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Figure S1: *H NMR spectrum (aromatic region) during the NMR experiment of reaction
R1 with low concentration (concentration of tetrazine 0.005 mmol/mL) after 3 h and 50%

conversion.
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Figure S2: 'H NMR spectrum (aliphatic region) during the NMR experiment of reaction
R1 with low concentration (concentration of tetrazine 0.005 mmol/mL) after 3 h and 50%

conversion.
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Figure S3: 'H NMR spectrum of the reaction mixture in absence of tetrazine, i.e., a

mixture of acetone (1 equiv) and L-proline (0.01 equiv) in deuterated dimethyl sulfoxide.

The arrow points at the signal at 4.4 ppm which is the significant signal for the

oxazolidinone as published by List [1] and Gschwind [2]. The spectrum was measured
with a Bruker Avance | 400 MHz NMR spectrometer.
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NMR study of reaction R1 at higher concentrations:

Commercially available 3,6-di-2-pyridyl-1,2,4,5-tetrazine 2 (28.3 mg, 0.12 mmol,
1.0 equiv) and L-proline (0.69 mg, 0.006 mmol, 0.05 equiv) were mixed in 3.6 mL of
deuterated dimethyl sulfoxide. 0.5 mL of this mixture were transferred to the NMR
sample tube. To start the reaction, a solution of acetone in deuterated dimethyl
sulfoxide was added (50 pL, 9.6 mmol/ml, 0.48 mmol, 4 equiv). The first spectrum was
measured 3 minutes after the start of the reaction. Subsequent spectra were measured

in regular intervals of 1 minute at rt.

o
-

normalized signal intensities
o
o
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Figure S4: NMR study of reaction R1 at higher concentrations (concentration of
tetrazine 0.033 mmol/mL). Product 3 is completely soluble at the given concentration,
whereas substrate 2 is only partially dissolved. While substrate 2 transforms into the
product 3, more of substrate 2 gets dissolved until full conversion is reached.
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ESIMS study of reaction R1 at lower concentrations:

A solution of L-proline in dimethyl sulfoxide (1.353 mL, 0.76 mmol/L, 0.001 mmol, 0.05
equiv) is added to commercially available 3,6-di-2-pyridyl-1,2,4,5-tetrazine 2 (4.86 mg,
0.02 mmol, 1.0 equiv). Additional 3.02 mL of dimethyl sulfoxide were added. A solution
of acetone in dimethyl sulfoxide was added last (37 pL, 1.1 mmol/mL, 0.08 mmol,
4 equiv). The first spectrum was measured 2:20 minutes after the start of the reaction,

subsequent measurements were recorded in intervals of 7.5 min.
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Figure S5: Temporal progress of reaction R1 at low concentrations (0.005 mmol/mL of
tetrazine) in ESIMS experiment.
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5-Br

Scheme S1: Two possible regioisomers of 5-Br in reaction R2.
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Scheme S2: A schematic depiction of the continuous flow setup for reaction R2.

The theoretical reaction time for the continuous flow setup was calculated by

considering the experimental flow rates fa (150 pL/h) and fg (300 pL/h). The flowrate in

tube a is assumed to be 2*fa = 300 pL/h = fg. Further, the swept volume (Vswept =2.2 pL)

in the microreactors, the dimensions of the connecting PEEK tubes (length: a = 357

mm, b = 110 mm; diameter d = 0.127 mm) and the volume of the ESI needle (Vneedie =

0.0069115 pL) is needed. Furthermore, the assumption was made that because the
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microreactor my dilutes the reaction mixture by half, the reaction rate decreases
according to the behavior of a bimolecular reaction, namely resulting in a fourth of the

original reaction rate. The volumina V, and V, are defined as
d 2
Va=ﬂ*(£) =H+szept

d 2
Vb =h= (E) =77+ szept + Vneed!e

and in combination with the flowrates the reaction time can be calculated.

2 2

d d
Va Vb a= (E) =T+ szept b= (i) =T+ szept + Vneed!e
t= + =025 = + = (0,25
2=f, 2+f, 2=f, 2sf,
)
172.0681 200.0931 226.1009 313.1246
eHil, S JcHNO] O
1840939 {oHNO]
d -[CiHSNOL.I
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L , . F S —
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Figure S6: ESI(+) CID spectrum of mass selected [1]* (m/z 313); collisional energy
voltage 15 V.
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Figure S7: ESI(+) CID spectrum of the mass selected non-covalent adduct [1+2]" (m/z
549); collisional energy voltage 1 V.

Synthesis

Depiction of synthetic products including the numbering used for the NMR signal

allocation.

1-Benzoyl-2-p-toluoylhydrazide (6)
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N-(Chlor(phenyl)methylene)-4-methylbenzohydrazonoyl chloride (7)

10

3-(4-Bromomethylphenyl)-6-phenyl-1,2,4,5-tetrazine (9)

1"
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3-(4-Triphenylphosphoniummethylphenyl)-6-phenyl-1,2,4,5-tetrazine (4-Br)
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Figure S8: Accurate mass determination with Orbitrap XL of substrate 2 ([2+H]").
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Figure S9: Accurate mass determination with Orbitrap XL of product 3 ([3+H]").

S14



Je41TET ML

10'2: 314E5
| 000FC#135-1T2 AT
90 0.68-0.83 AV:3 F-FTMS +
= p ESI Full ms
e [E0.00-2000.00)
704
T
= B0H
= ]
R
< 50
£ 3
Z anj
& 7
203
= 3651800
203
104
] 3JE6. 7368
ol i L L .
ML
1005 3B4E4
= Czo Haz Ne Oz
207 Cao Hzz M= Oz
= p (gss, 5/p:a0) Chrg 1
and F: 20000 Res Pwr . @10%
704
807
503
405
a0
E 3651797
20
104 |
3 I | 388 1824 367.1840
L S e L L e e e B e e e e e e e e B e e e B B e e B s |
3620 3625 353.0 3635 364.0 3645 385.0 365.5 366.0 368.5 3670 3ETS
miz

Figure S10 Accurate mass determination with Orbitrap XL of intermediate 111,
([1H1+HT.
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Figure S11: Accurate mass determination with Orbitrap XL of charge tagged catalyst 1

(1.
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Figure S12 Accurate mass determination with Orbitrap XL of intermediate I3 ([13]").
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Figure S13 Zoom into *3C peak of 15 ([I3]").
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