Fe²⁺.

Fig. S6 Comparation of phenolic compounds degradation in Fe²⁺-H₂O₂ Fenton system and Fe²⁺-H₂O₂ + MoS₂ QDs system. Phenolic compounds can react with 4-aminoantipyrine forming aminoantipyrine dye with absorbance at wavelength 530.5 nm. The initial concentration of phenolic compounds and final concentration after degradation by Fe²⁺/H₂O₂ Fenton system and Fe²⁺/H₂O₂-MoS₂-QDs system were measured by using 4-aminoantipyrine for the colorimetric determination. (A) The absorbance of 4-aminoantipyrine reacted with phenol after incubated in Fe²⁺-H₂O₂ and Fe²⁺-H₂O₂ + MoS₂-QDs for 10min; (B) The absorbance of 4-aminoantipyrine reacted with pyrocatechol after incubated in Fe²⁺-H₂O₂ and Fe²⁺-H₂O₂ and Fe²⁺-H₂O₂ + MoS₂-QDs for 10min. The solution conditions were 0.01 M H₂O₂, 0.45 mg/ml MoS₂-QDs, 1mM Fe²⁺, 0.01 M K₃Fe(CN)₆, 1×10⁻⁴ M phenol and 5×10⁻⁴ M pyrocatechol.

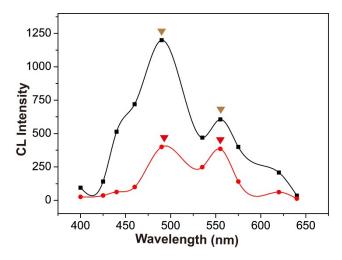
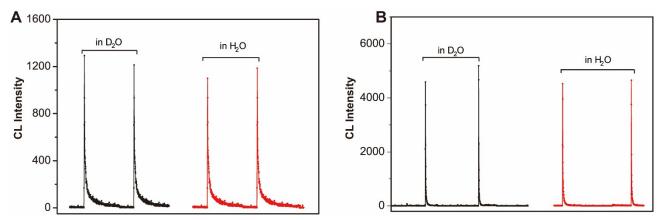



Fig. S7 The CL spectrum of $MoS_2 QDs-H_2O_2$ -NaOH system(red) and $MoS_2 QDs-H_2O_2$ -Fe²⁺ system(black). The solution conditions were 50µL of 0.1 M H₂O₂, 50L of 0.45mg/ml MoS₂ QDs, 50ul of 0.1 M NaOH and 50µL of 0.1 M Fe²⁺.

Fig. S8 (A) The comparison of CL of MoS₂ QDs-H₂O₂-NaOH system in D₂O and H₂O reagent respectively. (B) The comparison of CL of MoS₂ QDs-H₂O₂- Fe²⁺ system in D₂O and H₂O reagent respectively.